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Monostable pulled fronts and logarithmic drifts

Thomas Giletti
*

Abstract

In this work we investigate the issue of logarithmic drifts in the position of the
level sets of solutions of monostable reaction-di�usion equations, with respect to the
traveling front with minimal speed. On the one hand, it is a celebrated result of
Bramson that such a logarithmic drift occurs when the reaction is of the KPP (or
sublinear) type. On the other hand, it is also known that this drift phenomenon
disappears when the minimal front speed is nonlinearly determined. However, some
monostable reaction-di�usion equations fall in neither of those cases and our aim is to
�ll that gap. We prove that a logarithmic drift always occurs when the speed is linearly
determined, but surprisingly we �nd that the factor in front of the logarithmic term
may be di�erent from the KPP case.

1 Introduction

In this paper, we consider a scalar reaction-di�usion equation

∂tu = ∂xxu+ f(u), t > 0, x ∈ R, (1.1)

where f ∈ C2 is of the monostable type, i.e.

f(0) = f(1) = 0 , f ′(0) > 0 > f ′(1), and f(s) > 0 for s ∈ (0, 1). (1.2)

Equation (1.1) will be supplemented together with the initial condition

u(t = 0, ·) ≡ u0 ∈ C0(R; [0, 1]), (1.3)

where u0 satis�es that there exists X0 > 0 such that

inf
x≤−X0

u0(x) > 0 = sup
x≥X0

u0(x). (1.4)

Notice that, by a comparison principle, there holds that u(t, x) ∈ (0, 1) for all t > 0
and x ∈ R, so that it can be assumed without loss of generality that

∥f ′∥∞ + ∥f ′′∥∞ < +∞.

Such an equation is well-known to admit a family of traveling waves [2], whose
minimal speed c∗ satis�es

c∗ ≥ 2
√
f ′(0),

and is also the spreading speed of solutions of (1.1) with initial data (1.3)-(1.4); we will
recall below what is meant by spreading speed. In particular, equation (1.1) is often
used as a model for invasion phenomena in physics, ecology and population dynamics.

The constant 2
√
f ′(0), or linear speed, arises from replacing f(u) in (1.1) by f ′(0)u

its linearization at 0. Under the additional assumption that

u 7→ f(u)

u
is decreasing for u > 0, (1.5)

which is usually refered to as the Fisher or KPP case, then it is actually known that
c∗ = 2

√
f ′(0) [2]. However, the converse is not true and, without assumption (1.5),

this equality may or may not hold.
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A typical example is
fa(u) = u(1− u)(1 + au), (1.6)

where a ≥ 0. Notice that the KPP assumption (1.5) is satis�ed if a ≤ 1. On the other
hand, the minimal wave speed is given by the following formula [12]:

c∗a =

 2 if 0 ≤ a ≤ 2,√
2
a
+
√

a
2

if a > 2.

In particular, in the interval a ∈ (1, 2], the minimal wave speed c∗ is equal to the linear
speed 2

√
f ′(0) even though condition (1.5) does not hold. We highlight the fact that

this interval is nontrivial, which suggests that this situation is not merely theoretical
but may indeed occur in the applications.

Furthermore, as mentioned above, it is well-known [2] that c∗ is also the spreading
speed of solutions of (1.1) under initial condition (1.3)-(1.4). More precisely, any such
solution satis�es that:

∀c < c∗, lim
t→+∞

sup
x≤ct

|u(t, x)− 1| = 0,

∀c > c∗, lim
t→+∞

sup
x≥ct

|u(t, x)| = 0.

In particular, any level set between 0 and 1 must be located around c∗t, up to some o(t)
as t→ +∞.

Yet one may want to describe the large time behavior of solutions more precisely,
whether by estimating more precisely the position of level sets or by investigating the
convergence of the pro�le of the solution to that of a traveling wave. It turns out that
the picture di�ers depending on whether c∗ > 2

√
f ′(0) (i.e. `pushed' case) or c∗ =

2
√
f ′(0) (i.e. `pulled' case). We refer to [20] for a background on the pushed/pulled

terminology.
In the pushed case when c∗ > 2

√
f ′(0), the solution converges to a single shift of

the traveling wave U∗ with minimal speed [19, 21], i.e. there exists some X∞ ∈ R
(depending on the initial data) such that

u(t, x)− U∗(x− c∗t+X∞) → 0,

as t → +∞, where the convergence is uniform with respect to x ∈ R. This simultane-
ously answers both questions of level set position and pro�le convergence.

However, in the case when c∗ = 2
√
f ′(0) and (1.5) is satis�ed, then some logarithmic

drift occurs and the solution no longer persists in the moving frame with speed c∗. More
precisely,

u(t, x)− U∗

(
x− c∗t+

3

2
√
f ′(0)

ln t+X∞

)
→ 0,

as t→ +∞, for some X∞ ∈ R. This has �rst been proved by a probabilistic approach
in [6], and more recently with PDE tools in [13]. Let us also mention recent develop-
ments in the periodic heterogeneous [14] and nonlocal [4, 10] cases, as well as for the
Burgers-Fisher equation [1, 15].

While the above two results are now rather well-known, they leave aside the case
when c∗ = 2

√
f ′(0) yet (1.5) does not hold. As we pointed out in the particular case

when f is given by (1.6), the set of reaction terms leading to this situation is not trivial
and therefore it should also occur in the applications. It had only been shown [18, 21]
that, for some special class of `steep enough' initial data,

u(t, x)− U∗ (x− c∗t+m(t)) → 0,

as t → +∞, where m(t) = o(t) as t → +∞, and the logarithmic drift was (formally)
studied in [8, 16]. More recently, local convergence and drift results were obtained
in [3], under some spectral stability assumption on the traveling wave which is related
to what we will call the slow decay case in the next sections.

Therefore, the goal of this paper is to investigate the drift phenomenon in the
general pulled case c∗ = 2

√
f ′(0), i.e. without making the KPP assumption. We will

see that a logarithmic drift still appears, but may involve a di�erent factor.
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2 Main results

Let us �rst recall that a traveling wave solution of (1.1) is an entire in time solution of
the form

u(t, x) = U(x− ct),

where c ∈ R and U satis�es

U(−∞) = 1 > U(·) > U(+∞) = 0. (2.1)

As we outlined in the Introduction, such a traveling wave solution exists if and only if
c ≥ c∗, for some c∗ ≥ 2

√
f ′(0). Moreover, for each c ≥ c∗, the traveling wave solution

is unique up to shift and the pro�le function U is decreasing [2]. When c = c∗ we
denote it by U∗.

Since the pushed case when c∗ > 2
√
f ′(0) is well-understood, throughout this work

we will place ourselves in the pulled case where

c∗ = 2
√
f ′(0). (2.2)

We also recall that U∗(z) satis�es the following asymptotics as z → +∞:

U∗(z) = (Bz +A)e−
√

f ′(0)z +O(e−(2−η)
√

f ′(0)z), (2.3)

where η > 0 can be chosen arbitrarily small thanks to the C2-regularity of f [7, 17].
We point out that in our arguments we will fully use (2.3) and in particular the order
of the remainder. Still we expect that our main results should hold true if we only
assume f to be C1,α, up to some appropriate changes in our proofs.

Moreover, we have that either B > 0, or B = 0 and A > 0. We refer to the for-
mer case as `slow decay' and to the latter as `fast decay'. As predicted in [8, 16], the
logarithmic drift will be di�erent in both cases. We also mention the recent work [5],
where Bouin and Henderson investigated a situation where the reaction term is sin-
gular, which results in di�erent asymptotics of the minimal traveling wave and the
logarithmic drift is then increased compared to the classical KPP case.

We are now in a position to state our main result, where the above asymptotics
play a crucial role:

Theorem 1. Assume that u solves (1.1) with initial condition (1.3)-(1.4), f satis�es

(1.2) and (2.2) holds. De�ne also B from (2.3), λ ∈ (0, 1), and the level set

Eλ(t) := {x | u(t, x) = λ}.

(i) If B > 0, then there exist X > 0 and T > 0 such that

Eλ(t) ⊂

[
c∗t− 3

2
√
f ′(0)

ln t−X, c∗t− 3

2
√
f ′(0)

ln t+X

]
,

for all t > T .

(ii) If B = 0, then for any ε > 0, there exists T > 0 such that

Eλ(t) ⊂

[
c∗t− 1 + ε

2
√
f ′(0)

ln t, c∗t− 1− ε

2
√
f ′(0)

ln t

]
,

for all t > T .

Statement (i) includes the KPP case and we recover the same logarithmic drift;
we again cite the parallel work [3] where a similar result was proved by a spectral
approach, which unfortunately fails in the fast decay case. This is the most typical
situation in the sense that it is stable up to small C1-perturbations of the reaction
term. For instance, in the example of fa(u) = u(1 − u)(1 + au), there holds B > 0
for any a < 2 (recall that the KPP assumption is satis�ed only when a ≤ 1); this can
be checked by phase plane analysis. In the special case when B = 0, we �nd some
new phenomenon where the logarithmic drift still appears but is less than in the KPP
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case. It is straightforward to check that this new situation does occur, for instance by
taking a = 2 and the reaction term f2(u) = u(1 − u)(1 + 2u), and noticing that the
traveling wave with minimal speed is then given by U∗(z) = (1 + ez)−1 whose decay is
fast. However, in this example there is no other value of the parameter a which falls
into this fast decay case. Recalling that the speed is nonlinearly determined for a > 2,
this suggests that the fast decay case appears only as a sharp intermediate situation
between a KPP-like logarithmic drift and no drift.

Let us brie�y point out that, in the KPP case, the correct logarithmic drift is
obtained by a truncation procedure in which the Cauchy problem (1.1) is approached
by the linearized problem but with a moving Dirichlet boundary condition. More
precisely, it is approximated by the equation

∂tu = ∂xxu+ f ′(0)u,

together with
u(t, 2t− r ln t) = 0.

The resulting solution remains bounded from both above and below in large time if
and only if r = 3

2
, which turns out to be the correct logarithmic drift in this case. The

Dirichlet boundary condition basically comes from the fact that it is satis�ed by (a

shift of) the function (Bz + A)e−
√

f ′(0)z (when B > 0), which is also the asymptotic
pro�le of the traveling wave with minimal speed. In the case when B = 0 and the front

has the faster decay Ae−
√

f ′(0)z as z → −∞, a di�erent boundary condition should be
imposed and this is, in short, the reason why a di�erent logarithmic drift occurs.

In the slow decay case, our estimate on the position of level sets is sharp, and
proceeding as outlined in [13], one may recover the large time convergence of the
solution to a family of shifted traveling waves with minimal speed. Unfortunately, in
the fast decay case we were only able to locate the level sets up to the order o(ln t).
Very roughly, this seems to be related to the fact that we have one less parameter to

play with in the asymptotic pro�le Ae−
√

f ′(0)z of the traveling wave, when matching it
with the approximated problem sketched above. Still it is expected that our estimate
should be valid up to a O(1), and at least the distance between level sets should remain
at a bounded distance from each other as t→ +∞.

Plan of the paper. In order to exhibit the new phenomenon and give some of the
key ideas, we start in Section 3 with a special case when the front has fast decay under
the additional assumption that f is linear around 0, i.e. f(u) = f ′(0)u in an open
neighborhood of 0. In this situation, a short argument provides a lower estimate on
the position of level sets, and shows that the drift cannot be the same as in the KPP
case.

In the last two sections, we turn to the actual proof of our main Theorem 1 in the
general pulled case. First, in Section 4, we construct some sub and supersolutions in
both the fast decay and the slow decay cases, and whose level sets satisfy the wanted
asymptotics. Then, in Section 5 and using these sub and supersolutions, we conclude
the proof of Theorem 1.

Before we proceed, we point out that, in order to make the computations simpler
and without loss of generality (up to some rescaling), all the proofs will be performed
under the additional assumption that

f ′(0) = 1,

so that also c∗ = 2 and
U ′′

∗ + 2U ′
∗ + f(U∗) = 0.

3 A rough argument in a simple case

For the sake of illustrating the quite intricate argument used in the sequel, we brie�y
discuss a special case when, for some δ > 0,

∀s ∈ [0, δ], f(s) = f ′(0)s = s. (3.1)
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Our point is also to provide an example where the lower bound on the level set in
statement (ii) of Theorem 1 can be veri�ed, in a more straightforward way which
avoids the technicalities of the following sections.

