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Abstract. We consider an adaptive multiresolution-based lattice Boltzmann scheme, which we have recently
introduced and studied from the perspective of the error control and the theory of the equivalent equations.
This numerical strategy leads to high compression rates, error control and its high accuracy has been
explained on uniform and dynamically adaptive grids. However, one key issue with non-uniform meshes
within the framework of lattice Boltzmann schemes is to properly handle acoustic waves passing through a
level jump of the grid. It usually yields spurious effects, in particular reflected waves. In this paper, we propose
a simple mono-dimensional test-case for the linear wave equation with a fixed adapted mesh characterized
by a potentially large level jump. We investigate this configuration with our original strategy and prove that
we can handle and control the amplitude of the reflected wave, which is of fourth order in the space step of
the finest mesh. Numerical illustrations show that the proposed strategy outperforms the existing methods
in the literature and allow to assess the ability of the method to handle the mesh jump properly.
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1. Introduction

In [3,4] we have proposed a novel approach to perform time-dynamic grid adaptation and to de-
vise lattice Boltzmann schemes to be deployed on such adaptive meshes using multiresolution
analysis. This framework guarantees reduced memory footprints for problems with steep solu-
tion and potential gains in terms of computational time. This is obtained by storing the solution
solely at the local level of refinement, which is essentially coarse in the case of problems involving
shocks, see [6]. Moreover, the preeminent feature of this strategy is that it yields a precise bound
on the additional numerical error caused by the compression of the solution on a dynamically
adapted grid coupled with the numerical scheme, thanks to the information on the local smooth-
ness of the solution provided by multiresolution. These peculiarities have been thoroughly inves-
tigated in these two works. The next question was to clarify – besides the previously elucidated
error control – the potential alteration of the physics of the simulated system by the adaptive
method, which has been fully studied in [2], concluding that our method of choice does not alter
the reference lattice Boltzmann scheme up to local contributions of order four in the space step.
This performance seems unprecedented in the literature. This analysis has been carried out on
uniform or locally uniform grids for smooth solutions using the equivalent equations [7]. When
non-smooth solutions are obtained, one must utilize the time-adaptive refinement to allow for
the representation of singularities at the finest level of resolution.

The question which stimulated the present work has been raised by Pierre Lallemand and
François Dubois during a seminary at the IHP in Paris and is the following: how does the scheme
introduced in our previous works [2–4] behave once an acoustic wave is forced to pass through
grids of different resolutions, like the one on Fig. 1? We emphasize that in the context of dynamic
mesh adaptation, the only case in which waves could penetrate through a level jump is when
they are locally very smooth. For any numerical solver dealing with adapted meshes, beyond
lattice Boltzmann schemes, it is known that a wave passing through a grid transition normally
splits into two parts: the first one propagating through the interface and the second one which is
reflected back. The phenomenological reason for this is the different acoustic impedance of two
media made up of grids at different levels of refinement. Generally speaking, the aim is to devise
numerical approaches which minimize the amplitude of the reflected waves. This is particularly
important in applications such as aeroacoustics [9], where spurious currents on the density field
can have important consequences on the solution of the problem.

Many strategies, both for the representation of an adaptive grid and for the construction of
adaptive lattice Boltzmann methods have been explored. For a review on the different techniques
and the issues linked with grid transitions, the reader can consult [11] and [10]. There is no wide-
spread consensus on a standard test case to analyze the issue of reflected waves: we therefore
consider a basic one-dimensional configuration which already introduces the main difficulties of
more realistic multidimensional systems (e.g. the D2Q9 scheme) to be found in the available lit-
erature, arising from the applications. We also tested1 our approach against the two-dimensional
acoustic pulse test case from [1, 9] yielding results – not presented in this note – fully compatible
with the simpler analysis introduced here.

2. Numerical method

Let us briefly sketch the structure of our numerical method in order to make the paper self-
contained. The interested reader can consult [2–4] for more precision.

1The source code is available on https://github.com/hpc-maths/samurai_cras_2021.
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Figure 1. Example of domain Ω =Ωleft ∪Ωright with Ωleft = [0,2] finely meshed (green full
line) and Ωright = [2,3] coarsely meshed (blue full line). Dashed lines represent ghost cells,
where the solution needs to be updated to deploy the adaptive scheme.

