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Abstract

Active contours (also known as snakes) have shown their ability to introduce regularity on image
segmentation. In contrast with level-set approaches, the active contours techniques based on a
contour parameterization are able to maintain the initial topology of the area of interest. For
this reason, it has been used in recent medical research for diaphragm segmentation. Most of
the on-line codes for 2D/3D segmentation, as well as built-in Matlab toolboxes are based on
level-set methods. Moreover, in the literature, the implementation details of active contours
methods with meshes in three dimensions are tight, making tedious any reproduction of these
techniques. In this paper, we give some details of the implementation of active contours in
2D/3D with meshes, especially about the choice of the use of a 2D/3D mesh and its refinement.
We also explore the choice of the parameters with a quantitative study of their influence on the
segmentation results. The 3D segmentation method has been applied to CT scan images of the
lungs.

Source Code

The reviewed Matlab source code and documentation for this algorithm are available at the web
page of this article1. See the README.txt file for usage instructions in the archive.

Keywords: active contours; image segmentation; medical imaging

1 Introduction

Medical training is more and more done using computer-based simulators. They offer a wide variety of
training procedures without being invasive to any real patient and provide useful metrics to evaluate
trainee’s performance. Companies like Mentice2 or Simbionix3 are well known actors on the market.
However those commercial simulators use generic geometries for the anatomy, i.e. based on conceptual
organ geometries not based on real patients, so they cannot be used for treatment planing. Recent

1https://doi.org/10.5201/ipol.2021.298
2http://www.mentice.com [last access: May 24, 2021]
3http://www.simbionix.com [last access: May 24, 2021]
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Segmentation with Active Contours

research work is precisely focusing on filling this gap by building patient-based simulators [21, 9, 12].
When other segmentation techniques fail and when deep-learning techniques lack of labeled data,
segmenting 3D organs with low contrast is still an open problem. Various approaches exist and state-
of-the-art techniques are atlas-based models [10] and machine-learning based methods [20]. They
rely on a consequent database that is not always available. In the following we will only focus on
techniques efficient on a small amount of data.

Considering that the image is defined on a regular grid of pixels in 2D (resp. voxels in 3D), the
aim of the image segmentation is the computation of N sets of pixels (resp. voxels) such that each
set corresponds to an area of the image (these sets are called classes). These areas are computed
considering contours, shapes, or statistics of their pixels (resp. voxels).

In the literature, two types of image segmentation methods can be distinguished, based on the
discretization of the data. The first one is based on the natural regular grid definition of the image,
in pixels or in voxels. The second one is based on the discretization of the boundary of the pixels
sets. The first type has been widely used in the seminal segmentation approaches, especially with
thresholding methods (see, e.g., [18] for a review of such techniques). One of the most known methods
is Otsu’s method, based on histograms [15]. Avoiding the dependency of the pixel discretization, the
freely deformable models are based on a discretization of the boundary of the pixel classes. Kass et
al. [8] have introduced such models for image segmentation in a method called snakes, based on the
energy minimization. The minimizer provides a trade-off between a regular shape and a data-driven
one. The concept has been extended in 3 dimensions by Terzopoulos et al. [19].

The level-set approaches have been introduced by Osher and Sethian [14] and popularized for
image analysis and computer vision by Malladi et al. [11]. In these methods, the boundary of the
shape of interest is defined as the level-set of a function, which is considered as the minimizer of
an energy. For these approaches, two variants exist, which are variational approaches (see, e.g., [4])
and a PDE approach [14]. These methods favor a regular level-set and are able to naturally tackle
the issue of topology variations, whereas the free deformable models preserve the initial topology of
the shape. While the preservation of the topology can be seen as an advantage, especially when the
interest object is known (e.g., the lungs), the free-deformable approach has been extended to manage
some changes of topology [13]. In this paper, we will focus on the free deformable model with fixed
topology.

In the following we will focus on the 2D formalization in Section 2, and the numerical computation
of a solution in Section 3. It will be then extended to the 3D case in Section 5. The numerical results
as well as the influence of the parameters will be studied in Section 4 (2D) and in Section 6 (3D).

2 Model for Active Contours in 2D

Active contour models aim to extract the boundary of an area contained in an image. To compute it,
the main idea consists in the definition of a curve as the minimizer of a functional. This functional
is composed of a sum of energies to perform a trade-off between the regularity of the shape and
the contours defined by the gradient of the image. In our framework, the source code of the 2D
implementation of active contours is in the release2D folder. It is composed of the main Matlab
script MAIN EvolutionSnake2D.m and a functions folder, which contains all the utilities functions.
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2.1 Model Definition

In the following, I denotes an image on a domain Ω ⊂ R
2. The active contour model is defined as a

functional applied to a curve in the image domain Ω. Formally, we aim to compute a path v

v : [0, 1] → Ω ⊂ R
2

s 7→ v(s) = (x(s), y(s)), (1)

such that v(0) = v(1) and v ∈ C2. At the position s, the active contour is represented by v(s) =
(x(s), y(s)) where x and y are snake point coordinate vectors, defined on Ω.

