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Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case +

We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tends to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method. We construct also multi-parametric degenerate rational solutions of this equation.

Introduction

We consider the KdV equation in the following normalization

u t = 6uu x -u xxx , (1) 
where the subscripts x and t as usual denote partial derivatives. This equation ( 1) was introduced for the first time in 1895 by Korteweg and de Vries [START_REF] Korteweg | On the change of form of long wawes adwancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. This equation appears in a wide range of physical problems and describes the propagation of waves with weak dispersion in various nonlinear media.

A method of resolution was given in 1967 by Gardner et al. [START_REF] Gardner | Method for solving the Korteweg-de Vries equation[END_REF]. It was proven that this equation is a complete integrable system by Zakharov and Faddeev in 1971 [START_REF] Zakharov | Korteweg-de Vries equation: A completely integrable Hamiltonian system[END_REF]. Solutions were constructed by Hirota in 1971 by using the bilinear method [START_REF] Hirota | Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[END_REF]. Its and Matveev present solutions in terms of Riemann theta functions [START_REF] Its | Hill's operator with finitely many gaps[END_REF] in 1975. Lax gives in the same year the expressions of periodic and almost periodic solutions [START_REF] Lax | Periodic solutions of the KdV equation[END_REF]. A lot of works have been realized in the following years. We can mention for example Airault et al. in 1977 [3], Adler and Moser in 1978 [START_REF] Adler | On a class of polynomials connected with the Kortewegde-Vries equation[END_REF],

Ablowitz and Cornille in 1979 [START_REF] Ablowitz | On solutions of the KdV equation[END_REF], Freeman and Nimmo in 1984 [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF], Matveev in 1992 [START_REF] Matveev | Generalized Wronskian Formula for solutions of the KdV equation[END_REF], Ma in 2004 [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF], Kovalyov in 2005 [START_REF] Kovalyov | On a class of solutions of KdV[END_REF] and more recently Ma in 2015 [START_REF] Ma | Lump solutions to the KP equation[END_REF].

In the following, we are interested in the algebro-geometric approach given by Its and Matveev in 1975. We degenerate the solutions to the KdV equation given in terms of Riemann theta functions to get solutions in terms of Fredholm determinants. Then we give a representation in terms of wronskians. This gives the correspondence between the algebro-geometric approach and the Darboux dressing method.

Then we construct rational solutions in performing a passage to the limit. We obtain multi-parametric rational solutions to the KdV equation depending on 3N parameters at order N . We give explicit solutions in the simplest cases where N = 1, 2, 3.

The KdV equation and its solutions in terms of theta functions

We consider the Riemann surface Γ of the algebraic curve defined by

ω 2 = 2g+1 j=1 (z -E j ),
with E j = E k , j = k. Let D be some divisor D = g j=1 P j , P j ∈ Γ. The so-called finite gap solution of the KdV equation

u t = 6uu x -u xxx (2) 
can be expressed in the form [START_REF] Its | Hill's operator with finitely many gaps[END_REF] u(x, t) = -2∂ 2

x [ln θ(xg + tv + l)] + C.

We recall briefly, the notations. In (3), θ is the Riemann function defined by

θ(z) = k∈Z g exp{πi(Bk|k) + 2πi(k|z)}, (4) 
constructed from the matrix of the B-periods of the surface Γ, and the vectors g, v, l are defined by

g j = 2ic j1 , (5) 
v j = 8i( c j1 2 2g+1 k=1 E k + c j2 ), (6) 
l j = - g k=1 P k ∞ dU j + j 2 - 1 2 g k=1 B kj , (7) 
C = 2g+1 k=1 E k -2 g k=1 a k zdU k , (8) 
the coefficients c jk being relating with abelian differential dU j by

dU j = g k=1 c jk z g-k 2g+1 k=1 (z -E k ) dz, (9) 
and coefficients c jk can be obtained by solving the system of linear equations

a k dU j = δ jk , 1 ≤ j ≤ g, 1 ≤ k ≤ g.