2.1. Space and time discretization

For the sake of presentation, we consider a one-dimensional setting on the bounded domain
Ω= [0,3]. As in our previous work [2] and references therein, we take cells C`,k = [

2−`k,2−`(k +1)
]

for levels of resolution ` ∈ {`min, . . . ,`max} and k ∈ {0, . . . ,3× 2∆` − 1}, where ∆` = `max −`. The
cell center is denoted by x`,k . Therefore, the space step of the grid at finest level of resolution is
∆x = 2−`max . Cells with different levels ` can be employed to cover the domain Ω of interest as in
Fig. 1, which also illustrates the experimental configuration used in the sequel.

The time discretization is uniform with step ∆t = ∆x/λ, where λ > 0 is the so-called “lattice
velocity”. The time-step is the same for all the levels ` ∈ {`min, . . . ,`max} and determined by `max.
In many approaches available in the literature, level-wise time steps are employed. However, local
time stepping would require a lot of attention and computational effort to preserve error control,
thus preventing from a significant cost reduction (see [4], [5] and [12]).

2.2. Lattice Boltzmann method

The lattice Boltzmann method is a numerical algorithm based on q ∈ N? velocities (eα)α=q−1
α=0 ⊂

λZ compatible with the lattice, with dimensionless counterparts cα := eα/λ ∈ Z, α = 0, . . . , q −1.
The distribution function of the population moving with velocity eα shall be denoted f α. The
algorithm is made up of two phases at each time step.

2.2.1. Collision phase

For every cell C`,k belonging to the mesh, the collision phase is performed locally and is a
diagonal relaxation in the space of the moments{

m`,k (t ) = M f `,k (t ),

f
?

`,k (t ) = M−1
(
(I −S)m`,k (t )+Smeq(m0

`,k (t ), . . . ,mqc−1
`,k (t ))

)
,

where M ∈ GL(q,R), S ∈Mq (R) diagonal with rank(S) = q−qc where the non-zero2 entries belong
to ]0,2]. Here, qc is the number of conserved moments and the vector of moments at equilibrium
meq is a function of these conserved moments.

2Zero relaxation parameters are customarly taken for the conserved moments. However, different choices are present
in the literature. They only influence the algorithm once introducing forcing terms via the equilibria.
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2.2.2. Transport phase

For every cell C`,k belonging to the mesh, the transport phase does not mix different popula-
tions. For every α ∈ {0, . . . , q −1} it comes under the form

f
α

`,k (t +∆t ) = f
α,?
`,k (t )+ 1

2∆`

2∑
m=−2

Cα
∆`,m f

α,?
`,k+m(t ), (1)

with weights recursively defined by
Cα
∆`,−2

Cα
∆`,−1

Cα
∆`,0

Cα
∆`,1

Cα
∆`,2

=


0 −1/8 0 0 0
2 9/8 0 −1/8 0
0 9/8 2 9/8 0
0 −1/8 0 9/8 2
0 0 0 −1/8 0




Cα
∆`−1,−2

Cα
∆`−1,−1

Cα
∆`−1,0

Cα
∆`−1,1

Cα
∆`−1,2

 , and


Cα

0,−cα
= 1,

Cα
0,0 =−1,

Cα
0,m = 0, m ∉ {0,−cα}.

The transport phase (1) needs information stored on ghost cells (dashed in Fig. 1), which thus
must be updated. This is done by averaging for the ghost cells underneath more refined cells
followed by the use of interpolations (from which (1) is recovered, see [2] for the details) for ghost
cells above coarser cells. It should be observed that the proposed method exactly conserves the
moments which are conserved by the original lattice Boltzmann scheme, as remarked in [3, 4].
Moreover, we stress that the aim of our numerical strategy is not to change the features of the
original (on the uniform mesh) lattice Boltzmann scheme, with its strengths and weaknesses, but
rather to minimize its perturbation once introducing non-uniform meshes.

3. Target problem, results and discussion

We introduce a simple system which sustains travelling acoustic waves which are eventually sent
against a level jump in the computational grid.