Let us consider the following energy

E(s) =

∫ 1

0

Eint(s) + Eext(s) ds, (2)

where Eint denotes the internal energy and Eext the external energy. The internal energy penalizes
non-smooth curves and its minimization favors the regularity of v. This is the a priori part of the
functional. The external energy depends on the image and enables the curve to fit the area of interest.
This last term can be seen as the data fidelity term of the functional.

Internal energy. To regularize the shape of the snake, the internal energy can be written as

Eint =
1

2

(

α(s) ‖v′(s)‖
2
+ β(s) ‖v′′(s)‖

2
)

, (3)

where α(s) and β(s) are weights, which control the snake regularity. In the following, α and β are
considered constant to simplify the problem for a numerical application. The minimization of the
term Eint enforces the regularity of the curve.

External energy. The external energy represents the data-fidelity term. It is defined as a potential
P on the image domain Ω

P : Ω → R (4)

(x, y) 7→ P (x, y), (5)

such that the minimum of P is the contour of interest in the image. In case of detection of a black
contour in a white background, the potential can be the image itself. For smooth images, we consider
that the external energy is only represented by the image gradient. Indeed, the active contour must
be brought to high gradient areas (which represent image edges) to make the snake close to the
contours. For this purpose, the image gradient has to be as high as possible. The external energy
can therefore be represented by Eext = −P (v(s)), where

P (x, y) =

∥

∥

∥

∥

(

∂I

∂x
(x, y),

∂I

∂y
(x, y)

)∥

∥

∥

∥

2

. (6)

This potential has an analogous definition with the Canny edges detector [2].

Global energy. Combining Equations (2), (3) and (6), our problem can be written as

min
v

∫ 1

0

G(s, v, v′, v′′) ds, (7)

with

G(s, v, v′, v′′) =
1

2

(

α ‖v′(s)‖
2
+ β ‖v′′(s)‖

2
)

− P (v(s)). (8)

The computation of the optimal condition for the minimization of this energy based on the
calculus of the variations is detailed in the next section.
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2.2 Optimal Condition

Let us now write the optimal condition to minimize the functional (7).
The aim is to find the active contour which minimizes the previous equation. To solve it, we use

Euler-Lagrange’s theorem, which is given by Equation (9)

min
v

∫ 1

0

G(s, v, v′, v′′) ds ⇔
∂G

∂v
−

∂

∂s

∂G

∂v′
+

∂2

∂s2
∂2G

∂v′′
= 0. (9)

By analogy with our problem we write the following equalities

∂G

∂v
= −∇(P (v(s))),

∂

∂s

∂G

∂v′
= αv(2)(s), and

∂2

∂s2
∂2G

∂v′′
= βv(4)(s). (10)

Summing up, we obtain the optimal condition

∀s ∈ [0, 1], αv(2)(s)− βv(4)(s)−∇(P (v(s))) = 0. (11)

Follow the numerical computation of the snakes, let us consider the discretization of the curve v
in the next section.

3 Snake Discretization and Numerical Scheme

In the following, a discrete active contour, (as known as snake) V is a discretized version of a
continuous path v, composed of N points (also called vertices) indexed from 1 to N , represented
by the coordinates (v1, . . . , vN) ∈ (R2)N . The curve may have self-intersections. The snake V is a
regular discretization given by vi = v((i− 1)/N). For all i, vi denotes the coordinates (xi, yi) ∈ R

2.

Discretization of the snake derivatives. In the case of a discrete active contour (i.e., when
Equation (11) is discretized), we have to define v(2) and v(4).

To discretize the derivatives, we use the Euler’s method for the second order

∂2v

∂s2
≃ vk+1 − 2vk + vk−1, (12)

as well as the fourth order

∂4v

∂s4
≃ vk+2 − 4vk+1 + 6vk − 4vk−1 + vk+2. (13)

Let us remark that the usual Euler’s method is ∂v
∂s
≃ N ·(vk+1−vk). Nevertheless, removing the factor

N of all the computation makes the parameters of the model independent of the resolution of the
discretization. Notice that to simplify the presentation and without loss of generality, Equations (12)
and (13) are normalized to the case of constant arc length equal to 1.

These derivatives of discrete snakes can be seen as linear operator on the snakes. As boundary
conditions, we expect the active contour to be closed, therefore we define v0 := vN . With this cyclic
boundary conditions, let A2 denote the tridiagonal matrix (second derivative) and A4 the pentagonal
matrix (fourth derivative)

∂2v

∂x2
k

≃



















−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −2 1
1 0 0 . . . 1 −2

































v1
v2
...

vn−1

vn















= A2v, (14)
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and

∂4v

∂x4
k

≃



















6 −4 1 . . . 1 −4
−4 6 −4 . . . 0 1
1 −4 6 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 6 −4
−4 1 0 . . . −4 6

































v1
v2
...

vn−1

vn















= A4v. (15)

To simplify the notations, let us denote A = −αA2 + βA4. The computation of the matrix
A can be performed by release2D/functions/computeA.m. To help the implementation, A4 is
approximated by A2

2 (line 42 of computeA.m).
The cubic spline refinement detailed in the paragraph “Adaptive discretization” aims at this

reparameterization in order to avoid degeneration of the curve.