Here we place ourselves in the fast decay case, which under condition (3.1) implies
that

U∗(z) = Ae−z,

for some A > 0 on a right half-line. Up to some shift, we can assume without loss of
generality that

U∗(z) = δe−z, ∀z ≥ 0. (3.2)

We will sketch a short argument to show that in this case the logarithmic drift is at
most 1

2
ln t. This already highlights a di�erence between the general monostable case

and the particular KPP case studied in [13].
More precisely, we present a short construction of a subsolution. This construction

is made easier by the linear assumption and the resulting exact asymptotics for U∗,
which allow us to compare the steepness of various solutions. A lower estimate on the
position of the level sets follows from a comparison principle argument; here we omit
this part of the proof, since it is the same as in the general case tackled in later sections.

Let us start with a formal argument. When the solution is less than δ from (3.1),
it satis�es the linear equation

∂tu = ∂xxu+ u,

whose fundamental solution writes

U0(t, x) := δ
et√
t
× e−

x2

4t .

Here we added the factor δ for convenience. Notice indeed that U0(t, x) ≤ δ if and only
if

x ≥ 2t− h(t),

where
h(t) = 2t−

√
4t2 − 2t ln(t).

In particular, as t→ +∞,

h(t) ∼ 1

2
ln(t) + o(1).

On the left of the point 2t−h(t), the function U0 is larger than δ and we instead expect
the solution to approach a shift of the traveling front with minimal speed U∗. In order
to ensure continuity at the point x = 2t − h(t) and due to (3.2), more precisely we
expect the solution to approach

U∗(x− 2t+ h(t)),

so that U∗(0) = U0(t, 2t − h(t)). From the above formula for h(t) this provides the
expected logarithmic drift on the position of level sets.

To make it more rigorous, we may check that the function

U(t, x) :=

{
U∗(x− 2t+ h(t)) if x ≤ 2t− h(t),

U0(t, x) if x > 2t− h(t).

is a (generalized) subsolution of (1.1) for positive times.
Indeed, by construction, U0(t, x) is a solution of (1.1) for t > 0 and x > 2t− h(t),

where it is less than δ. The fact that U∗(x− 2t+ h(t)) is a subsolution of (1.1) easily
follows from the fact that U ′

∗ < 0 and h′(t) > 0 for all t > 1. Therefore, the function U
is a generalized subsolution for t > 1 if

U ′
∗(0) < ∂xU0(t, 2t− h(t)).

The left-hand term is equal to −δ, and the right-hand term is given by

δ
et√
t
× −(2t− h(t))

2t
e−

(2t−h(t))2

4t = −δ + h(t)

2t
δ > −δ,
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where the last inequality holds for t > 1.
It follows that, as announced, U is a subsolution. Although it is positive on the

whole real line, it has the same decay as solutions of (1.1) with initial data satisfy-
ing (1.4); hence it is natural to expect that a comparison principle can be applied.
Furthermore, the level sets of U are located around 2t − h(t), which is precisely the
expected logarithmic drift in the fast decay case B = 0.

4 The general monostable case: sub and superso-

lutions

We now turn to the construction of sub and supersolutions in the general case when f
satis�es (1.2).

4.1 The fast decay case: a subsolution

In this section we assume that U∗ has fast decay in the sense that

U∗(z) = e−z +O(e−(2−η)z),

as z → +∞, for any η > 0. Notice that we made the constant A equal to 1, which is
possible up to some spatial shift.

Here we will let

r >
1

2
,

to be chosen arbitrarily close to 1
2
. Our goal is to prove the following:

Proposition 4.1. For any r ∈
(
1
2
, 1
)
, there exist T > 0 and u(t, x) a subsolution

of (1.1) on [T,+∞)× R such that:

(i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough,

∀x < 2t− r ln t−X1, u(t, x) > λ,

∀x > 2t− r ln t+X1, u(t, x) < λ;

(ii) it satis�es the following properties at time T :

sup
x∈R

u(T, x) < 1,

∃X2 > 0, lim sup
x→+∞

(x−X2)u(T, x)

e−(x−X2)2/4T
= 0.

The construction of this subsolution will consist in gluing together two di�erent
functions, roughly dealing respectively with the nonlinear part (away from 0) and the
linear part (close to 0) of (1.1). First, our subsolution will consist on a left half-line of
a (perturbation of a) shift of the traveling front with minimal speed, so that its level
sets are located around 2t− r ln t. Indeed, one may check that

U∗(x− 2t+ r ln t− h(t)),

is a subsolution of (1.1) at large times if

h(t) = O(1), h′(t) = o

(
1

t

)
as t→ +∞, (4.1)

thanks to the fact that U ′
∗ < 0 and U ′′

∗ + 2U ′
∗ + f(U∗) = 0.

Because u(t, x) the solution of the Cauchy problem (1.1) with initial data (1.3)-(1.4)
has a faster decay than U∗ as x→ +∞, it is not possible to use a comparison principle.
This is why another subsolution will be necessary on the far right. Another issue is the
fact that U∗ goes to 1 as x → −∞, which may not be the case of the solution u(t, x).
The latter di�culty can be solved thanks to the linear stability of 1 and by using a
similar construction as in [9]. This is the purpose of the following lemma.
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Lemma 4.1. Assume that h(t) satis�es (4.1).
Then there exist a nontrivial and nonincreasing function χ, whose support is in-

cluded in (−∞, 0) and which satis�es χ(−∞) = 1, and T > 0 such that

u1(t, x) := U∗(x− 2t+ r ln t− h(t))− χ(x− 2t+ r ln t− h(t))e
f′(1)

2
t,

is a subsolution of (1.1) on [T,+∞)× R.
We point out that this lemma actually holds true whatever the choice of r > 0. The

choice of r > 1
2
will only be needed in the later stages of the proof of Proposition 4.1.

Proof. Consider δ > 0 small enough so that

f ′(u) ≤ f ′(1)

2
< 0, (4.2)

for any u ∈ [1− δ, 1]. Now take Z > 0 such that

U∗(z) ≥ 1− δ

2
,

for all z ≤ −Z, and χ a smooth and nonincreasing function which is identical to 1 on
(−∞,−Z − 1) and identical to 0 on (−Z,+∞). De�ne also T > 0 such that, for all
t ≥ T ,

e
f′(1)

2
t ≤ δ

2
, 1 ≥ r

t
− h′(t) ≥ r

2t
. (4.3)

It is then straightforward to compute that

∂tu1 − ∂xxu1 − f(u1)

=
(r
t
− h′(t)

)
U ′

∗ −
(
U ′′

∗ + 2U ′
∗ + f(U∗)

)
+ f(U∗)− f(u1)

+

(
−f

′(1)

2
χ+

(
2− r

t
+ h′(t)

)
χ′ + χ′′

)
e

f′(1)
2

t

≤
(r
t
− h′(t)

)
U ′

∗ + f(U∗)− f(u1) +

(
−f

′(1)

2
χ+ χ′ + χ′′

)
e

f′(1)
2

t,

where U∗ and χ are evaluated at x − 2t + r ln t − h(t). Here we used the facts that
χ′ ≤ 0, and 2− r

t
+ h′(t) ≥ 1 by (4.3).

Recall that U∗ is decreasing. Moreover, for any t ≥ T and x < 2t−r ln t+h(t)−Z−1,
we have that χ = 1, χ′ = χ′′ = 0. From our choice of Z and T it follows that

U∗(x− 2t+ r ln t− h(t)) ≥ u1(t, x) ≥ U∗(−Z − 1)− e
f′(1)

2
t ≥ 1− δ.

Thus, using also (4.2),

∂tu1 − ∂xxu1 − f(u1)

≤ f(U∗)− f(u1)−
f ′(1)

2
e

f′(1)
2

t

≤ f ′(1)

2
e

f′(1)
2

t − f ′(1)

2
e

f′(1)
2

t

≤ 0.

On the other hand, for t ≥ T and x > 2t−r ln t+h(t)−Z, we have that χ = χ′ = χ′′ = 0,
hence

∂tu1 − ∂xxu1 − f(u1) ≤
(r
t
− h′(t)

)
U ′

∗ ≤ 0.

Finally, for t ≥ T and x− 2t+ r ln t− h(t) ∈ [−Z − 1,−Z], we have from (4.3) that

∂tu1 − ∂xxu1 − f(u1)

≤ r

2t
U ′

∗ +

(
∥f ′∥∞∥χ∥∞ − f ′(1)

2
∥χ∥∞ + ∥χ′∥∞ + ∥χ′′∥∞

)
e

f′(1)
2

t.

Since max[−Z−1,−Z] U
′
∗ < 0, we get that this is nonpositive up to enlarging T . The

lemma is proved.
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Let us now turn to the construction of the second subsolution, which shares some
similarities with the arguments in [13]. Here we will look at the equation (1.1) in a
moving frame, by letting z = x− 2t+ 1

2
ln t, that is

∂tu = ∂zzu+

(
2− 1

2t

)
∂zu+ f(u). (4.4)

For now we neglect the nonlinear part and look at the resulting linearized equation

∂tu = ∂zzu+

(
2− 1

2t

)
∂zu+ u. (4.5)

We will pick a particular subsolution on a right half-line {z ≥ 0}. To do so, we again
rewrite the equation. We let u = e−zv and �nd

∂tv = ∂zzv +
1

2t
(v − ∂zv),

and in the self-similar variables τ = ln t and y = z√
t
,

∂τv = ∂yyv +
y

2
∂yv +

1

2
v − 1

2
e−

τ
2 ∂yv.

As in [13], we then let

v = w × e−
y2

8 e−
τ
2 ,

and get

∂τw = ∂yyw −
(
y2

16
− 3

4

)
w − 1

2
e−

τ
2

(
∂yw − y

4
w
)
. (4.6)

Notice that the autonomous part,

∂τw = ∂yyw −
(
y2

16
− 3

4

)
w,

admits a family of particular solutions

C1ye
− y2

8 + C2e
− y2

8 e
τ
2 ,

with C1, C2 ∈ R. This comes from a combination of the Dirichlet and Neumann

�rst eigenfunctions, respectively ye−y2/8 and e−y2/8. More precisely these are positive

eigenfunctions of the elliptic operator Lw := ∂yyw −
(

y2

16
− 3

4

)
w on the positive half-

line (0,+∞) with either Dirichlet or Neumann boundary conditions at 0. Notice that
the Neumann eigenfunction plays the dominant role here as τ → +∞, while in [13] it
was the Dirichlet eigenfunction. This choice is of course consistent with the fast decay
of the traveling wave U∗ at +∞, and it will provide the correct logarithmic drift in
this case. The reason we include the Dirichlet eigenfunction in this combination is that
it increases the slope at y = 0 of the resulting function, which will eventually help us
merging this with u1 into a subsolution of (1.1).

Before we proceed, let us replace C1 and C2 by some well-chosen functions of time
in order to deal with the nonautonomous part of (4.6) (as well as the nonlinear part
of (4.4), as we will compute below) and obtain a subsolution. More precisely, we de�ne

w(τ, y) := (1 + Ce−
τ
2 )×

[
ye−

y2

8 + e−
y2

8 eτ(
1
2
−ε)
]
. (4.7)

with C > 0 and ε ∈ (0, 1/2) to be speci�ed later. Notice that the exponential growth in
time of the Neumann component is slowed down by the inclusion of this parameter ε.
This is consistent with our aim of constructing a subsolution, but also it makes the
Dirichlet component relatively larger. This will be crucial later when merging our
supersolutions. For convenience, we also introduce

w0(τ, y) := ye−
y2

8 + e−
y2

8 eτ(
1
2
−ε),

8



so that w(τ, y) = (1 + Ce−
τ
2 )w0(τ, y) and

∂τw0 = −εe−
y2

8 eτ(
1
2
−ε) + ∂yyw0 −

(
y2

16
− 3

4

)
w0.

Then we have that

∂τw = −ε(1 + C− τ
2 )e−

y2

8 eτ(
1
2
−ε) − C

2
e−

τ
2 w0 + ∂yyw −

(
y2

16
− 3

4

)
w.