3.1. Equations and numerical scheme

The target equation is the linear wave equation with velocity c > 0 (taken c = 1/2 in the experi-
ments, but any other value c < 1 would be fine) over the whole real line R

∂t t u − c2∂xx u = 0,

u(t = 0, x) = u0(x),

∂t u(t = 0, x) = 0,

⇔


∂t u +∂x v = 0,

∂t v + c2∂x u = 0,

u(t = 0, x) = u0(x),

v(t = 0, x) = 0,

which has been recast under the form of first order system for simulating it. For this test we
simulate on the bounded domain Ω = Ωleft ∪Ωright with Ωleft = [0,2] and Ωright = [2,3] with
the initial datum u0(x) = exp(−100(x −3/2)2). The most bare-bone lattice Boltzmann scheme to
handle such equation – yet yielding the difficulties of more sophisticated ones – is a three velocity
scheme q = 3 with two conserved moments (u = m0 and v = m1)

c0 = 0, c1 = 1, c2 =−1, M =
1 1 1

0 λ −λ
0 λ2/2 λ2/2

 , S = diag(0,0, p), m2,eq = c2

2
u.

We consider λ = 1, p = 1.7 and a final time T = 1.5625 for each simulation. The initial data are
taken at equilibrium.
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3.2. Results

To quantify the amplitude of the reflected wave, we simulate on different configurations:

• ujump is the solution obtained using the spatial discretization illustrated on Fig. 1, the
left sub-domain Ωleft is finely meshed with level `left = `max, whereas the right sub-
domain Ωright is coarsely meshed with level `right = `min ≤ `left. We vary the jump gap
`jump := |`left − `right|. This configuration is the monodimensional equivalent of that
presented by [11].

• uref is the reference solution obtained on the uniform mesh at the finest level `max.
• ucoarse is the solution obtained on the uniform mesh at the coarsest level `min.

We introduce the L1-norm of the exact solution u for the sake of normalizing: ‖u(t , ·)‖1,∆x =∑
k ∆x|u(t , x`max,k )| ' ‖u0‖1,∆x . We measure

Eref(t ) = ‖uref(t , ·)−u(t , ·)‖1,∆x

‖u(t , ·)‖1,∆x
,

Ecoarse(t ) = ‖u
∧∧

coarse(t )−u(t , ·)‖1,∆x

‖u(t , ·)‖1,∆x
, Dcoarse(t ) = ‖u

∧∧
coarse(t )−uref(t )‖1,∆x

‖u(t , ·)‖1,∆x
,

Ejump(t ) = ‖u
∧∧

jump(t )−u(t , ·)‖1,∆x

‖u(t , ·)‖1,∆x
, Djump(t ) = ‖u

∧∧
jump(t )−uref(t )‖1,∆x

‖u(t , ·)‖1,∆x
,

Djump-refl(t ) =
‖(ujump(t )−uref(t ))χ{k : C`left,k⊂Ωleft}‖1,∆x

‖u(t , ·)‖1,∆x
.

Here the double hat operator ∧∧ represents the application of the same interpolation used to
update the ghost cells. This step is needed to compare solution on the same mesh. Using the
analysis of [2], we can prove an estimate on the amplitude of the reflected wave Djump-refl(T ):

Proposition 1. Assume the solution of the problem with level jump in the computational mesh to
be smooth, namely of class C 4, for any time t ∈ [0,T ], then we have

Djump−refl(T ) =O (∆x4).

Proof. Let us introduce the following indices for the cells close to the level jump

←−
k = {k such that C`left,k ⊂Ωleft and C`left,k ∩∂Ωleft 6=∅},
−→
k = {k such that C`left,k ⊂Ωright and C`left,k ∩∂Ωright 6=∅},

k−→= {k such that C`right,k ⊂Ωright and C`right,k ∩∂Ωright 6=∅},

then performing the Taylor expansions detailed in [2], we claim that for every time t

f
jump,α
`right, k−→

(t ) = f
ref,α

`left,
−→
k

(t )+O (∆x4).

The collision phase is linear, otherwise we may use a local Lipschitz property of the equilibria.

f
jump,α,?
`right, k−→

(t ) = f
ref,α,?

`left,
−→
k

(t )+O (∆x4).

The update of the ghost cell C
`left,

−→
k

is a linear combination of values between which we have
those on C`right, k−→, therefore

f
jump,α,?