Temporal discretization for the numerical scheme. Let us denote by V the discretized path
such as (v1, . . . , vN) ∈ (R2)N and

∇(P (V )) ∈ (R2)N , (16)

the gradient of the potential computed in the coordinates given in V . From Equation (11), the
optimal condition can be now written as

AV −∇(P (V )) = 0. (17)

We aim to discretize temporally the equation to obtain an iterative algorithm. In this way, the
snake is going to get closer, step-by-step, to the image contours.

Let Vt denote the vector V at time t and let us consider the following fixed-point problem

AV −∇(P (V )) = 0 ⇐⇒ AV −∇(P (V )) + V = V. (18)

Let us denote g(V ) = AV −∇(P (V )) and γ the step size of Euler’s temporal discretization. Using
Euler implicit method for AV and explicit method for −∇(P (V )), we finally obtain the following
numerical scheme

AVt −∇(P (Vt−1)) = −
1

γ
(Vt − Vt−1). (19)

By inverting the matrix A+ γId, we can obtain Vt depending on Vt−1

Vt = (γA+ Id)
−1 (Vt−1 + γ∇(P (Vt−1))) . (20)

The implementation of Equation (20) is done in release2D/functions/EvolutionSnake2D.m at
line 147, with a pre-computation of (γA+ Id)

−1 at line 120. The properties of the functional (7) does
not enable us to prove the convergence of such scheme. Moreover, since some flatnesses may appear
in the functional, some terms have to be artificially added to numerically ensure the evolution of the
numerical scheme in some cases.

Balloon force in 2D. To avoid stationary effects during the minimization process due to constant
parts of the image, we have added a balloon force as proposed in [6, 5].

The balloon force aims to naturally contract/expand the snake, even if the image potential does
not attract it [5]. This enables the snake to get close to the image when it could not have been achieved
by the regularity forces. This balloon force is built from the curve normal vectors, computed in each
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point of the active contour from the previous and the following point. For instance, for the point vi,
let us consider the tangential vector

−→
ti , computed by averaging the previous and the next edges

−→
ti =

1

2
((vi+1 − vi) + (vi − vi−1)) =

(

tx
ty

)

. (21)

For the balloon force, we naturally choose the orthogonal vector −→ni to expand the active contour

−→ni =

−→
ti

⊺

‖ti‖
=

1
√

t2y + t2x

(

−ty
tx

)

. (22)

By computing −→n for each point of the snake, we obtain a force

FB = κB
−→n , (23)

with the sign of κB controlling the expansion or contraction of the active contours. This force is
integrated in the numerical scheme in the following way:

Vt = (γA+ Id)
−1 (Vt−1 + γ [∇(P (Vt−1)) + FB]) . (24)

This force is computed by release2D/functions/balloonForce.m.
In order to obtain a balloon force oriented outside of the polygon, it is oriented clockwise thanks

to the function polygonParity.m which uses a parity test to check the sense of the polygon once the
user draws it. In our code, a negative coefficient κB means that the balloon force is inner-oriented
whereas a positive coefficient means an outer orientation of the force.

In the following we detail the discretization of ∇(P (Vt−1)).

Potential discretization and smoothing. To compute explicitly∇(P (Vt−1)), the image gradient
has to be discretized. The following formulas have been taken from [1]. Let N denote the number of
points and g a discrete function and define the gradient

∂gx,y
∂x

=























gx+1,y − gx−1,y

2
if 1 < x < N,

g2,y − g1,y
2

if x = 1,

gN,y − gN−1,y

2
if x = N.

(25)

Likewise in the y direction we have

∂gx,y
∂y

=























gx,y+1 − gx,y−1

2
if 1 < y < N,

gx,2 − gx,1
2

if y = 1,

gx,N − gx,N−1

2
if y = N.

(26)

The computation of this gradient is implemented in release2D/functions/gradientCentered.m.
To compute∇(P (x, y)), we apply these formulas directly on the image with an interpolation available
in release2D/functions/interpSnake2.m. We then compute pixel-wise the norm of the gradients.
Finally, we apply these formulas again to compute P . To avoid some problems with the noise, the
image is blurred with a Gaussian kernel with a standard deviation equal to σ. The parameter of this
kernel as well as its influence on the result is discussed in Section 4.
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Stopping criterion. The computation of the active contour being an iterative process, it has to
be stopped. The model being highly non-convex the stopping criterion can only be heuristic. Our
strategy is inspired by the convergent algorithm. When the difference between two iterations Vt and
Vt+1 is small enough, the algorithm is stopped. To compute the difference between the two vectors,
the standard L2-norm is used. In practice, when ‖Vt − Vt+1‖ ≤ ε, the algorithm is stopped. For
practical cases, we have experimentally used ε = 9 ·10−2, which is implemented with an interpolation
available in release2D/functions/EvolutionSnake2D.m at lines 134 and 176. Since there is no
convergence guaranty, the algorithm also stops when a maximum number of iterations is reached.

In Section 4, a discussion about the influence of the smoothness of the image and the time-step
parameter is proposed.

Mickey Mouse Ears failure case. In this paragraph, we describe a failure case that may happen
with some set of parameters with some specific initialization values. In the case of an initialization
with a polygonal snake, the topology of the initial contour can be modified, and some blobs, looking
as the ears of Mickey Mouse can appear.

(a) Initialization of the algorithm. (b) Mickey Mouse Ears failure.