Thus

∂τw − ∂yyw +

(
y2

16
− 3

4

)
w +

1

2
e−

τ
2

(
∂yw − y

4
w
)

≤ e−
τ
2

2

(
−Cw0 + ∂yw − y

4
w
)

≤ e−
τ
2

2
e−

y2

8

(
−Cy − Ceτ(

1
2
−ε) + (1 + Ce−

τ
2 )
(
1− y2

2
− y

2
eτ(

1
2
−ε)
))

≤ e−
τ
2

2
e−

y2

8

(
−Ceτ(

1
2
−ε) + 1 + Ce−

τ
2

)
≤ 0,

for all y ≥ 0 and τ large enough. Going back to problem (4.5), this gives some large
time T > 0 and

ũ(t, z) :=

(
1 +

C√
t

)
×
[
1

tε
+
z

t

]
e−ze−

z2

4t . (4.8)

which satis�es

∂tũ ≤ ∂zzũ+

(
2− 1

2t

)
∂zũ+ ũ,

for all t ≥ T and z ≥ 0. Actually this also provides us with a subsolution of (1.1), as
we show in the following lemma:

Lemma 4.2. For any ε ∈
(
0, 1

2

)
, there exist C > 0 and T > 0 such that the function

u2(t, x) :=

(
1 +

C√
t

)
×
[
1

tε
+
x− 2t+ 1

2
ln t

t

]
e−(x−2t+ 1

2
ln t)e−

(x−2t+1
2

ln t)2

4t ,

is a subsolution of (1.1) in the subdomain t ≥ T and x ≥ 2t+ ln t− 2.

Proof. Notice that u2 and ũ from (4.8) are the same up to the change of variables
z = x − 2t + 1

2
ln t. In particular it is enough to prove that, up to increasing T , the

function ũ(t, z) also satis�es

∂tũ ≤ ∂zzũ+

(
2− 1

2t

)
∂zũ+ f(ũ),

for all t ≥ T and z ≥ 3
2
ln t− 2. Indeed, we have

∂tũ×eze
z2

4t = − C

2t3/2

(
1

tε
+
z

t

)
−
( ε

t1+ε
+
z

t2

)(
1 +

C√
t

)
+
z2

4t2

(
1 +

C√
t

)(
1

tε
+
z

t

)
.

Moreover,

∂zũ× eze
z2

4t =

(
1 +

C√
t

)
1

t
−
(
1 +

z

2t

)(
1 +

C√
t

)(
1

tε
+
z

t

)
,

and

∂zzũ× eze
z2

4t = −
(
1 +

z

2t

)(
1 +

C√
t

)
1

t
− 1

2t

(
1 +

C√
t

)(
1

tε
+
z

t

)
−
(
1 +

z

2t

)(
1 +

C√
t

)
1

t
+
(
1 +

z

2t

)2(
1 +

C√
t

)(
1

tε
+
z

t

)
=

(
1 +

C√
t

)(
−2

t
− z

t2

)
+

(
1 +

C√
t

)(
1

tε
+
z

t

)(
− 1

2t
+ 1 +

z

t
+

z2

4t2

)
.
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Therefore

eze
z2

4t ×
[
∂tũ− ∂zzũ−

(
2− 1

2t

)
∂zũ− ũ

]
=

(
1 +

C√
t

)(
1

tε
+
z

t

)[
1

2t
− 2− z

t
+

(
2− 1

2t

)(
1 +

z

2t

)]
+

(
1 +

C√
t

)[
2

t
− ε

t1+ε
−
(
2− 1

2t

)
1

t

]
− C

2t3/2

(
1

tε
+
z

t

)
= − z

4t2

(
1 +

C√
t

)(
1

tε
+
z

t

)
+

(
1 +

C√
t

)[
1

2t2
− ε

t1+ε

]
− C

2t3/2

(
1

tε
+
z

t

)
≤ − C

2t3/2

(
1

tε
+
z

t

)
,

where the last inequality holds for all z ≥ 0 and t ≥ T (up to increasing T ). As
announced we have a subsolution of (4.5). Furthermore, letting K = ∥f ′′∥∞, we then
also have

∂tũ− ∂zzũ−
(
2− 1

2t

)
∂zũ− f(ũ)

≤ ∂tũ− ∂zzũ−
(
2− 1

2t

)
∂zũ− ũ+Kũ2

≤ e−ze−
z2

4t

(
1

tε
+
z

t

)[
− C

2t3/2
+K

(
1 +

C√
t

)2(
1

tε
+
z

t

)
e−ze−

z2

4t

]
.

Next, we choose C large enough so that

C ≥ 4Ke2 max
s≥0

(1 + s)e−
s2

4 . (4.9)

and up to increasing T if needed, we assume that

3

2
ln t− 2 ≥ 0, 1 +

C√
t
<

√
2,

for all t ≥ T . In particular T > 1. Now, for t ≥ T and z ≥ 3
2
ln t − 2, it follows

from (4.9) that

∂tũ− ∂zzũ−
(
2− 1

2t

)
∂zũ− f(ũ)

≤ e−ze−
z2

4t

(
1

tε
+
z

t

)[
− C

2t3/2
+

K

t3/2
× 2

(
1

tε
+
z

t

)
e2−

z2

4t

]
≤ e−ze−

z2

2t

(
1

tε
+
z

t

)
1

2t3/2

[
−C + 4K

(
1 +

z√
t

)
e2−

z2

4t

]
≤ 0.

This ends the proof of Lemma 4.2.

We are now in a position to conclude the proof of Proposition 4.1. Let us glue
together our two subsolutions u1 and u2. To do so, we choose

h(t) = ln

(
1 +

C√
t

)
+ ln

(
1 +

3 ln t

2t1−ε

)
− 9(ln t)2

16t
, (4.10)

where C comes from Lemma 4.2. In particular

eh(t) =

(
1 +

C√
t

)(
1 +

3 ln t

2t1−ε

)
e−

9(ln t)2

16t

and also we have that
h(t) → 0 and h′(t) = O(t−3/2),
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as t → +∞. In particular it satis�es (4.1) and Lemma 4.1 applies. As we will see in
the next computations, h is chosen so that u1(t, x) intersects u2(t, x) around 2t+ ln t,
which according to Lemma 4.2 is precisely where the latter function u2 becomes a
subsolution.

First, recall that

U∗(z) = e−z +O(e−(2−η)z) as z → +∞,

with η > 0 arbitrarily small.
Then, recalling (4.1), the de�nition of u1 in Lemma 4.1 and also that r > 1/2, we

get as t→ +∞ that

u1(t, 2t+ ln t− 1) = U∗((r + 1) ln t− 1− h(t)) =
e1eh(t)

tr+1
+O

(
1

t3

)
.

On the other hand

u2(t, 2t+ ln t− 1) =
1

tε

(
1 +

C√
t

)(
1 +

3
2
ln t− 1

t1−ε

)
e1

t3/2
e−

( 3
2

ln t−1)2

4t

=
e1eh(t)

tε+3/2
e

3 ln t
4t

− 1
4t −

(
1 +

C√
t

)
e1

t5/2
e−

( 3
2

ln t−1)2

4t

<
e1eh(t)

tε+3/2

(
1 +

ln t

t

)
− e1

2t5/2
,

<
e1eh(t)

tε+3/2
− e1

2t5/2
+
e1eh(t) ln t

tε+5/2
,

<
e1eh(t)

tε+3/2
− e1

4t5/2
,

where the inequalities hold for t large enough. Notice that the term − e1

2t5/2
basically

comes from the Dirichlet component in (4.7). Moreover, it dominates the remain-

der e1eh(t) ln t

tε+5/2 thanks to ε > 0, which originates from our slowing down of the growth
of the Neumann component in (4.7). This is in turn the reason why we need to shift
the traveling wave U∗ slightly more than the expected logarithmic drift.

Now we �nally take r ∈
(
1
2
, 1
)
and

ε = r − 1/2,

so that r + 1 = ε+ 3/2. It follows that, up to increasing T > 0 and for all t ≥ T ,

u1(t, 2t+ ln t− 1) > u2(t, 2t+ ln t− 1).

In a similar fashion, we have on the one hand

u1(t, 2t+ ln t+ 1) = U∗((r + 1) ln t+ 1− h(t)) =
e−1eh(t)

tr+1
+O

(
1

t3

)
.

And on the other hand,

u2(t, 2t+ ln t+ 1) =
1

tε

(
1 +

C√
t

)(
1 +

3
2
ln t+ 1

t1−ε

)
e−1

t3/2
e−

( 3
2

ln t+1)2

4t

=
e−1eh(t)

tε+3/2
e−

3 ln t
4t e−

1
4t +

(
1 +

C√
t

)
e−1

t5/2
e−

( 3
2

ln t+1)2

4t

>
e−1eh(t)

tε+3/2
− e−1eh(t) ln t

tε+5/2
+

e−1

2t5/2
,

>
e−1eh(t)

tε+3/2
+

e−1

4t5/2
,

for t large enough. Up to increasing T again, it follows that for all t ≥ T ,

u1(t, 2t+ ln t+ 1) < u2(t, 2t+ ln t+ 1).

11



Finally, we may de�ne the following (generalized) subsolution:

u(t, x) =


u1(t, x) if x ≤ 2t+ ln t− 1,

max{u1(t, x), u2(t, x)} if 2t+ ln t− 1 < x < 2t+ ln t+ 1,

u2(t, x) if x ≥ 2t+ ln t+ 1.

More precisely, this is a subsolution for all t ≥ T and x ∈ R, for some T > 0 large
enough. We highlight that a maximum (not a minimum) of two subsolutions creates
another subsolution, which is why parameters had to be tuned carefully to get the
necessary inequalities and hence continuity at x = 2t+ ln t± 1.

Notice that from its de�nition in Lemma 4.2, the function u2 converges uniformly
to 0 as t → +∞ in the subdomain x ≥ 2t+ ln−1. It is then straightforward from the
de�nition of u1 and (4.10) that u satis�es statement (i) of Proposition 4.1. One may
also check statement (ii) of Proposition 4.1, by noticing that

lim
x→−∞

u1(T, x) = 1− e
f′(1)

2
T < 1,

and

lim
x→+∞

(x−X2)u2(T, x)

e−(x−X2)2/4T
= 0,

with X2 = 2T − 1
2
lnT . This concludes the proof of Proposition 4.1.

4.2 A useful lemma

In the KPP case, the nonlinearity f is sublinear and therefore it is enough to consider
the linearized equation to construct supersolutions. This is no longer the case for
a general monostable reaction term where the nonlinear feature of (1.1) cannot be
discarded that easily. Therefore our supersolutions will be modeled on the traveling
wave with minimal speed U∗ of the nonlinear problem. Still, because we must place
ourselves in a moving frame with logarithmic drift, the function U∗ cannot be used
directly as a supersolution and one must instead approach it by solving an approximate
nonlinear ODE.

This is the purpose of the following lemma:

Lemma 4.3. Assume that the functions U and Uε solve on the positive half-line,

respectively,

U ′′ + 2U ′ + f(U) = 0,

U ′′
ε + (2− ε)U ′

ε + f(Uε) = 0,

as well as

U(0)− Uε(0) = O(ε), U ′(0)− U ′
ε(0) = O(ε),

as ε→ 0. We also assume that

U,U ′ = O(ze−z) (4.11)

as z → +∞.

Then, for any η ∈ (0, 1/2), there exists εη such that for all 0 < ε < εη and z ≥ 0,

max{|U(z)− Uε(z)|; |U ′(z)− U ′
ε(z)|} ≤

(
εe−z)1−η

. (4.12)

Remark 4.1. By our assumptions, 2 is the minimal traveling wave speed. In partic-

ular, the function Uε does not qualify as a traveling wave, and this is due to the fact

that it is not positive on the whole real line as required in (2.1). As a matter of fact,

by standard ODE technics one may show that for any ε > 0, the function Uε oscillates

around 0 at +∞.

Proof. By the standard stability theory of solutions of an ODE (see for instance [11]),
we know that for any Z > 0, there exists CZ > 0 such that

|U(z)− Uε(z)|+ |U ′(z)− U ′
ε(z)| ≤ CZε, (4.13)
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for all small ε > 0 and z ∈ [0, Z]. In particular, for any Z > 0 and η ∈ (0, 1/2), one can
choose ε small enough so that the wanted inequality (4.12) holds on the interval [0, Z].

Next, we consider the function V = ezU , which solves

V ′′ − V + ezf(V e−z) = 0.

Similarly Vε = ezUε solves

V ′′
ε − εV ′

ε − (1− ε)Vε + ezf(Vεe
−z) = 0.

Then we look at the di�erence W := V − Vε, which satis�es

W ′′ −W + εV ′
ε − εVε + ezf(V e−z)− ezf(Vεe

−z) = 0.