`left,
−→
k

(t ) = f
ref,α,?

`left,
−→
k

(t )+O (∆x4).
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Concentrating on the stream phase of c2 =−1, we have f
jump,2

`left,
←−
k

(t +∆t ) = f
jump,2,?

`left,
−→
k

(t ) = f
ref,2,?

`left,
−→
k

(t )+O (∆x4),

f
ref,2

`left,
←−
k

(t +∆t ) = f
ref,2,?

`left,
−→
k

(t ).

Thus by computing the moment u and taking the difference, we deduce that for every time

|ujump

`left,
←−
k

(t +∆t )−uref

`left,
←−
k

(t +∆t )| =O (∆x4).

The CFL condition on the finest resolution imposes that information, thus the errors, propagate
of one cell for one time step. The constant C > 0 carries the normalization

Djump-refl(T ) =C

( ∑
k 6=←−k s.t.

C`max,k⊂Ωleft

∆x|ujump
`max,k (T )−uref

`max,k (T )|+∆x|ujump

`max,
←−
k

(T )−uref

`max,
←−
k

(T )|
)
,

≤C

(
1

C
Djump-refl(T −∆t )+O (∆x5)

)
≤ ·· · ≤ T

∆t
O (∆x5) = λT

∆x
O (∆x5),

=O (∆x4).

�

The results of the numerical simulations are provided in Table 1. We have also run compar-
isons with the method from Fakhari and Lee [8] and that of Rohde et al. [13] presented in Fig. 2.

3.3. Discussion

Commenting on Table 1, we see that the reference scheme converges linearly Eref(T ) = O (∆x)
once refining as expected from the analysis by the equivalent equations [7]. The error Ecoarse(T ) ≤
Eref(T )+Dcoarse(T ) = O (∆x)+O (∆x3) = O (∆x) converges linearly as well because the additional
difference Dcoarse(T ) = O (∆x3) does not influence the overall convergence, as pointed out in [2].
The same behavior is observed for the mesh with jump, namely for Ejump(T ) and Djump(T ).
Very interestingly Djump(T ) ≤ Dcoarse(T ): counter-intuitively this is a priori not granted due to
the possible formation of waves reflected at the jump, even though only a part of the domain
is coarsened. This gives a first indication about the fact that the reflected waves are perfectly
mastered. The second indication comes from Djump-refl(T ) = O (∆x4). This means that with
our method, we are able to decrease the amplitude of the reflected waves with fourth-order
convergence in the space step, in accordance with Prop. 1. The supra-convergence compared
to Djump(T ) comes from the fact that at each time step, the reflected wave is generated only on
the cell of Ωright next to the interface, so that it eventually propagates to the left inside the fine
medium without additional amplification of the error. Observe that the convergence rates worsen
for large∆` and for small `max due to the fact that we are no longer allowed to perform the Taylor
expansions needed by Proposition 1, which are done at the current level of resolution `. Indeed,
in this case, one can no longer claim that 2∆`∆x is O (∆x).

Compared to other methods, we can show with the same proof path than Prop. 1 that the Lax-
Wendroff strategy by [8] yields Djump-refl(T ) = O (∆x3), which is one order less than our method.
This can also be qualitatively seen on Fig. 2. Concerning the approach by [13] where local time-
stepping is used, we observe that it yields quite large reflected waves. This waves are one order
of magnitude larger than for the method by [8] and two orders of magnitude larger than our
approach. However, the local time-stepping prevents us from applying the same theoretical study
to this scheme.
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Table 1. Results for the transition between fine and coarse mesh with the Gaussian as initial
datum. Numerical convergence rates are reported between parenthesis.