Figure 1: In some conditions, the evolution of the snake can produce some double points on the curve, even if the initialization
does not contain one. This image has been produced with α = 1750, β = 700, κB = −90, γ = 0.00005, σ = 1 and 10000
iterations.

For instance in Figure 1, whereas the initial curve is a polygon with no multiple points, the
iterative algorithm produces some double points (the curve crosses itself). To understand the origin
of this problem, let us display locally the balloon forces around the snake, and focus on the angle of
the snake (see, e.g., Figure 2).

One can see the balloon forces are crossed, that will produce a crossing of the points of the curves,
dealing with a small blob. Moreover, after one crossing, the balloon force will continue to favor an
increase of the blob.

In order to avoid this effect, the smoothing of the balloon force has been proposed. To this aim,
the convolution of the balloon force with a normalized 1D Gaussian kernel centered in 0 and with
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(a) Field of balloon forces applied to a snake.

0 50 100 150 200 250 300 350
0
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(b) The same field with a Gaussian smoothing.

(c) Zoom on (a). Initial snake (red) and resulting snake
(green).

(d) Zoom on (b). Initial snake (red) and resulting snake
(green).

Figure 2: When the balloon force is large enough, and the snake (in red in Figure (c)) is modified with respect to this force,
a loop occurs in the resulting snake (in green in Figure (c)). With the Gaussian smoothing, this phenomenon is avoided
(see, e.g., (d)).

a standard-deviation denoted by σB is used to regularize this force. This convolution, considered
with cyclic boundary conditions, is applied directly on each coordinates of the FB vector defined in

Equation (23). The smoothing version of FB =

(

FB,x

FB,y

)

is defined as

F̃B,i =

(

(GσB
∗ FB,x)i

(GσB
∗ FB,y)i

)

. (27)

The smoothing of the balloon force is implemented in release2D/functions/smoothForces.m. The
computation of the convolution is done through FFT transformation in order to make the circular
conditions easier to compute. The balloon force with and without regularization can be seen in
Figure 2. With the Gaussian smoothing the crossing of the force is lower. In Figure 3 the smoothing
of the balloon force shows some positive effect since it can remove the blob from the resulting snakes.

The computation of the contour following the snake evolution model including a smooth balloon
force is described in Algorithm 1. A hack has been added in order to cancel the balloon force when
the force P ′(V ) deriving from the external energy is strong enough.

Adaptive discretization. In order to enable the snake to fit some small structures, a refinement
of the discretization of the active contour is proposed. To this aim, the points of the snake are
interpolated with cubic splines. These splines are defined as follows: the splines connect two adjacent
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(a) Initialization of the algorithm.

No smoothing

Smoothing parameter= 50

Smoothing parameter= 100

(b) Result after convergence.

Figure 3: The smoothing of the balloon force has a valuable effect on the reduction of the blobs. With σB = 100, there
is no blob. Is the smoothing is low σB = 50 or without smoothing, some blob appears in the bottom-left side. The others
parameters are the same as in Figure 1.

points of the vector defining the active contours; the splines should be connected smoothly in the
sense that the second order derivative of the spline has to be equal in the connecting points. The
method and the implementation is widely inspired by [17], Chapter 3. Let us define a discretized
path in R

2 defined by the points
(

xi

yi

)

=

(

x(ti)
y(ti)

)

, (28)

with i = 1, . . . , N . Let us assume the following conventions: tN+1 = t1, xN+1 = x1, and yN+1 = y1.
In the interval t ∈ [ti, ti+1], the linear interpolation can be written as

(

x(t)
y(t)

)

= A

(

xi

yi

)

+B

(

xi+1

yi+1

)

, (29)

with A =
ti+1 − t

ti+1 − ti
and B = 1 − A. In order to get a smooth path, we aim to define the second

derivative at the connection points

∂2x

∂t2
(ti) = x′′

i , (30)

∂2y

∂t2
(ti) = y′′i , (31)

with x′′
i and y′′i given values. As done before, we use the conventions x′′

N+1 = x′′
1, and y′′N+1 = y′′1 .

In order to constraint the smoothness of the curve, the interpolation is written as a third order
polynomial

(

x(t)
y(t)

)

= A

(

xi

yi

)

+B

(

xi+1

yi+1

)

+ C

(

x′′
i

y′′i

)

+D

(

x′′
i+1

y′′i+1

)

, (32)

128



Segmentation with Active Contours

Algorithm 1: Algorithm to return a polygon given by a snake evolution model.

Input : input image I (image domain: Ω ⊂ R
2), initial contour Vinit ∈ (R2)n

Output : final contour V ∈ (R2)n

V ← Vinit // Contour initialization

I ← Gσ ∗ I, with Gσ a 2D Gaussian kernel with standard-deviation σ.
// Computation of the regularization matrix

Computing A2 defined in Equation (14)
A← −αA2 + βA2

2 // Equations (15) and (20)

P ′ ← ∇‖∇I‖2 // Contribution of external energy with Equation (6)
C ← (true)n ∈ ({true, false})n // Hack : enable the balloon force

nbiteration ← 1 ; error ← 1 // Stopping conditions

// Iterative process

while nbiteration ≤ nmax AND error > 9 · 10−2 do

F̃B computed from Equation (27) // Computation of the balloon forces

// Hack : disable balloon force when External energy is large enough

if ‖F̃B,i‖ ≤ ‖P
′(V )i‖ then

Ci = false

if NOT Ci then

F̃B,i ← 0

V1 ← (γA+ Id)
−1

(

V + γ
(

P ′(V ) + F̃B,i

))