On the other hand,

f(Vεe
−z)− f(V e−z) = f ′(V e−z)(Vε − V )e−z + αε(Vε − V )2e−2z

=
(
f ′(0) + α0V e

−z) (Vε − V )e−z + αε(Vε − V )2e−2z

= (Vε − V )e−z + α0V (Vε − V )e−2z + αε(Vε − V )2e−2z

= −We−z − α0VWe−2z + αεW
2e−2z,

where
|α0|, |αε| ≤ ∥f ′′∥∞. (4.14)

Putting this in the equation for W we get

W ′′ = ε(V − V ′) + ε(W ′ −W )− α0VWe−z + αεW
2e−z.

Now take η ∈ (0, 1/2), and let us introduce

W (z) := ε1−ηeηz.

We also de�ne Zη ≥ 1 such that

∀z ≥ Zη, Cze−ηz ≤ η2

4
, (4.15)

with

C :=
(
1 + ∥f ′′∥∞

)
×
(
1 + sup

z≥1

|V (z)|+ |V ′(z)|
z

)
. (4.16)

The fact that C is a well-de�ned positive real number comes from the assumption (4.11).
From (4.13) and W (z) = ez(U(z)−Uε(z)), we can choose εη small enough so that,

for any ε ≤ εη and for all z ∈ [0, Zη],

|W (z)|+ |W ′(z)| ≤ CZηεe
z < ηε1−ηeηz. (4.17)

In particular we have

|W (Zη)| < W (Zη) , |W ′(Zη)| < W
′
(Zη).

We will now apply a comparison argument to infer that

−W (z) < W (z) < W (z)

for all z ≥ Zη. We argue by contradiction and assume that W intersects either −W
or W . We denote by z1 the leftmost contact point on (Zη,+∞). Without loss of

generality we consider the case when W (z1) = W (z1), and due to W ′(Zη) < W
′
(Zη)

we get that W −W reaches a positive maximum at some z0 ∈ (Zη, z1). Then

W
′′
(z0) ≤W ′′(z0).

Putting this together with the equation satis�ed by W , we get

W
′′
(z0) ≤ ε(V − V ′)(z0) + ε(W ′ −W )(z0) +

[
αεW (z0)

2 − α0V (z0)W (z0)
]
e−z0 .
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Moreover, we also have that

W
′
(z0) =W ′(z0) , −W (z0) ≤W (z0) ≤W (z0).

Thus, using also (4.14) and (4.16) we deduce that

W
′′
(z0) ≤ ε(|V |+ |V ′|)(z0) + ε(W

′
+W )(z0) +

[
αεW (z0)

2 + α0|V (z0)|W (z0)
]
e−z0

≤ Cεz0 + ε(W
′
+W )(z0) + Ce−z0

[
W (z0)

2 + z0W (z0)
]
.

Since W (z) = ε1−ηeηz, we have that

ε1−ηη2 ≤ Cεz0e
−ηz0 + ε2−η(1 + η) + Ce−(1+η)z0(ε2−2ηe2ηz0 + ε1−ηz0e

ηz0)

≤ Cεz0e
−ηz0 + ε2−η(1 + η) + 2Cz0e

−(1−η)z0ε1−η.

Recalling (4.15) and that η ∈ (0, 1/2), z0 > Zη, we get that

2Cz0e
−(1−η)z0)ε1−η ≤ ε1−η η

2

2
,

and then

ε1−η η
2

2
≤ ε

η2

4
+ ε2−η(1 + η).

Up to reducing ε, this is a contradiction and we have proved that

|W (z)| ≤W (z) = ε1−ηeηz

for all z ≥ Zη. The same argument also shows that

|W ′(z)| ≤W
′
(z) = ηε1−ηeηz

for all z ≥ Zη. Indeed, we know that W ′(Zη) < W
′
(Zη) and, if there exists some

z1 > Zη such that W ′(z1) > W
′
(z1), then W −W must reach a positive maximum at

some z0 ∈ (Zη, z1). We have just shown that such a maximum cannot happen.
Putting this together with (4.17) and (U − Uε)(z) = e−zW (z), we �nd for ε small

enough that

|U(z)− Uε(z)| ≤ (εe−z)1−η, |U ′(z)− U ′
ε(z)| ≤ (1 + η)(εe−z)1−η,

for all z ≥ 0. Since η can be arbitrarily chosen in (0, 1/2), we may replace it by η/2 in
the previous inequalities, and up to reducing ε again, one �nally recovers that

max{|U(z)− Uε(z)|; |U ′(z)− U ′
ε(z)|} ≤

(
1 +

η

2

)
(εe−z)1−

η
2 ≤ (εe−z)1−η,

for all z ≥ 0. This concludes the proof of this lemma.

4.3 The fast decay case: a supersolution

We again assume that U∗ has fast decay in the sense that

U∗(z) = e−z +O(e−(2−η)z), (4.18)

as z → +∞, for any η > 0; see also (2.3). Our purpose is now to construct a superso-
lution whose level sets are located around 2t− r ln t, where

r <
1

2
,

to be chosen close to 1
2
.

Proposition 4.2. For any r ∈
(
1
4
, 1
2

)
, there exist T > 0 and u(t, x) a supersolution

of (1.1) on [T,+∞)× R such that:

(i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough,

∀x < 2t− r ln t−X1, u(t, x) > λ,

∀x > 2t− r ln t+X1, u(t, x) < λ;
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(ii) the function u is positive on [T,+∞)× R and there exists X2 > 0 such that

∀x ≤ −X2, u(T, x) ≥ 1.

As before, the idea is to glue together di�erent supersolutions. However, quite un-
usually, the construction of the supersolution turns out to be more complicated than
the subsolution. One reason is that, if we slow down the traveling wave U∗ to match
the drift, it will not make a supersolution. Some perturbation is needed instead and
this is where Lemma 4.3 is used.

We �rst introduce δ ∈
(
0, 1

2

)
and Z so that

U∗(−Z) = 1− 2δ, with f ′(u) ≤ f ′(1)

2
< 0 for u ≥ 1− 2δ. (4.19)

Up to decreasing δ, we can also assume that Z > 0 and

U ′′
∗ (z) = −2U ′

∗(z)− f(U∗(z)) < 0, (4.20)

for all z ≤ −Z. This holds thanks to the fact that, as z → −∞, we have

U∗(z) = 1−Ae

(
−1+

√
1−f ′(1)

)
z
+ o

(
e

(
−1+

√
1−f ′(1)

)
z

)
,

U ′
∗(z) = A

(
1−

√
1− f ′(1)

)
e

(
−1+

√
1−f ′(1)

)
z
+ o

(
e

(
−1+

√
1−f ′(1)

)
z

)
,

for some A > 0, by standard ODE theory [7].
Then, for any γ > 0, we de�ne a function u1 by,

∀t > 1− δ

γ
, ∀x ≤ 2t− r ln t+ h(t)− Zδ(t), u1(t, x) := U∗(x− 2t+ r ln t− h(t)) +

γ

t
,

(4.21)
where h(t) is to be speci�ed later but is already assumed to satisfy (4.1), i.e.

h(t) = O(1), h′(t) = o(1/t),

as t→ +∞, and Zδ(t) is such that

U∗(−Zδ(t)) = 1− δ − γ

t
. (4.22)

In particular,
u1(t, 2t− r ln t+ h(t)− Zδ(t)) = 1− δ.

The point Zδ(t) is uniquely de�ned due to the fact that U ′
∗ < 0. The latter also implies

that Zδ(t) is an increasing function of t and that

Zδ(t) > Z,

for any t large enough, where we recall that Z is such that U∗(−Z) = 1−2δ and (4.20)
holds for any z ≤ −Z. Moreover, it follows from the implicit function theorem that Zδ

is C1 with respect to t large enough, and that

Z′
δ(t) = O

( γ
t2

)
, (4.23)

as t→ +∞. For later use, we also point out that Zδ(t) → Z∞
δ as t→ +∞, where

U∗(−Z∞
δ ) = 1− δ.

As a consequence of (4.23), we even have that

Zδ(t)− Z∞
δ = O

(
1

t

)
, (4.24)

hence

U ′
∗(−Zδ(t))− U ′

∗(−Z∞
δ ) = O

(
1

t

)
(4.25)

as t→ +∞.
The next lemma states that (4.21) de�nes a supersolution:
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Lemma 4.4. If h′(t) = o(1/t) as t → +∞, then there exist γ > 0 and T > 1−δ
γ

such

that the function u1 de�ned by (4.21) is a supersolution of (1.1) for all t ≥ T and

x ≤ 2t− r ln t+ h(t)− Zδ(t).

Proof. For any x ≤ 2t− r ln t+ h(t)− Zδ(t), by (4.22) and the monotonicity of U∗ we
have that u1(t, x) ≥ 1 − δ. Provided T is large enough, for t ≥ T we also get that
U∗(x− 2t+ r ln t− h(t)) ≥ 1− 2δ. Then thanks to (4.19) we compute

∂tu1 − ∂xxu1 − f(u1)

≥ ∂tu1 − ∂xxu1 − f(U∗)−
f ′(1)

2

γ

t

≥ − γ

t2
− f ′(1)

2

γ

t
+
(r
t
− h′(t)

)
U ′

∗

≥ −f
′(1)

4

γ

t
+
(r
t
− h′(t)

)
U ′

∗,

where the last inequality holds for t large enough and the function U∗ is evaluated at
x− 2t+ r ln t− h(t). Recalling that f ′(1) < 0, h′(t) = o(1/t) and that U ′

∗ is uniformly
bounded on the whole real line (it converges to 0 as z → ±∞), we can �nd γ large
enough so that the above is nonnegative, i.e. u1 is a supersolution on the wanted
subdomain.

Then we extend u1 on the right of the point 2t− r ln t+ h(t)− Zδ(t), by letting

∀t ≥ T, ∀x > 2t− r ln t+ h(t)−Zδ(t), u1(t, x) := Ur(x− 2t+ r ln t− h(t) +Zδ(t); t),
(4.26)

where, for any t ≥ T , the function Ur(·; t) is the solution of the ODE

U ′′
r +

(
2− 2r

t

)
U ′

r + f(Ur) = 0, (4.27)

on [0,+∞), together with the boundary conditions

Ur(0; t) = 1− δ, U ′
r(0; t) = U ′

∗(−Zδ(t)). (4.28)

Here the prime denotes the derivative with respect to the �rst variable, the other
variable t acting as a parameter of the ODE (4.27). To avoid any ambiguity, from
hereafter we will denote by z the �rst variable of Ur, hence by ∂z the corresponding
derivative.

Notice that (4.28) ensures that u1, as de�ned by (4.21) and (4.26), and its spatial
derivative ∂xu1, are continuous functions.

The function u1 will serve as the �rst supersolution. However, notice that 2− 2r
t
is

below the minimal wave speed 2. Therefore (see also Remark 4.1), due to the positivity
of f in the interval (0, 1) and by a phase plane analysis, there exists Z0(t) such that

∂zUr(z; t) < 0, (4.29)

on the interval [0, Z0(t)], with
Ur(Z0(t); t) = 0. (4.30)

Thus, one may already expect that a second supersolution will be necessary. Before we
construct it, let us check that the newly de�ned function u1 is again a supersolution.

Lemma 4.5. If h′(t) = o(1/t) as t→ +∞, then there exist γ > 0 and T > 0 such that

the function u1 de�ned by (4.21) and (4.26) is a supersolution of (1.1) for all t ≥ T
and x < 2t− r ln t+ h(t)− Zδ(t) + Z0(t).

Proof. We have already proved that u1 is a supersolution for t ≥ T and x ≤ 2t−r ln t+
h(t)−Zδ(t), which was Lemma 4.4. Then, since both u1 and ∂xu1 are continuous at x =
2t−r ln t+h(t)−Zδ(t), it is enough to check that (t, x) 7→ Ur(x−2t+r ln t−h(t)+Zδ(t); t)
satis�es the wanted di�erential inequality for 0 < x− 2t+ r ln t− h(t) +Zδ(t) < Z0(t).
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Let us brie�y consider t as a parameter in the ODE (4.27)satis�ed by Ur(·; t). By the
standard regularity theory of ODEs [11], the function t 7→ Ur(·; t) admits a derivative.
Furthermore, we claim that, for any T ≤ t1 < t2,

∀z ∈ (0, Z0(t1)), Ur(z; t1) < Ur(z; t2). (4.31)

To check this, �rst recall that Zδ(t) is an increasing function of t and that it is bounded
from below by Z for t ≥ T , up to increasing T ; see (4.22) and the subsequent discussion.
Recalling also (4.20) and that ∂zUr(0; t) = U ′

∗(−Zδ(t)), we get that

t 7→ ∂zUr(0; t)

is a negative and increasing function. Since Ur(0; t1) = Ur(0; t2) = 1−δ, it follows that
the wanted inequality (4.31) holds on a right neighborhood of z = 0.