`max Eref(T ) Ecoarse(T ) Dcoarse(T ) Ejump(T ) Djump(T ) Djump-refl(T )

`jump = 1

7 7.30E-02 8.19E-02 1.30E-02 7.49E-02 2.64E-03 1.27E-05
8 3.78E-02 (0.95) 3.89E-02 (1.07) 1.86E-03 (2.81) 3.80E-02 (0.98) 3.84E-04 (2.78) 8.90E-07 (3.83)
9 1.92E-02 (0.98) 1.93E-02 (1.01) 2.28E-04 (3.03) 1.93E-02 (0.98) 5.19E-05 (2.89) 5.95E-08 (3.90)

10 9.70E-03 (0.99) 9.70E-03 (0.99) 2.49E-05 (3.20) 9.71E-03 (0.99) 6.75E-06 (2.94) 3.86E-09 (3.95)
11 4.87E-03 (0.99) 4.87E-03 (0.99) 3.67E-06 (2.76) 4.87E-03 (0.99) 8.65E-07 (2.96) 2.46E-10 (3.97)
12 2.44E-03 (1.00) 2.44E-03 (1.00) 1.08E-06 (1.77) 2.44E-03 (1.00) 1.11E-07 (2.96) 1.55E-11 (3.99)
13 1.22E-03 (1.00) 1.22E-03 (1.00) 3.11E-07 (1.79) 1.22E-03 (1.00) 1.44E-08 (2.95) 9.76E-13 (3.99)

`jump = 2

7 7.30E-02 1.61E-01 9.47E-02 9.22E-02 2.21E-02 4.84E-04
8 3.78E-02 (0.95) 5.00E-02 (1.68) 1.68E-02 (2.50) 4.04E-02 (1.19) 3.50E-03 (2.66) 3.10E-05 (3.96)
9 1.92E-02 (0.97) 2.06E-02 (1.28) 2.24E-03 (2.90) 1.96E-02 (1.05) 4.71E-04 (2.89) 2.03E-06 (3.94)

10 9.70E-03 (0.99) 9.82E-03 (1.07) 2.63E-04 (3.09) 9.74E-03 (1.01) 6.07E-05 (2.96) 1.31E-07 (3.96)
11 4.87E-03 (0.99) 4.87E-03 (1.01) 2.78E-05 (3.24) 4.88E-03 (1.00) 7.70E-06 (2.98) 8.32E-09 (3.97)
12 2.44E-03 (1.00) 2.44E-03 (1.00) 4.67E-06 (2.57) 2.44E-03 (1.00) 9.70E-07 (2.99) 5.25E-10 (3.99)
13 1.22E-03 (1.00) 1.22E-03 (1.00) 1.39E-06 (1.75) 1.22E-03 (1.00) 1.22E-07 (2.99) 3.30E-11 (3.99)

`jump = 3

7 7.30E-02 4.33E-01 3.62E-01 1.83E-01 1.12E-01 9.81E-03
8 3.78E-02 (0.95) 1.25E-01 (1.79) 9.31E-02 (1.96) 5.79E-02 (1.66) 2.26E-02 (2.31) 7.10E-04 (3.79)
9 1.92E-02 (0.97) 3.02E-02 (2.05) 1.45E-02 (2.68) 2.16E-02 (1.42) 3.12E-03 (2.86) 4.13E-05 (4.10)

10 9.70E-03 (0.99) 1.07E-02 (1.49) 1.80E-03 (3.01) 9.98E-03 (1.12) 3.97E-04 (2.98) 2.64E-06 (3.97)
11 4.87E-03 (0.99) 4.94E-03 (1.12) 1.99E-04 (3.18) 4.91E-03 (1.02) 4.96E-05 (3.00) 1.68E-07 (3.97)
12 2.44E-03 (1.00) 2.44E-03 (1.02) 2.13E-05 (3.23) 2.45E-03 (1.00) 6.19E-06 (3.00) 1.06E-08 (3.99)
13 1.22E-03 (1.00) 1.22E-03 (1.00) 5.23E-06 (2.03) 1.22E-03 (1.00) 7.74E-07 (3.00) 6.66E-10 (3.99)

`jump = 4

7 7.30E-02 9.10E-01 8.43E-01 4.00E-01 3.29E-01 6.02E-02
8 3.78E-02 (0.95) 4.24E-01 (1.10) 3.88E-01 (1.12) 1.57E-01 (1.35) 1.20E-01 (1.45) 1.43E-02 (2.07)
9 1.92E-02 (0.97) 9.69E-02 (2.13) 8.24E-02 (2.24) 3.74E-02 (2.07) 2.02E-02 (2.58) 8.21E-04 (4.13)