// Numerical scheme Equation (24)

// Cubic spline refinement

if nbiteration mod 100 = 0 then
V1 ← refinement of V1, update of n.
C ← (true)n ∈ ({true, false})n // Hack : enable the balloon force

A← −αA2 + βA2
2 // Equations (15) and (20)

// Computation of the stopping criteria

nbiteration ← nbiteration + 1
if V and V1 have the same size then

error ← ‖V − V1‖
2
2

V ← V1

return V

with C =
1

6
(A3 −A)(ti+1 − ti)

2 and D =
1

6
(B3 −B)(ti+1 − ti)

2. The second order derivative is thus

a linear interpolation of the constraints when t ∈ [ti, ti+1]

∂2x

∂t2
(t) = Ax′′

i +Bx′′
i+1, (33)

∂2y

∂t2
(t) = Ay′′i +By′′i+1. (34)

We have now 2N unknowns x′′
i and y′′i that we have to compute. To this aim, we assume the

continuity of the first order derivative. With some rearrangements, for i = 1, . . . , N

xi+1 − xi

ti+1 − ti
−

xi − xi−1

ti − ti−1

=
ti − ti−1

6
x′′
i−1 +

ti+1 − ti−1

3
x′′
i +

ti+1 − ti
6

x′′
i+1 (35)

yi+1 − yi
ti+1 − ti

−
yi − yi−1

ti − ti−1

=
ti − ti−1

6
y′′i−1 +

ti+1 − ti−1

3
y′′i +

ti+1 − ti
6

y′′i+1, (36)
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with the convention t0 = tN , x0 = xN , y0 = yN , x
′′
0 = xN , and y′′0 = yN . We then get 2N equations

with 2N unknowns. Solving this linear system gives us the second order derivative constraints at each

connection points. To solve it, the variable t is discretized with a step equal to
1

N
. Equation (32)

gives then the values of the spline between connecting points.
Figure 4 shows an example. The set of points (xi, yi) are the red circles, which are connected by

smooth curves.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: The cubic splines connect the points (red circles) with smooth (polynomial) interpolations. This curve can be
regularly sampled with respect to t (colored dots). Notice that, theoretically, this spline interpolation can change the curve
topology, but it is not the case on our practical experiments.

Once the coefficients of Equation (32) have been computed, the splines are uniformly sampled.
To this aim, a numerical computation of the length of each spline is done with a left Riemann sum
to compute the following path length with a subdivision of the [0, 1] interval

∫ 1

0

∥

∥

∥

∥

∥

(

∂x

∂t
(t),

∂y

∂t
(t)

)t
∥

∥

∥

∥

∥

dt. (37)

The left Riemann approximation can be written as

1

N

N−1
∑

i=0

∥

∥

∥

∥

∥

(

∂x

∂t
(i/N),

∂y

∂t
(i/N)

)t
∥

∥

∥

∥

∥

. (38)

Then, the spline is homogeneously sampled: the complete path defined on [0, 1] is subdivided rela-
tively to the lengths of each spline. To this aim, the interval [0, 1] is uniformly sampled, and for each
time step in this interval it can be determined to which spline of the path it corresponds. The point of
the path at this time step of the interval can be computed from Equation (32). All these computations
are listed in Algorithm 2 and performed in release2D/functions/splinesInterpolation2D.m.

The refinement strategy, as well as the influence of the splines refinement on a numerical example,
are studied in Section 4.
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Algorithm 2: Algorithm to return a polygon with a different number of points after refine-
ment with cubic splines.

Input : Closed path V defined by points (X(i), Y (i)) with i ∈ [0, N ]
Output : New path interpolated with cubic splines V2 with N2 points of coordinates

(X2, Y2).
Parameters: N2 the new number of wished points
// 1- Compute second order derivatives of the interpolating function, both

are computed from a system with 2N equations and 2N unknown

Given X and Y , compute X” and Y ” as defined in Equation (35) and (36).
// 2- Compute the arc length of each spline

M ← 100 // left Riemann sum resolution.

for i = 1 to N , with i+ 1 = 1 when i = N do
Compute S ′

i with respect to t between (X(i), Y (i)) and (X(i+ 1), Y (i+ 1)) from the X”
and Y ” values (the derivative of the spline Si is formally computed from Equation (32)).
Sample the function S ′

i at M points tj uniformly distributed between 0 and 1.

path length(i)←
∑

j ‖S
′

i(tj)‖

M ·N
// Left Riemannian sum to approximate

Equation (38).