Now proceed by contradiction and assume that (4.31) does not hold. In that case
there must exist z1 ∈ (0, Z0(t1)) such that

Ur(·; t1) < Ur(·; t2)

in the interval (0, z1), and 0 < Ur(z1; t1) = Ur(z1; t2). In particular Ur(·; t2) > 0 on
(0, z1] hence z1 ∈ (0, Z0(t2)).

From the monotonicity property (4.29), we get

Ur(0; t1) > Ur(z1; t2).

Then we de�ne

S∗ := inf{S ≥ 0 | Ur(· − S; t1) ≥ Ur(·; t2) in (S, z1) } ∈ (0, z1).

By construction, we have that Ur(· − S∗; t1)− Ur(·; t2) ≥ 0 in [S∗, z1], and that there
exists z2 ∈ [S∗, z1] such that

Ur(z2 − S∗; t1)− Ur(z2; t2) = 0.

Furthermore, using again the monotonicity property (4.29) for both Ur(·; t1) and Ur(·; t2),
we have Ur(0; t1) = Ur(0; t2) > Ur(S

∗; t2) and Ur(z1−S∗; t1) > Ur(z1; t1) = Ur(z1; t2).
Thus z2 ∈ (S∗, z1) and

∂zUr(z2 − S∗; t1) = ∂zUr(z2; t2), ∂zzUr(z2 − S∗; t1) ≥ ∂zzUr(z2; t2).

However, from the ODEs (4.27) solved by Ur(·; t1) and Ur(·; t2), and the fact that
t1 < t2, one may now check that

∂zzUr(z2 − S∗; t1)− ∂zzUr(z2; t2) =
2r

t1
∂zUr(z2 − S∗; t1)−

2r

t2
∂zUr(z2, t2)

=

(
2r

t1
− 2r

t2

)
∂zUr(z2, t2)

< 0.

We have reached a contradiction and this proves Claim (4.31).
It now follows from Claim (4.31) that

∂tUr(z; t) ≥ 0,

for all t ≥ T and z ∈ (0, Z0(t)). We can now compute, for t > 0 and x − 2t + r ln t −
h(t) + Zδ(t) ∈ (0, Z0(t)),

∂tu1 − ∂xxu1 − f(u1)

= ∂tUr − ∂zzUr −
(
2− r

t
+ h′(t)− Z′

δ(t)
)
∂zUr − f(Ur)

≥
(
−r
t
− h′(t) + Z′

δ(t)
)
∂zUr

≥ 0,

where Ur and its derivatives are evaluated at (x − 2t + r ln t − h(t) + Zδ(t), t) and
the last inequality holds for large times, thanks to (4.23), (4.29) and our assumption
that h′(t) = o(1/t) as t→ +∞.
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As we already mentioned, the function Ur(z; t) (hence u1) changes sign, which
is why a second supersolution will be needed. Before we proceed, we need a better
understanding of Ur(z; t) as z → +∞, or more precisely around (r + 1) ln t where we
will match it with our second supersolution. First recall that Ur(·; t) solves (4.27)
and (4.28). Therefore, by (4.25) and Lemma 4.3 with ε = 2r

t
, U = U∗(· − Z∞

δ ) and
Uε = Ur(·; t), we get for any small η > 0, any z ≥ 0 and any t large enough that

|Ur(z; t)− U∗(z − Z∞
δ )| ≤

(
2r

t
e−z

)1−η

. (4.32)

In particular this gives

sup
z≥(r+1) ln t+Z∞

δ
−2

|Ur(z; t)− U∗(z − Z∞
δ )| = O

(
t−(r+2)(1−η)

)
, (4.33)

as t→ +∞, with η > 0 arbitrarily small. Moreover, recall from (4.29)-(4.30) that Z0(t)
is the smallest positive point where Ur(·; t) equals 0. Then using again (4.32), we get
�rst that Z0(t) → +∞ as t→ +∞, and then also that

U∗(Z0(t)− Z∞
δ ) ≤

(
2r

t
e−Z0(t)

)1−η

.

Due also to (4.18), we have(
2r

t
e−Z0(t)

)1−η

≥ e−(Z0(t)−Z∞
δ ) −Ke−(2−η)(Z0(t)−Z∞

δ ),

for some K > 0 and η > 0 arbitrarily small, from which one can infer that

Z0(t) > (r + 2) ln t, (4.34)

for t large enough.

Let us now construct the second supersolution. As in the construction of the sub-
solution, we use some combination of Neumann and Dirichlet eigenfunctions of a linear
operator obtained by some change of variables in an appropriate moving frame.

Let us recall the equation

∂τw = ∂yyw −
(
y2

16
− 3

4

)
w − 1

2
e−

τ
2

(
∂yw − y

4
w
)
, (4.35)

which is equivalent to (1.1) in the moving frame centered at 2t − 1
2
ln t; see the com-

putation leading to (4.6) in Subsection 4.1. Notice that, plugging the �rst Neumann

eigenfunction e−
y2

8 in the right-hand term, then the nonautonomous term ∂yw− y
4
w is

negative which is the wrong sign when looking for a supersolution of (4.35). Therefore,
here we need to proceed more carefully.

We �rst take the following combination:

w0(τ, y) := e−
y2

8 eτ(
1
2
+ε) − 2ye−

y2

8 e2ετ + y2e−
y2

8 e2ετ . (4.36)

Here we �x

ε =
1

2
− r ∈

(
0,

1

2

)
,

to be made arbitrarily small.
The above combination (4.36) shares some similarities with the one used in our

subsolution; see (4.7). In particular, the �rst two functions e−
y2

8 , ye−
y2

8 are the �rst

eigenfunctions of the elliptic operator Lw := ∂yyw−
(

y2

16
− 3

4

)
w, posed on the positive

half-line respectively with a Neumann and a Dirichlet boundary condition at 0, and
the corresponding eigenvalues are respectively 1/2 and 0. However, in order to get
a supersolution, we instead slightly increased the exponential growth in time of the
Neumann component. Furthermore, since it is crucial to make the second supersolution
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steeper than u1, we put a negative constant in front of the Dirichlet component. We
also made the exponential growth in time of the Dirichlet component (2ε instead of 0)
even faster relatively to the Neumann part (ε+1/2 instead of 1/2), which will eventually
ensure that the Dirichlet component is large enough to dictate the slope around the
matching point of both supersolutions. Finally, the third term, which is modeled on
the second Neumann eigenfunction of L, ensures the positivity of w0. More precisely,
there exists τ1 ≥ 0 such that, for any τ ≥ τ1 and y ≥ 0,

eτ(
1
2
−ε) − 2y + y2 > 0,

hence w0 is positive on [τ1,+∞)× R+.
Let us now check that w0 is a supersolution of (4.35) for τ ≥ τ1 (up to increasing τ1)

and y ∈ [0, 3]. For convenience and since the equation is linear, we write w0 as w1 +
w2 + w3, each wi denoting the i-th term of the sum in the right-hand side of (4.36).
We now compute the equation for each component separately.

First,

∂τw1 − ∂yyw1 +

(
y2

16
− 3

4

)
w1 +

1

2
e−

τ
2

(
∂yw1 −

y

4
w1

)
= εw1 +

1

2
e−

τ
2

(
∂yw1 −

y

4
w1

)
= εe−

y2

8 eτ(
1
2
+ε) − y

4
e−

y2

8 eετ

≥ εe−
y2

8 eτ(
1
2
+ε) − (1 + y3)e−

y2

8 e2ετ .

Next,

∂τw2 − ∂yyw2 +

(
y2

16
− 3

4

)
w2 +

1

2
e−

τ
2

(
∂yw2 −

y

4
w2

)
= 2εw2 +

1

2
e−

τ
2

(
∂yw2 −

y

4
w2

)
= −4εye−

y2

8 e2ετ + e−
y2

8 e−
τ
2 e2ετ

(
y2

2
− 1

)
≥ −(4εy + 1)e−

y2

8 e2ετ

≥ −2(1 + y3)e−
y2

8 e2ετ .

Finally,

∂τw3 − ∂yyw3 +

(
y2

16
− 3

4

)
w3 +

1

2
e−

τ
2

(
∂yw3 −

y

4
w3

)
= 2εw3 +

1

2
w3 − 2e−

y2

8 e2ετ +
1

2
e−

τ
2

(
∂yw3 −

y

4
w3

)
=

(
2ε+

1

2

)
y2e−

y2

8 e2ετ − 2e−
y2

8 e2ετ + e−
y2

8 e−
τ
2 e2ετ

(
y − y3

4

)
≥ −

(
2 +

y3

4

)
e−

y2

8 e2ετ .

Putting all the above together, we �nd that

∂τw0 − ∂yyw0 +

(
y2

16
− 3

4

)
w0 +

1

2
e−

τ
2

(
∂yw0 −

y

4
w0

)
≥ εe−

y2

8 eτ(
1
2
+ε) −K1(1 + y3)e−

y2

8 e2ετ

> 0,

where K1 is a positive constant which does not depend on y ≥ 0 and τ ≥ 0, and the
last inequality holds on the interval y ∈ [0, 3] for all τ ≥ τ1 (up to increasing τ1).
Unfortunately, looking at the negative sign of the single y3-order term in the previous
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computations, one may observe that w0 cannot be a supersolution on the whole right
half-line {y ≥ 0}. Therefore, we need to merge it with yet another function. One may
also notice that this y3-order term comes from the inclusion of w3 in the de�nition of w0,
and try to remove it to solve this issue. However, if we remove w3 then the function w0

is no longer positive so that an additional step is needed either way. Moreover, by
adding this third term, we also make the decay of w0 slower as y → +∞, which
actually makes this additional step easier.

This leads us to also introduce w̃ which solves (4.35), i.e.

∂τ w̃ − ∂yyw̃ +

(
y2

16
− 3

4

)
w̃ +

1

2
e−

τ
2

(
∂yw̃ − y

4
w̃
)
= 0,

for τ > 0 and y > 0, together with the Neumann boundary condition

∂yw̃(τ, 0) = 0,

for τ > 0, and the initial data

w̃(0, y) = e−
y2

8 ,

for y > 0. Proceeding similarly as in the proof of [13, Lemma 2.2], one may check that
there exists W1 > 0, and for any bounded interval [0, L] there exists K(L) > 0, such
that ∣∣∣∣w̃(τ, y)−W1e

− y2

8 e
τ
2

∣∣∣∣ ≤ K(L), (4.37)

for any τ ≥ 1 and y ∈ [0, L]. For the sake of completeness, we include the details in
Appendix A. By the strong maximum principle, the function w̃ is positive. We also

notice, for later use, that eτe
y2

8 is a supersolution of (4.35). and thus, for any τ ≥ 0
and y ≥ 0,

0 < w̃(τ, y) ≤ eτe
y2

8 . (4.38)

Next we de�ne, for τ ≥ 0,

w(τ, y) :=


w0(τ, y) if 0 ≤ y ≤ 1,

min

{
w0(τ, y),

1

W1
w̃(τ, y)× eετ

}
if 1 < y < 3,

1

W1
w̃(τ, y)× eετ if y ≥ 3.

(4.39)

By de�nition, this function is positive but coincides with w0 when y ≤ 1, which in
the original variables writes as x − 2t + 1

2
ln t ≤

√
t. In particular we will be able to

compute the resulting supersolution explicitely at the matching point with u1, in a
similar manner as we did in the proof of Proposition 4.1.

To check that it is a supersolution of (4.35), we must look at which of the two
functions realize the minimum at y = 1 and y = 3. First, by (4.36) we have for τ large
enough that

w0(τ, 1)− e−
1
8 eτ(

1
2
+ε) = −e−

1
8 e2ετ < −K(3)

W1
eετ .