10 9.70E-03 (0.99) 1.78E-02 (2.44) 1.08E-02 (2.93) 1.16E-02 (1.69) 2.42E-03 (3.06) 4.42E-05 (4.22)
11 4.87E-03 (0.99) 5.47E-03 (1.71) 1.21E-03 (3.15) 5.08E-03 (1.20) 2.89E-04 (3.07) 2.85E-06 (3.95)
12 2.44E-03 (1.00) 2.45E-03 (1.16) 1.25E-04 (3.27) 2.47E-03 (1.04) 3.51E-05 (3.04) 1.83E-07 (3.97)
13 1.22E-03 (1.00) 1.21E-03 (1.02) 1.98E-05 (2.66) 1.23E-03 (1.01) 4.34E-06 (3.02) 1.15E-08 (3.99)

`jump = 5

7 7.30E-02 1.24E+00 1.20E+00 6.46E-01 5.82E-01 1.22E-01
8 3.78E-02 (0.95) 9.30E-01 (0.41) 8.96E-01 (0.42) 3.88E-01 (0.74) 3.50E-01 (0.73) 7.35E-02 (0.73)
9 1.92E-02 (0.97) 4.51E-01 (1.04) 4.34E-01 (1.05) 1.45E-01 (1.42) 1.27E-01 (1.47) 1.86E-02 (1.98)

10 9.70E-03 (0.99) 8.05E-02 (2.49) 7.44E-02 (2.54) 2.58E-02 (2.49) 1.78E-02 (2.83) 8.87E-04 (4.39)
11 4.87E-03 (0.99) 1.06E-02 (2.93) 7.74E-03 (3.27) 6.32E-03 (2.03) 1.80E-03 (3.31) 4.31E-05 (4.36)
12 2.44E-03 (1.00) 2.68E-03 (1.98) 7.52E-04 (3.36) 2.58E-03 (1.29) 2.00E-04 (3.18) 2.84E-06 (3.93)
13 1.22E-03 (1.00) 1.18E-03 (1.18) 8.06E-05 (3.22) 1.24E-03 (1.06) 2.35E-05 (3.08) 1.86E-07 (3.93)

Mastering reflected waves at a high order of accuracy is important when our technique is
extended to typical multidimensional applications. When simulating the incompressible Navier-
Stokes equations via a quasi-incompressible D2Q9 scheme, spurious acoustic waves are of order
O (∆x2), thus controlling their reflection at order O (∆x4) is a highly desirable feature of the
scheme.
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Figure 2. Results of the simulation on the mesh with jump (whole domain on the left,
magnification on [1.6,1.9] and on the y axis on the right). Initial solution in pale orange
and solution at t = T in green (left subdomain) and blue (right subdomain). On the first
row, we use our multiresolution scheme [2–4]. On the second row, we use the Lax-Wendroff
scheme by Fakhari and Lee [8]. On the third row, the scheme with local time-stepping by
Rohde et al. [13]. The simulation uses `left = 10 and `jump = 3.

4. Conclusions

In this contribution, we have briefly presented our adaptive lattice Boltzmann method, which is
studied in Prop. 1 using the technique introduced in [2] to conclude that in case of a fixed mesh
jump, the amplitude of the spuriously reflected waves is of order O (∆x4). This fact is numerically
verified and compared to the performance of other approaches available in the literature [8]
and [13], showing that our method outperforms these traditional approaches.

It is worthwhile observing that the original method [3, 4] was conceived to be used with dy-
namically adapted meshes which automatically follow waves and fronts with finer discretizations
once their lack of regularity justifies the depart from a coarse uniform mesh. Thus, in this case,
we even do not expect the O (∆x4) perturbation because fronts never cross level jumps but are
precisely and successfully “chased” by the fine discretization. We observe that multiresolution is
not relevant for systems developing homogeneous isotropic turbulence. However, dealing with
spatially large problems where turbulent flows at high Reynolds number are present in a small
portion of the domain could be interesting and advantageous. The analysis of this framework
could be tackled in publications to come with a tailored data structure.

For the sake of a quick and effective presentation, we have restrained the study to the one-
dimensional setting. However, the generalization to higher spatial dimensions is straightforward
and follows the indications of [2], since the operators involved in the multiresolution analysis are
extended [3] by tensor product in the remaining directions of the space. We have proved in [2] that
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the multidimensional extension of the method retains the same accuracy levels in every spatial
direction.
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