// 3- Sample the splines to get the points of the new path

Compute T2, a vector of N2 uniformly distributed between 0 and
∑N

j=1 path length(j)

for i = 1 to N , with i+ 1 = 1 when i = N do

for t ∈ T2 such as being between
∑i

j=1 path length(j) and
∑i+1

j=1 path length(j) do

A←
∑i+1

j=1 path length(j)−t

path length(i+1)

B ← 1− A
C ← 1/6(A3 − A)(i/N − (i− 1)/N)2

D ← 1/6(B3 − B)(i/N − (i− 1)/N)2

X2 ← AX(i) + BX(i+ 1) + CX”(i) +DX”(i+ 1) // Equation (32)
Y2 ← AY (i) + BY (i+ 1) + CY ”(i) +DY ”(i+ 1) // Equation (32)
Add (X2, Y2) to V2.

return V2

4 2D Segmentation Results

In this section, we propose to study the influence of the parameters of the snakes model in the two
dimensions examples. Let us study the following parameters: the smoothing terms α, β, σ, the
time-step γ, and the cubic spline refinement. For all the tested images, the initial contour Vt=0 is
given by coarsely defining manually various points outside of the target as illustrated by Figure 3(a).

Influence of α and β. In the internal energy defined in (3), the two parameters α and β tune the
regularity of the snake shape. The α parameter rules the stretching between the points of the snake,
whereas the β parameter rules the second-order derivative of the path.

The influence of the α parameter can be seen in Figure 5. The results have been provided with
various α values. The higher α, the lower the perimeter of the curve. This result matches well with
the theoretical aspect: when α is high, the differences between the points are penalized, thus they
are closer to their neighbors. In case when α is too low, some Mickey Mouse Ears effect can occur
as in Figure 3.

In order to see the influence of the β parameter, let us compare two results, one with a large
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Figure 5: Influence of the parameter α on the segmentation. The results are produced with β = 500, κB = −50,
γ = 0.0001, σ = 1, σB = 70. The initialization is displayed on the left-hand side. The stopping criterion is defined as
‖Vt − Vt+1‖ ≤ 9 · 10−2 and the initialization snake is chosen as in Figure 1.

value and another with a small value. The results of the algorithm with β = 4 and with β = 40000
can be seen in Figure 6. With a small value of β, the contour has sharp edges, since the term based
on the second-order derivative doesn’t penalize much the curvature of the path. With a large value
of β, large curvature values (the angular parts of the path) are penalized, thus the result is smooth.

(a) β = 4. (b) β = 40000.

Figure 6: Influence of the parameter β on the segmentation. The results are produced with α = 17.5, κB = −50,
γ = 0.0002, σ = 1, σB = 70. The stopping criterion is defined as ‖Vt − Vt+1‖ ≤ 9 · 10−2 and the initialization snake is
chosen as in Figure 3.

Influence of σ and the step time γ. Since there is no convergence guaranty for the numerical
scheme, let us numerically study the behavior of the iterative algorithm.

The original problem (7) is not convex, but the convolution of the potential with a Gaussian filter
changes the properties of the energy. Since this filtering has a low-pass effect, the energy is smoother
when σ is higher.
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(a) γ = 0.0005 and σ = 1.6.
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(b) γ = 0.0005 and σ = 0.6.
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(c) γ = 0.05 and σ = 1.6.

Figure 7: Value of the energy (7) with respect to the number of iterations in Algorithm 1. We can see the influence of
the parameters σ and γ on the decreasing of the energy. The results are performed with α = 750, β = 1000, κB = −30,
σB = 70 and 1500 iterations.

Assume that f : Rn → R is convex, and differentiable. If

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for any x, y

then ∇f is Lipschitz continuous with constant L > 0.
The smoothing induced by the Gaussian filtering can be seen as a decrease of the Lipschitz

constant of the gradient of the energy, thus it can improve the convergence properties of the numerical
scheme (see, e.g. [7], Theorem 2.2.4). Nevertheless, it modifies the data of the problem by blurring
it, since the result may fit worse to the original image contours.

For the experiments of Figure 7, we have used the example of Figure 6. In Figure 7 we have drawn
the value of the functional (7) during the time evolution iterations of the numerical scheme (20).
Two parameters have some influence into the convergence of the numerical scheme: σ and γ. The
influence of the γ parameter is the standard behavior for the gradient descent time-step for non-
convex problems. When γ is small enough and the functional (7) is smooth enough (σ = 1.6), the
energy of the numerical scheme decreases to an asymptotic value (see, e.g., Figure 7(a)). When
σ becomes smaller (=0.6) the functional (7) is sharper, the numerical scheme has an energy that
decreases and oscillates around a local minimum (see, e.g., Figure 7(b)). When γ is too large, the
numerical scheme has a random behavior (see, e.g., Figure 7(c)).

Cubic spline path refinement. In order to refine the path, a sampling of the cubic spline inter-
polation can be used, as introduced in Section 3. Our strategy consists in the computation of the
maximum distance between the points every 100 iterations. If it exceeds 2 pixels, the set of points
is interpolated by cubic splines and the new path is sampled with 10% more points.

In Figure 8, the influence of the refinement is shown. The snake does not fit the contours in the
concave parts with the original method. With the refinement, the snake is closer to the contour.

Practical example of the lungs. For non binary images, it is helpful to increase the contrast
of the images to better fit the contours. To this aim, we have used a linear mapping that saturates
10% of the values of the pixels. With this transformation, the image range is between 0 and 255 for
all examples. Since the active contour is sensitive to its parameters, this transformation reduces this
sensitivity.