Using (4.37), we get

w0(τ, 1) <
1

W1
w̃(τ, 1)eετ ,

hence
w(τ, 1) = w0(τ, 1),

for any τ large enough.
On the other hand, at y = 3, we have by (4.37) that

1

W1
w̃(τ, 3)eετ ≤ e−

9
8 eτ(

1
2
+ε) +

K(3)

W1
eετ ,

while
w0(τ, 3) = e−

9
8 eτ(

1
2
+ε) + 3e−

9
8 e2ετ .
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Thus, we �nd that

w(τ, 3) =
1

W1
w̃(τ, 3)eετ ,

for all τ large enough. Notice that the third term in the de�nition of w0 is what ensured
that w0(τ, ·) eventually always intersects 1

W1
w̃(τ, y)× eετ in the interval [1, 3].

We infer that the function w(τ, y) is continuous for τ large enough. Moreover,
w0(τ, y) is a supersolution of (4.35) on the domain [τ1,+∞)× [0, 3], and 1

W1
eετ w̃(τ, y)

is a supersolution on the whole domain [0,+∞)× [0,+∞) (by a straightforward com-
putation). We �nally conclude, up to increasing τ1, that w(τ, y) is a supersolution
of (4.35) on [τ1,+∞)× [0,+∞).

Going back to the original problem, we are in position to prove the following lemma,
which is the last one before gluing together our supersolutions.

Lemma 4.6. For any ε ∈
(
0, 1

4

)
, there exist C > 0 and T > 0 such that the function

u2(t, x) :=

(
1− C

t1/4

)
ũ

(
t, x− 2t+

1

2
ln t

)
,

is a supersolution of (1.1) in the subdomain t ≥ T and x ≥ 2t+ ln t− 2, where ũ is a

positive function which satis�es that

ũ(t, z) = tε
[
1− 2

z

t1−ε
+

z2

t3/2−ε

]
e−ze−

z2

4t , (4.40)

for any t ≥ T and z ∈ [0,
√
t], as well as

ũ(t, z) ≤ t2ε+
1
2 e−z, (4.41)

for any t ≥ T and z ≥ 0.

Proof. We de�ne

ũ(t, z) = e−ze−
y2

8 e−
τ
2 × w(τ, y),

where τ = ln t, y = z√
t
and the (positive) function w was introduced in (4.39). In

particular, recalling also (4.36), we immediately get an explicit formula for ũ(t, z) when
0 ≤ z ≤

√
t which is precisely (4.40).

Moreover, it follows from (4.39) together with (4.38) that there exists some C > 0
such that

w(τ, y) ≤ Ce(1+ε)τe
y2

8 ,

for all τ ≥ 0 and y > 1. Up to increasing the constant C, it is straightforward
from (4.36) that the same inequality is also satis�ed for y ∈ [0, 1]. In terms of ũ, we
infer that

ũ(t, z) ≤ Ctε+1/2e−z,

for any t ≥ 1 and z ≥ 0. Choosing any T large enough, we get (4.41) for all t ≥ T .
Next, it follows from the discussion preceding Lemma 4.6 that w is a supersolution

of (4.35) for τ ≥ 0 and y ≥ 0, which is equivalent to

∂tũ− ∂zzũ−
(
2− 1

2t

)
∂zũ− ũ ≥ 0,

for any t ≥ 1 and z ≥ 0. Letting K = ∥f ′′∥∞, we compute

∂tu2 − ∂xxu2 − f(u2)

≥ ∂tu2 − ∂xxu2 − u2 −Ku2
2

≥ C

4t5/4
ũ−K

(
1− C

t1/4

)2

ũ2

≥ ũ

(
C

4t5/4
−Kũ

)
,

where ũ is evaluated at (t, x− 2t+ 1
2
ln t).
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Now, for all x− 2t+ 1
2
ln t ∈

[
3
2
ln t− 2,

√
t
]
, we can use the explicit formula (4.40)

for ũ. In particular, we �nd that

sup
[ 32 ln t−2,

√
t]
ũ(t, ·) ≤ tε

[
1 +

t

t3/2−ε

]
e2−

3
2
ln t

= O(tε−
3
2 )

as t→ +∞. Therefore, thanks to 0 < ε < 1
4
and up to increasing T , we get that

∂tu2 − ∂xxu2 − f(u2) ≥ 0,

for all t ≥ T and 2t+ ln t− 2 ≤ x ≤ 2t+
√
t− 1

2
ln t.

Then, for x ≥ 2t+
√
t− 1

2
ln t, from (4.41) we get that

ũ

(
t, x− 2t+

1

2
ln t

)
≤ t2ε+

1
2 e−

√
t,

and the wanted di�erential inequality is again satis�ed for large enough times. Finally
we have proved Lemma 4.6.

Let us now proceed with the proof of Proposition 4.2 and the �matching� argument
of the two supersolutions u1 (recall Lemmas 4.4 and 4.5) and u2 (see Lemma 4.6). This
matching occurs in a bounded neighborhood of 2t + ln t (with respect to the original
non moving frame), and it again shares some similarities with the construction of the
subsolution. We choose

h(t) = ln

(
1− C

t1/4

)
+ ln

(
1− 3 ln t

t1−ε
+

9(ln t)2

4t3/2−ε

)
− 9(ln t)2

16t
,

so that

eh(t) =

(
1− C

t1/4

)(
1− 3 ln t

t1−ε
+

9(ln t)2

4t3/2−ε

)
e−

9(ln t)2

16t .

As before, we �nd that h(t) → 0 as well as h′(t) = o(1/t) as t→ +∞. Thus, Lemmas 4.4
and 4.5 apply.

First we point out that the asymptotics (4.18) of the traveling wave can be extended
to its �rst derivative, i.e. we also have

U ′
∗(z) = −e−z +O(e−(2−η)z),

as z → +∞. Thanks to these asymptotics, using also (4.24) and (4.33) and taking
ε = 1

2
− r ∈

(
0, 1

4

)
, we �nd that

u1(2t+ ln t− 1) = Ur((r + 1) ln t− 1− h(t) + Zδ(t); t)

= U∗((r + 1) ln t− 1− h(t) + Zδ(t)− Z∞
δ ) +O

(
1

tr+2− 1
2
ε

)
= U∗((r + 1) ln t− 1− h(t)) +O

(
1

tr+2− 1
2
ε

)
=

e1eh(t)

tr+1
+O

(
1

tr+2− 1
2
ε

)
=

e1eh(t)

t3/2−ε
+O

(
1

t
5
2
− 3

2
ε

)
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as t→ +∞. On the other hand,

u2(t, 2t+ ln t− 1) = tε
(
1− C

t1/4

)
e1

t3/2
e−

( 3
2

ln t−1)2

4t

×

[
1− 2

3
2
ln t− 1

t1−ε
+

(
3
2
ln t− 1

)2
t3/2−ε

]

=
e1eh(t)

t3/2−ε
e

3 ln t
4t

− 1
4t

+
e1

t3/2−ε

(
1− C

t1/4

)[
2

t1−ε
+

−3 ln t+ 1

t3/2−ε

]
e−

( 3
2

ln t−1)2
4t

>
e1eh(t)

t3/2−ε
+

e1

t5/2−2ε
,

where as usual the inequality holds at large times. Notice that we used the explicit
formula (4.40) from Lemma 4.6 for u2, since 0 ≤ 3

2
ln t− 1 ≤

√
t for large enough t.

It follows that
u2(t, 2t+ ln t− 1) > u1(t, 2t+ ln t− 1).

By similar computations, we get

u1(2t+ ln t+ 1) =
e−1eh(t)

t3/2−ε
+O

(
1

t
5
2
− 3

2
ε

)
,

and

u2(t, 2t+ ln t+ 1) = tε
(
1− C

t1/4

)
e−1

t3/2
e−

( 3
2

ln t+1)2
4t

×

[
1− 2

3
2
ln t+ 1

t1−ε
+

(
3
2
ln t+ 1

)2
t3/2−ε

]

=
e−1eh(t)

t3/2−ε
e−

3 ln t
4t e−

1
4t

+
e−1

t3/2−ε

(
1− C

t1/4

)[
− 2

t1−ε
+

3 ln t+ 1

t3/2−ε

]
e−

( 3
2

ln t+1)2
4t

<
e−1eh(t)

t3/2−ε
− e−1

t5/2−2ε
.

Thus u2(t, 2t+ ln t+ 1) < u1(t, 2t+ ln t+ 1) for any large enough t.
We have �nally obtained the following (generalized) supersolution, for all t ≥ T

and x ∈ R:

u(t, x) =


u1(t, x) if x ≤ 2t+ ln t− 1,

min{u1(t, x), u2(t, x)} if 2t+ ln t− 1 < x < 2t+ ln t+ 1,

u2(t, x) if x ≥ 2t+ ln t+ 1.

Furthermore, it follows from the de�nition of u1 in (4.21) that there exists X2 > 0 such
that u(T, x) ≥ 1 for any x ≤ −X2. Next, from the fact that u1 is also de�ned by (4.26),
where h(t) and Zδ(t) are bounded, and Ur is positive on the left of the point Z0(t)
with (4.34), we infer that u1 is positive for x ≤ 2t + ln t + 1. Since u2 is also positive
by construction, we conclude that u satis�es statement (ii) of Proposition 4.2.

Next, it follows from the de�nition of u1 in (4.21) and the fact that h(t), Zδ(t) are
bounded, that for any λ ∈ (0, 1), there exists X1 > 0 such that

∀x < 2t− r ln t−X1, u(t, x) > λ.

Lastly, by construction Ur(·; t) converges locally uniformly to (a shift of) U∗ as t→ +∞;
indeed recall (4.32). Then, by (4.29) and (4.34), we also have that ∂zUr(z; t) < 0 for
any 0 ≤ z ≤ (r + 2) ln t. From the de�nition of u1 in (4.26), together with the fact
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that u2(t, x) goes to 0 as t → +∞ uniformly with respect to x ≥ 2t + ln t − 1 thanks
to (4.41), we infer that for any λ ∈ (0, 1), there exists X1 > 0 such that

∀x > 2t− r ln t+X1, u(t, x) < λ.

Therefore statement (i) of Proposition 4.2 holds true too. This concludes the proof of
Proposition 4.2.

4.4 The slow decay case: a supersolution

For any f satisfying the monostable assumption (1.2), it is possible to �nd a KPP type
nonlinearity f̃ such that f̃ ′(0) = f ′(0) and f̃(s) ≤ f(s) for any s ≥ 0. In particular,
the lower estimate on the position of the level sets in statement (i) of Theorem 1
immediately follows from a comparison principle and the celebrated result of [6, 13].
We refer to Section 5 for the details.

Therefore, in the slow decay case it is enough to construct a supersolution. In this
section we assume (up to some shift) that

U∗(z) = (z +A)e−z +O(e−(2−η)z), U ′
∗(z) = −(z +A− 1)e−z +O(e−(2−η)z, (4.42)

as z → +∞, where η > 0 is arbitrarily small. Notice that, since we are shifting the
front to make the constant B in (2.3) equal to 1, the constant A ∈ R is now also �xed.
Then we prove the following:

Proposition 4.3. There exist T > 0 and u(t, x) a supersolution of (1.1) on [T,+∞)×
R such that:

(i) for any λ ∈ (0, 1), there exists X1 > 0 such that, for any t large enough,

∀x < 2t− 3

2
ln t−X1, u(t, x) > λ,

∀x > 2t− 3

2
ln t+X1, u(t, x) < λ;

(ii) the function u is positive on [T,+∞)× R and there exists X2 > 0 such that

∀x ≤ −X2, u(T, x) ≥ 1.

The general strategy remains the same as in Section 4.3, and in particular the left
supersolution is constructed in the same way. More precisely, we de�ne (using the same
notation for simplicity)

u1(t, x) =

{
U∗(x− 2t+ 3

2
ln t) + γ

t
if t > 0, x ≤ 2t− 3

2
ln t− Zδ(t),

U 3
2
(x− 2t+ 3

2
ln t+ Zδ(t); t) if t > 0, x > 2t− 3

2
ln t− Zδ(t),

where we recall that γ > 0, Zδ(t) is such that U∗(−Zδ(t)) = 1 − δ − γ
t
, Ur(·; t) solves

the ODE (4.27) and (4.28). Notice that, compared with Section 4.3, here we choose
r = 3/2, so that eventually we will recover the exact logarithmic drift, and also h(t) ≡ 0.

Lemma 4.7. There exist γ > 0 and T > 0 so that u1 is a positive supersolution

of (1.1) for t ≥ T and x < 2t− 3
2
ln t− Zδ(t) + Z0(t).

Moreover, the function Z0(t) satis�es, for any t ≥ T ,

Z0(t) >
7

2
ln t,

and there holds

sup
x≥2t+ln t+Z∞

δ
−Zδ(t)−2

∣∣∣∣u1(t, x)− U∗

(
x− 2t+

3

2
ln t+ Zδ(t)− Z∞

δ

)∣∣∣∣ = O
(
t−

7
2
(1−η)

)
,

as t→ +∞, with η > 0 arbitrarily small and

Zδ(t)− Z∞
δ = O

(
1

t

)
.
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Proof. The proof is the same as in Section 4.3 and thus we omit the details. We refer
in particular to (4.24), (4.33) and (4.34).

Let us then focus the discussion on the right supersolution. We �rst place ourselves
in the moving frame with a logarithmic drift, more precisely in the moving frame around
2t−

(
3
2
+ ε
)
ln t with ε > 0 to be made arbitrarily small. Of course this coincides with

the expected drift when ε = 0, but we need a slight gap with the position of the level
sets of u1 in order to later match our left and right supersolutions. We obtain the
linearized equation

∂tu = ∂zzu+

(
2− 3 + 2ε

2t

)
∂zu+ u.

Letting u = e−zv and switching to the self-similar variables τ = ln t and y = z√
t
, we

get

∂τv = ∂yyv +
y

2
∂yv +

3 + 2ε

2
v − 3 + 2ε

2
e−

τ
2 ∂yv.

Then we let

v = w × e−
y2

8 e
τ
2 eετ ,

so that

∂τw = ∂yyw −
(
y2

16
− 3

4

)
w − 3 + 2ε

2
e−

τ
2

(
∂yw − y

4
w
)
. (4.43)

Let us now de�ne w̃ the solution of (4.43) on the right half-line {y > 0}, together with
the Dirichlet boundary condition

w̃(τ, 0) = 0,

for any τ > 0, and the initial data

w̃(0, y) = ye−
y2

8 ,

for y > 0. We point out that this initial condition is none other than the �rst Dirichlet
eigenfunction of the autonomous part, which is the same as in Sections 4.1 and 4.3;
see (4.6). It is a byproduct of the proof of [13, Lemma 2.2] that there exists some
W1 > 0, and for any bounded interval [0, L] there exists some K(L) > 0, such that∣∣∣∣w̃(τ, y)−W1ye

− y2

8

∣∣∣∣ ≤ K(L)ye−
τ
2 , (4.44)

for any τ ≥ 1 and y ∈ [0, L]. We also refer to Appendix A for a similar proof of the
corresponding result in the case of a Neumann boundary condition. We further point

out that eτey
2/8 is a supersolution of (4.43), thus by the comparison principle, we get

that
w̃(τ, y) ≤ eτey

2/8, (4.45)

for any τ ≥ 0 and y ≥ 0.
Now let us denote

w(τ, y) :=
β

W1
w̃(τ, y),

with
1

1 + 2ε
5

< β <
1

1 + ε
3

. (4.46)

Notice that w still solves (4.43). The choice of the factor β slightly less than 1 will
ensure that the spatial derivative of the right supersolution is slightly less than the
spatial derivative of the left supersolution u1. In particular it will be crucial when
merging the two together into a generalized supersolution. Equipped with w and going
back to the original problem in the moving frame of the expected drift, we �nd a
function ũ(t, z) such that

∂tũ− ∂zzũ−
(
2− 3 + 2ε

2t

)
∂zũ− ũ ≥ 0.

More precisely we can now prove the following lemma:
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Lemma 4.8. For any ε ∈
(
0, 1

4

)
, there exist C > 0 and T > 0 such that the function

u2(t, x) :=

(
1− C

t1/4

)
ũ

(
t, x− 2t+

3 + 2ε

2
ln t

)
,

is a supersolution of (1.1) in the subdomain t ≥ T and x ≥ 2t, where ũ is a positive

function which satis�es that for any L > 0, there exists K(L) > 0 such that∣∣∣∣ũ(t, z)− βtεze−ze−
z2

4t

∣∣∣∣ ≤ βK(L)

W1

z

t1/2−ε
e−z, (4.47)

for any t ≥ e1 and z ∈ [0, L
√
t], as well as

ũ(t, z) ≤ β

W1
tε+3/2e−z, (4.48)

for any t ≥ 1 and z ≥ 0.

Proof. We proceed as in the proof of Lemma 4.6. First, as we outlined above, we
introduce

ũ(t, z) = e−ze−
y2

8 e
τ
2 eετ × w(τ, y),

where τ = ln t, y = z√
t
, and w(τ, y) = β

W1
w̃(τ, y) with w̃ the (positive) solution of (4.43)

with Dirichlet boundary condition w̃(·, 0) ≡ 0. Then (4.47) and (4.48) immediately
follow respectively from (4.44) and (4.45).

Next, by construction we have that ũ satis�es

∂tũ− ∂zzũ−
(
2− 3 + 2ε

2t

)
∂zũ− ũ ≥ 0,

for any t ≥ 1 and z ≥ 0. Letting K = ∥f ′′∥∞, we get

∂tu2 − ∂xxu2 − f(u2) ≥ ũ

(
C

4t5/4
−Kũ

)
,

where ũ is evaluated at (t, x− 2t+ 3+2ε
2

ln t).

Now, for all z = x− 2t+ 3+2ε
2

ln t ∈
[
3
2
ln t,

√
t
]
, we can use (4.47) to get that

ũ(t, z) ≤ βtεze−ze−
z2

4t +
βK(1)

W1

z

t1/2−ε
e−z

≤ β

(
tε +

K(1)

W1t1/2−ε

)
ze−z

≤ β

(
tε +

K(1)

W1t1/2−ε

)
3

2t3/2
ln t = o

(
t−5/4

)
,

as t → +∞. A similar estimate holds for x − 2t + 3+2ε
2

ln t ≥
√
t thanks to (4.48). It

follows that, up to increasing T ,

∂tu2 − ∂xxu2 − f(u2) ≥ 0,

on the subdomain t ≥ T and x ≥ 2t. Lemma 4.8 is proved.

Let us now try to match the supersolutions u1 and u2 in order to conclude the proof
of Proposition 4.3. We �rst compute, using (4.42) and Lemma 4.7, that

u1(t, 2t+ ln t) = U∗

(
5

2
ln t+ Zδ(t)− Z∞

δ

)
+O

(
t−

7
2
(1−η)

)
=

5
2
ln t+A

t5/2
+O

(
t−

7
2
(1−η)

)
=

5 ln t

2t5/2
+O

(
1

t5/2

)
,
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as t→ +∞, where η > 0 can be made arbitrarily small. On the other hand, by (4.47)
and the de�nition of u2 in Lemma 4.8,

u2(t, 2t+ ln t) =

(
1− C

t1/4

)
ũ
(
t,
5 + 2ε

2
ln t
)

=

(
1− C

t1/4

)
× βtε

5 + 2ε

2
ln t× t−ε−5/2e−

(5+2ε)2(ln t)2

16t +O

(
ln t

t3

)
=

5 + 2ε

2
β
ln t

t5/2
+ o

(
ln t

t5/2

)
,

as t → +∞. From the left inequality in (4.46), we have that 5+2ε
2
β > 5

2
, and then we

get that u2(t, 2t+ ln t) > u1(t, 2t+ ln t) for any t large enough.
Next, we compute

u1

(
t, 2t+

3

2
ln t

)
= U∗ (3 ln t+ Zδ(t)− Z∞

δ ) +O
(
t−

7
2
(1−η)

)
=

3 ln t

t3
+O

(
1

t3

)
,

as t→ +∞. On the other hand,

u2

(
t, 2t+

3

2
ln t

)
=

(
1− C

t1/4

)
ũ(t, (3 + ε) ln t)

=
(3 + ε)β ln t

t3
+ o

(
ln t

t3

)
,

as t → +∞. Using (4.46) again, we �nd that (3 + ε)β < 3 and u2(t, 2t +
3
2
ln t) <

u1(t, 2t+
3
2
ln t) for any t large enough.

We conclude that

u(t, x) =


u1(t, x) if x ≤ 2t+ ln t,

min{u1(t, x), u2(t, x)} if 2t+ ln t < x < 2t+ 3
2
ln t,

u2(t, x) if x ≥ 2t+ 3
2
ln t,

de�nes a positive supersolution of (1.1) for t ≥ T and x ∈ R. Moreover, the function u
satis�es the required properties (i) and (ii) of Proposition 4.3. Since the argument is
the same as in the proof of Proposition 4.2, we omit the details. This ends the proof
of Proposition 4.3.

5 Concluding the proof of Theorem 1

We are now in a position to end the proof of Theorem 1. Recall that we assume,
without loss of generality and up to some rescaling, that f ′(0) = 1.

5.1 The slow decay case

We �rst check statement (i) of Theorem 1, which is the slow decay case. First notice
that there exists some K > 0 large enough such that

∀s ≥ 0, f(s) ≥ f̃(s) := s−Ks2.

In particular, applying the comparison principle, we get that u(t, x) the solution of
(1.1)-(1.3) satis�es

u ≥ ũ,

where ũ solves
∂tũ = ∂xxũ+ f̃(ũ),

with ũ(t = 0, ·) ≡ u0. Since f̃ is of the KPP type, we can apply the well-known
result from [6, 13] and, together with a comparison principle, we conclude that for any
λ ∈ (0, 1/K),

∃X(λ) > 0, Eλ(t) ⊂
[
2t− 3

2
ln t−X(λ),+∞

)
, (5.1)

27



where Eλ(t) is the λ-level set of u(t, ·).
Now consider λ ∈ [1/K, 1) and let us again check (5.1). We proceed by contradiction

and assume that there exist sequences tn → +∞ and xn ∈ R such that

u(tn, xn) = λ,

and

xn − 2t+
3

2
ln t→ −∞.

By standard parabolic estimates, we can extract a subsequence such that u(t+tn, x+xn)
converges to some entire in time solution u∞ of (1.1). Moreover u∞(0, 0) = λ and,
from the fact that (5.1) holds true for any λ ∈ (0, 1/K), we know that

1

K
≤ u∞ ≤ 1,

in R2. By comparison with the solutions of the ODE ∂tv = f(v) with v(0) = 1
K
, one

may conclude that u∞ ≡ 1, a contradiction. The lower estimate on the position of the
λ-level set is proved.

Let us now turn to the upper estimate, and let u be the supersolution provided by
Proposition 4.3. We claim that there exists X > 0 such that

u(0, x) ≤ u(T, x−X),

for all x ∈ R. Indeed, it is su�cient to take X = X0 +X2, where X0 comes from (1.4)
and X2 from statement (ii) of Proposition 4.3. More precisely, for x ≥ X0 we have
u0(x) = 0 ≤ u(T, x −X), and for x ≤ X0 then x −X ≤ −X2 and u(T, x −X) ≥ 1 ≥
u0(x).

Thus, by the parabolic comparison principle, for any t ≥ 0 and x ∈ R we have

u(t, x) ≤ u(t+ T, x−X).

It now follows from statement (i) of Proposition 4.3 that, for any λ ∈ (0, 1), there
exists X1 such that

Eλ(t) ⊂
(
−∞, 2(t+ T )− 3

2
ln(t+ T ) +X1 +X

]
.

This concludes the proof of statement (i) of Theorem 1.

5.2 The fast decay case

We now turn to statement (ii) of Theorem 1. We let ε > 0 be arbitrarily small and
u, u be the sub and supersolution from Propositions 4.1 and 4.2, respectively with
r ∈

(
1
2
, 1+ε

2

)
and r ∈

(
1−ε
2
, 1
2

)
.

Similarly as before, it is enough to prove that there exists X > 0 large enough such
that

u(0, x) ≤ u(T, x−X), (5.2)

as well as t0 > 0 such that
u(T, x+X) ≤ u(t0, x), (5.3)

for all x ∈ R. Regarding (5.2), it is again enough to choose X ≥ X0 +X2, where X0

comes from (1.4) and X2 from statement (ii) of Proposition 4.2.
Let us then check (5.3). First, recall from (1.4) that

lim inf
x→−∞

u0(x) > 0.