In the following, we propose to segment the lungs with active contours. Figure 9 shows the active
contour method to segment lungs. The contour fits well a lung in its smooth part, whereas it is quite
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(a) Initialization (b) Active contour segmentation

without refinement

(c) Active contour segmentation

with spline refinement

Figure 8: Effect of the discretization refinement on the segmentation result with a shape containing concavities. The results
are produced with α = 1500, β = 2000, κB = −50, γ = 0.0001, σ = 1, σB = 70 and 10000 iterations.

inaccurate in the interior part which is a complex contour. It is similar to the results existing in the
literature [16] because such accuracy is enough for radiotherapy treatment planning or for training
simulators.

Table 1 presents various images with sets of suitable parameters.

Figure 9: Effect of the discretization refinement on the segmentation result with a shape containing concavities. The result
is produced with α = 1500, β = 2000, κB = −50, γ = 0.0001, σ = 1, σB = 70 and 10000 iterations.

In the next section, an extension to the 3D case is proposed.

134



Segmentation with Active Contours

Image +
initializa-
tion

size α β σ γ κB σB Iterations Results

417× 423 2 · 103 8 · 102 1.08 6.5 · 10−4 -70 70 1700

886× 886 1.75 · 103 7 · 102 1.4 1.5 · 10−3 -100 100 950

450× 626 5 · 102 4 · 102 8 · 10−2 5 · 10−3 -20 100 1000

600× 450 8 · 102 5 · 102 5 · 10−2 5 · 10−4 -15 100 2000

464× 484 7 · 102 3.7 · 103 1 5 · 10−4 -30 100 950

600× 385 1.7 · 103 3.7 · 103 5 · 10−2 5 · 10−4 -10 100 2000

Table 1: Various images with a set of valid parameters.

5 Extension in Three Dimensions

In this work, for the sake of simplicity, the 3D case has been considered by extending the 2D numerical
scheme instead of redefining model (7) with surface integrals as done in [6]. In our framework, the
source code relative of the 3D implementation of active contours is in the release3D folder. Similarly
to the 2D case, it is composed of the main Matlab script MAIN EvolutionSnake3D.m and a functions
folder.

3D extension of the 2D optimal conditions. In 2D, the optimal condition, after discretization,
reads as Equation (17), i.e.

AV −∇(P (V )) = 0. (39)

In this equation, AV represents a smoothing term which ensures the regularity of the snakes,
whereas ∇(P (V )) is a data-fidelity term. According to Equations (25) and (26), the definition of
this term is only based on the pixel representation of the original image. Thus, the extension of this
term to the 3D case is obvious, just by extending the definition of the gradient.

The definition of A settles on the representation on the snake itself. In the following, we assume
that the natural 3D extension of the snake is a triangular mesh. This mesh is defined as a set of
3D points (vertices) in combination with an adjacency matrix defining the edges of a graph. In the
following, we assume that all the faces of this mesh are triangles, but this is not a restriction for our
definition of the regularity matrix A.

Computation of the regularity matrix. Let us define {vi with 1 ≤ i ≤ N} the set of the
vertices of the given mesh. Precisely, we consider that vi is a point in a three dimensional space, thus
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vi = (xi, yi, zi) ∈ R
3. In this section, we assume that the adjacency matrix is defined as follows

Λ = (αi,j)1≤i≤N, 1≤j≤N
, (40)

with αi,j =

{

1 if vi neighbor of vj,
0 otherwise.

(41)

Let us remark that the number of neighbors of a vertex i is given by summing the i-th column of
the matrix Λ.

The difference finite formulas on the curve (see Equation (12), and (13)) have to be adapted to
the mesh. For this purpose, let ni denote the number of neighbors of vertex vi. Those vertices are
given by an adjacent matrix within triangulation2adjacency.m. The second order (Equation (12))
derivative was defined as a linear combination of the current vertex with its direct neighbors. As an
extension, we propose to define the second order gradient on the mesh by the sum of the neighbors
minus the vertex itself multiplied by the number of its neighbors. Thus, the matrix A2 for the second
order is defined as

A2 = (a2,i,j)1≤i≤N, 1≤j≤N
, (42)

with a2,i,j =







−ni if i = j,
1 if i neighbor of j,
0 otherwise.

(43)

This formula is a direct extension of the second order derivative filter [1,−2, 1]. Notice that the
computation using matrix A2 does not take into account the spacing between the vertices. The
matrix for the fourth order is simply given by

A4 = A2
2. (44)

This matrix operation is easy to compute with Matlab, but in the C++ implementation it can be
more easily computed by the following formula

A4 = (a4,i,j)1≤i≤N, 1≤j≤N
, (45)

with a4,i,j =























1 if j second order neighbor of i,
−ni − nj if i neighbor of j,

n
∑

i=1, i 6=j

a4,i,j if i = j,

0 otherwise.

(46)

Denoting
A = −αA2 + βA4 (47)

and V =
(

x y z
)

⊺

, we get the final numerical scheme, identical to the 2D case

Vt = (γA+ Id)
−1 (Vt−1 + γ∇(P (Vt−1))) . (48)

The computation of matrix A is performed by release3D/functions/computeA3D.m. The im-
plementation of Equation (48) is done in release3D/functions/EvolutionSnake3D.m for each of
the coordinates, at lines 152 to 154, with a pre-computation of (γA+ Id)

−1 at line 113.
∇(P (Vt−1)) is computed from the voxel image: the image gradient is discretized for each direction.