It follows that
lim inf
x→−∞

u(t, x) ≥ v(t),

for any t > 0, where v solves v′ = f(v) together with v(0) = lim infx→−∞ u0(x) > 0,
hence

lim
t→+∞

lim inf
x→−∞

u(t, x) = 1.
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In particular, by statement (ii) of Proposition 4.1 we can choose t0 > T such that

lim inf
x→−∞

u(t0, x) > sup
x∈R

u(T, x),

and up to increasing X0 we can assume that

inf
x≤−X0+1

u(t0, x) > sup
x∈R

u(T, x). (5.4)

Furthermore, there exists K > 0 large enough such that

∂tu ≥ ∂xxu−Ku,

and by the comparison principle,

u(t, x) ≥ e−Kt

√
4πt

∫
R
u0(y)e

− (x−y)2

4t dy

for any t > 0 and x ∈ R. Next, using again (1.4) and the fact that∫ +∞

z

e−s2ds ∼ e−z2

2z

as z → +∞, we get that

u(t0, x) ≥
e−Kt0

√
4πt0

∫ −X0

−∞

(
inf

z≤−X0

u0(z)

)
e
− (x−y)2

4t0 dy ≥ δ

x+X0
e
− (x+X0)2

4t0 ,

for some δ > 0 and any x ≥ −X0 + 1. On the other hand, from statement (ii) of
Proposition 4.1, we have that

∃X2 > 0, lim sup
x→+∞

(x−X2)u(T, x)

e−(x−X2)2/4T
< δ.

Thus, for X ≥ X0 +X2 large enough, we have that

u(T, x+X) ≤ δ

x+X −X2
e−

(x+X−X2)2

4T ≤ u(t0, x),

for any x ≥ −X0 + 1; notice that we used the fact that t0 > T . Together with (5.4),
we get (5.2).

Finally, with (5.2) and (5.3) in hand, the wanted estimates on Eλ(t) follow by
the parabolic comparison principle. We omit the details since the argument proceeds
almost exactly as in Section 5.1. Theorem 1 is proved.

A Appendix: proof of (4.37)

Here we want to prove the following result.

Proposition A.1. Fix a nonnegative and nontrivial function w̃0 such that

w̃0 ∈ L2((0,+∞)), [y 7→ yw̃0(y)] ∈ L2((0,+∞)).

Let also w̃ solve

∂τ w̃ − ∂yyw̃ +

(
y2

16
− 3

4

)
w̃ +

1

2
e−

τ
2

(
∂yw̃ − y

4
w̃
)
= 0,

for τ > 0 and y > 0, together with the Neumann boundary condition

∂yw̃(τ, 0) = 0,

for τ > 0, and the initial data

w̃(0, y) = w̃0,

for y > 0.
Then there exists W1 > 0, and for any bounded interval [0, L] there exists K(L) > 0,

such that ∣∣∣∣w̃(τ, y)−W1e
− y2

8 e
τ
2

∣∣∣∣ ≤ K(L),

for any τ ≥ 1, and y ∈ [0, L].
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Proof. First we write
ϕ(τ, y) = e−

τ
2 w̃(τ, y),

which solves

∂τϕ = ∂yyϕ−
(
y2

16
− 1

4

)
ϕ− 1

2
e−

τ
2

(
∂yϕ− y

4
ϕ
)
.

Similarly as in [13], we de�ne

M1ϕ := −∂yyϕ+

(
y2

16
− 1

4

)
ϕ,

on the space of functions ϕ ∈ H1((0,+∞)) with yϕ ∈ L2((0,+∞)), and we rewrite the
equation as

∂τϕ+M1ϕ = −1

2
e−

τ
2

(
∂yϕ− y

4
ϕ
)
. (A.1)

Actually, accounting for the Neumann boundary condition, we should understand M1

in the appropriate weak formulation, that is

⟨M1ϕ, ψ⟩ =
∫ +∞

0

(
∂yϕ∂yψ +

(
y2

16
− 1

4

)
ϕψ

)
dy,

for any ψ ∈ H1((0,+∞)) with yψ ∈ L2((0,+∞)). Hereafter ⟨·, ·⟩ denotes the usual
L2((0,+∞)) scalar product. The null space of M1 is generated by the �rst unit eigen-
function

e0(y) :=
1

(2π)1/4
e−

y2

8 ,

while the second eigenvalue is 1, which is associated with the eigenfunction (e−
y2

4 )′′e
y2

8 ,

i.e.
(

y2

4
− 1

2

)
e−

y2

8 . Higher order eigenfunctions are also given by Hermite polynomials

and they form an orthonormal basis of L2((0,+∞)). It follows that the quadratic form

Q1(ψ) := ⟨M1ψ,ψ⟩ =
∫ +∞

0

(
(∂yψ)

2 +

(
y2

16
− 1

4

)
ψ2

)
dy,

satis�es
Q1(ψ) ≥ ∥ψ∥2L2 in e⊥0 . (A.2)

We point out that, for conciseness, we choose to denote ∥ ·∥L2 instead of ∥ ·∥L2((0,+∞)).
Multiplying (A.1) by ϕ and integrating by parts, we �nd

∂τ∥ϕ(τ, ·)∥2L2 + 2Q1(ϕ(τ, ·)) = e−
τ
2

∫ +∞

0

(y
4
ϕ(τ, y)2 − ϕ(τ, y)∂yϕ(τ, y)

)
dy.

Using that

y

4
ϕ(τ, y)2 =

(
y

2
√
2
ϕ(τ, y)

)(
ϕ(τ, y)√

2

)
≤ y2

16
ϕ(τ, y)2 +

ϕ(τ, y)2

4
,

and

−ϕ(τ, y)∂yϕ(τ, y) =
(
−ϕ(τ, y)√

2

)(√
2∂yϕ(τ, y)

)
≤ ϕ(τ, y)2

4
+ (∂yϕ(τ, y))

2,

we get

∂τ∥ϕ(τ, ·)∥2L2 + 2Q1(ϕ(τ, ·)) ≤ e−
τ
2

∫ +∞

0

(
y2

16
ϕ(τ, y)2 +

1

4
ϕ(τ, y)2

+
1

4
ϕ(τ, y)2 + (∂yϕ(τ, y))

2

)
dy

≤ e−
τ
2
(
Q1(ϕ(τ, ·)) + ∥ϕ(τ, ·)∥2L2

)
.

Thus

∂τ∥ϕ(τ, ·)∥2L2 ≤ e−
τ
2 ∥ϕ(τ, ·)∥2L2 ,
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and ∥ϕ(τ, ·)∥L2 is bounded uniformly with respect to τ ≥ 0. By parabolic regularity,
so is ϕ(τ, 0).

Now set

ϕ(τ, y) = ⟨e0, ϕ(τ, ·)⟩e0(y) + ϕ̃(τ, y), with ϕ̃(τ, ·) ∈ e⊥0 .

Then ϕ1(τ) := ⟨e0, ϕ(τ, ·)⟩ satis�es

ϕ′
1(τ) = ⟨e0, ∂τϕ⟩

= ⟨e0,−M1ϕ⟩ −
1

2
e−

τ
2 ⟨e0, ∂yϕ− y

4
ϕ⟩

= −⟨M1e0, ϕ⟩ −
1

2
e−

τ
2 ⟨e0, ∂yϕ− y

4
ϕ⟩

= −1

2
e−

τ
2 ⟨e0, ∂yϕ− y

4
ϕ⟩

=
1

2
e−

τ
2

(
⟨∂ye0 +

y

4
e0, ϕ(τ, ·)⟩+ e0(0)ϕ(τ, 0)

)
=

e−
τ
2

2(2π)1/4
ϕ(τ, 0).

Due to the time-uniform bound on ϕ(τ, 0), we get that ϕ′
1 is integrable. It is also

positive and therefore there exists

ϕ∞
1 := lim

τ→+∞
ϕ1(τ) > 0, (A.3)

(notice indeed that ϕ1(0) is positive by the fact that w̃0 is nonnegative and nontrivial).
Moreover, there also exists K1 > 0 such that

|ϕ1(τ)− ϕ∞
1 | =

∫ +∞

τ

e−
s
2

2(2π)1/4
ϕ(s, 0)ds < K1e

− τ
2 , (A.4)

for all τ ≥ 0.
On the other hand, ϕ̃(τ, y) satis�es, together with the Neumann boundary condition,

∂τ ϕ̃+M1ϕ̃ = ∂τϕ+M1ϕ− ϕ′
1(τ)e0

= −1

2
e−

τ
2

(
∂yϕ̃− y

4
ϕ̃+ ⟨e0, ϕ(τ, ·)⟩

(
∂ye0 −

y

4
e0
)
+

1

(2π)1/4
ϕ(τ, 0)e0

)
.

We multiply by ϕ̃ and integrate to get:

∂τ∥ϕ̃(τ, ·)∥2L2 + 2Q1(ϕ̃(τ, ·)) = −e−
τ
2

[
⟨ϕ̃(τ, ·), ∂yϕ̃(τ, ·)⟩ − ⟨y

4
ϕ̃(τ, ·), ϕ̃(τ, ·)⟩

+⟨e0, ϕ(τ, ·)⟩⟨∂ye0 −
y

4
e0, ϕ̃(τ, ·)⟩

+
1

(2π)1/4
ϕ(τ, 0)⟨e0, ϕ̃(τ, ·)⟩

]
.

Similarly as before, we have

−⟨ϕ̃(τ, ·), ∂yϕ̃(τ, ·)⟩+ ⟨y
4
ϕ̃(τ, ·), ϕ̃(τ, ·)⟩ =

∫ +∞

0

(y
4
ϕ̃(τ, y)2 − ϕ̃(τ, y)∂yϕ̃(τ, y)

)
dy

≤
∫ +∞

0

(
y2

16
ϕ̃(τ, y)2 +

1

4
ϕ̃(τ, y)2

+
1

4
ϕ̃(τ, y)2 + (∂yϕ̃(τ, y))

2

)
dy

≤ Q1(ϕ̃(τ, ·)) + ∥ϕ̃(τ, ·)∥2L2 .

Thus, and using also the fact that ϕ(τ, 0) and the L2-norm of ϕ(τ, ·) are bounded
uniformly with respect to time,

∂τ∥ϕ̃(τ, ·)∥2L2 + 2Q1(ϕ̃(τ, ·)) ≤ e−
τ
2

(
Q1(ϕ̃(τ, ·)) + ∥ϕ̃(τ, ·)∥2L2 + C∥ϕ̃(τ, ·)∥L2

)
,

31



for some constant C > 0. Then, recalling that ϕ̃ ∈ e⊥0 and (A.2), we get

∂τ∥ϕ̃(τ, ·)∥2L2 ≤ (e−
τ
2 − 2)Q1(ϕ̃(τ, ·)) + e−

τ
2 ∥ϕ̃(τ, ·)∥2L2 + Ce−

τ
2 ∥ϕ̃(τ, ·)∥L2

≤ (2e−
τ
2 − 2)∥ϕ̃(τ, ·)∥2L2 + Ce−

τ
2 ∥ϕ̃(τ, ·)∥L2 .

Notice that ψ(τ) := C′e−τ satis�es that

∂τψ ≥ (2e−
τ
2 − 2)ψ + Ce−

τ
2

√
ψ,

for C′ > 0 large enough. It follows by a comparison argument that, for any τ ≥ 0,

∥ϕ̃(τ, 0)∥L2 ≤
√
C′e−

τ
2 ,

for some C′ > 0. Recall that by L2-norm we refer here to the L2((0,+∞))-norm. By
parabolic regularity, we get on any bounded interval [0, L] and for any τ ≥ 1 that

∥ϕ̃(τ, ·)∥L∞([0,L]) ≤ K2(L)e
− τ

2 ,

for some K2(L) > 0. Thus, for any τ ≥ 0 and y ∈ [0, L],

|ϕ(τ, y)− ϕ∞
1 e0(y)| ≤ |ϕ1(τ)− ϕ∞

1 |e0(y) +K2(L)e
− τ

2 ,

where we recall from (A.3) that ϕ∞
1 = limτ→+∞⟨e0, ϕ(τ, ·)⟩. Using also (A.4), the fact

that e0(y) ≤ 1

(2π)1/4
and letting

K(L) =
K1

(2π)1/4
+K2(L),

we get
|ϕ(τ, y)− ϕ∞

1 e0(y)| ≤ K(L)e−
τ
2 .

Finally, rewriting the previous inequality in terms of w̃(τ, y) = e
τ
2 ϕ(τ, y), replacing e0

by its de�nition 1

(2π)1/4
e−

y2

8 and denoting W1 =
ϕ∞
1

(2π)1/4
, we obtain the wanted con-

clusion. Proposition A.1 is proved.
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