As in the 2D case, the balloon force can help the convergence of the snake to an image contour.
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Balloon force in 3D. To extend the 2D computation of the balloon force, the definition of the
normal force of the mesh is required. This normal vector can be naturally computed on each face of

the mesh. Let us consider a face composed of the vertices v1, v2 and v3 and let
−→
Ni denote the area

of the i-th face, computed from the directed cross product

−→
Ni = (v1 − v2) ∧ (v3 − v1). (49)

Next, for each vertex, the normal vectors of the adjacent faces are averaged to give the normal
vector at this vertex. The balloon force is obtained for every vertex with the same computation as
Equation (23). This force is computed by release3D/functions/EvolutionSnake3D.m for each of
the coordinates.

The triangles are given by an initial mesh from a sphere where the vertices are indexed such as
the normals are all in the same direction. While the mesh is evolving, the topology does not change
and the normals will still be computed from the same vertex indices.

Meshing and initializing. To initialize the active contour, a sphere is meshed from an octahedron
subdivided two times such as new faces are created from the added vertex at the middle of each edge.
Every vertex of the sphere is moved such as its distance to the sphere center is equal to the sphere
radius. The code to compute this initial mesh is given by trisphere.m. Then we expand step by
step the snake following the evolution equations. An illustration of the mesh evolution is given on
Figure 10. Contrary to the 2D framework, the number of contour vertices does not evolve with the
iterations, therefore the number of triangles remains the same and equal to the number constituting
this initial sphere.

(a) initial mesh (b) intermediate mesh (c) final mesh

Figure 10: Evolution of the 3D contour to match a 3D image of a cube. The image voxels are illustrated on three slices
cut in the middle of the image. The mesh of the contour is in red.

6 Numerical Results in 3D

Synthetic 3D data have been initially tested. Those data are generated by blackCube.m, blackOval.m
and blackOvals.m. They are in the data folder as well as a 3D medical image of lungs.

The illustrative result of Figure 10 has been produced with α = 500, β = 170, κB = −3000,
γ = 3×10−5, σ = 1, maxArea = 2 and 300 iterations. The same parameters are used in the
following experiments except when changes are mentioned.

The influence of the main parameters has been tested. The same behaviors as in the 2D case has
been observed. Parameter α acts on the stretching between points to allow the smoothness of the
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(a) α = 150 (b) α = 1000 (c) α = 1000, β = 10−5,
maxArea = 0.5

(d) α = 1000, β = 1000,
maxArea = 0.5

Figure 11: Influence of parameters alpha and beta.

contour. It has been checked and the results are displayed on Figure 11 (a) and (b). The value of α
should not be too large in order to fit the image boundaries, otherwise the contour is too smoothed
and it can no longer fill the cube corners (Figure 11 (b)). For an even greater α, the smoothing forces
become stronger than the balloon force and the sphere narrows and converges to a point.

Parameter β acts on the curvature part of the smoothness of the surface. A study of its influence
is illustrated on Figure 11 (c) and (d). A small value for β gives a more irregular and bumpy surface
(Figure 11 (d)) while it becomes smoother as β expands (Figure 11 (c)).

(a) initial sphere (b) final contour (c) initial sphere (d) final contour

Figure 12: Results on synthesised 3D images. The image voxels are illustrated with three slices and the mesh is in red.

The method has also been tested on other synthesised 3D images. The result is illustrated on
Figure 12. They have been produced with the default parameters given at the beginning of this
section. The first image (Figure 12 (a) and (b)) is an ellipsoid and the second image is composed
of two perpendicular ellipsoids (Figure 12 (c) and (d)). Both the initial and the final steps of the
contour evolution are displayed.

Similarly to the 2D case, our method has been carried out on the practical example of the lungs.
Results are illustrated on Figure 13. The parameter set has been left unchanged. Similarly to the
synthesized 3D images, the active contours fit well the image. The initial contour is also a sphere
located inside the lung.
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(a) Initialization of the contour for

the lung: the initial sphere is lo-

cated inside the lung

(b) Lung contour as a mesh dis-

play in the coronal direction

(c) Lung contour display with Gouraud light-

ing in rough perspective

Figure 13: Results on medical images of lungs.

7 Conclusion

In this work, we have recalled the general principles of the active contours with meshes. The work
has been performed both for 2D images as well as for 3 dimensions images. The discretization
scheme and the numerical resolution are detailed. The various engineering hacks that are more or
less explained in the literature are detailed in order to reproduce the method. The parameters are
given and their effects on the results are discussed, still in 2D and 3D. We have also presented a
concrete segmentation case with medical images and the extraction of lungs contours.

Finally, we can conclude that this approach preserves the initial topology of the contour, which
can be an advantage when the shape of the object to segment is known. The drawback of this method
is the sensitivity to the parameters but if the regularity of the shape does not vary too much, the
tuning remains reliable.

8 Image Credits

The images credits of the images in Table 1 are: shamrock, shield, cat, vase and coin, personal work.
The medical image is a slice extracted of an anonimized 3D CT scan from the dir-lab database [3]
labeled as ”4DCT 1” on their webpage4.
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