Degeneracy of solutions

We suppose that E j are real, E m < E j if m < j and try to evaluate the limits of all objects in formula ( 3) when E 2m , E 2m+1 tends to -α m , -α m = -κ 2 m , κ m > 0, for 1 ≤ m ≤ g, and E 1 tends to 0 (these ideas were first presented by A. Its and V.B. Matveev, exposed for example in [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF]).

Degeneracy of the components of the solution

3.1.1 Limit of P (z) = 2g+1 j=1 (z -E j ) The limit of P (z) = 2g+1 j=1 (z -E j ) is evidently equal to P (z) = z g j=1 (z + α j ) 2 3.1.2 Limit of dU m = g k=1 c mk z g-k 2g+1 k=1 (z -E k ) dz The limit of dU m is equal to dU m = ϕ m (z) √ z g j=1 (z + α j )
dz, where ϕ m (z) = g k=1 cmk z g-k . The normalization condition takes the form in the limit

a k dU j → 2πiϕ j (-α k ) -iκ k m =k (-α k + α m ) = δ kj , (10) 
which proves that the numbers -α m , m = k are the zeros of the polynomials ϕ k (z), and so ϕ k (z) can be written as ϕ k (z) = ck1 m =k (z + α m ). By (10), we get in the limit ck1 = -

κ k 2πi . So d Ũk = - κ k 2πi √ z(z + α k ) dz 3.1.3 Limit of v k and g k
By identification of the powers of z g-2 in ( 11)

φk (z) = c k1 l =k (z + α l ) = g j=1 c kj z g-j , (11) 
we get in the limit ck1 g l=1 α l = ck2 .

So we have the limit values of v k and g k :

ṽk = 4iκ 3 k π and gk = -iκ k π .

Limit of U k (P ) and B mk

For

λ 0 = -α m = -κ 2 m , I = 0 λ0 dU k → 1 2
Bmk . The integral I can be easily evaluate along the real axis on the upper sheet of surface Γ and we get

I → i 2π ln κ m + κ k κ m -κ k .
So we have the limit values of matrix B :

Bmk = i π ln κ m + κ k κ m -κ k .
Therefore iB kk tends to -∞. As previously, we have

P ∞ dU j → - i 2π ln κ j - √ z P κ j + √ z P . (12) 

Limit of argument of exponential in θ(p)

Let us denote A 0 the argument of exponential in θ(p) = k∈Z g exp{πi(Bk|k) + 2πi(k|p)}. A 0 can be rewritten in the form

A 0 = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 πi(2p j + B jj )k j . ( 13 
)
Using the inequality k j (k j -1) ≥ 0 for all k ∈ Z g and the fact that iB kk tends to -∞, we can reduce the limit θ of θ(p) to a finite sum taken over vectors k ∈ Z g such that each k j must be equal to 0 or 1. So, if we denote A the argument of θ(xg + tv + l), it can be written in the form

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j [2πi(g j x + v j t) -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj )].
In other words

A = πi g j=1 B jj k j (k j -1) + 2πi j>m B mj k m k j + g j=1 k j Q j , with Q j = 2πi(g j x + v j t) + β j
and

β j = -πi(-j + 2 g k=1 P k ∞ dU j + m =j B mj ).
The quantity β j has a finite limit value βj independent from x and t.

Limit of θ(xg

+ vt + l)
By means of the inequality k j (k j -1) ≥ 0 for all k ∈ Z g and the previous relation iB kk tends to -∞, it turns out that the limit θ of θ(xg + tv + l) reduce to a finite sum taken over vectors k ∈ Z g with the property that each k j must be equal to 0 or 1.

θ = k∈Z g , kj =0 or 1 exp{ m>j 2 ln κ m -κ j κ m + κ j k m k j +( g j=1 2κ j x-8κ 3 j t+2κ j x j +πji+ m =j ln κ m + κ j κ m -κ j )k j }, with x j = 1 2κ j g k=1 ln √ z k -iκ j √ z k + iκ j .
It can be rewritten as θ = J⊂{1,...,g} j∈J

(-1) j j∈J k / ∈J κ j + κ k κ j -κ k exp j∈J 2(κ j x -4κ 3 j t + κ j x j ). ( 14 
)

Limit of the coefficient C

The coefficient C is defined in [START_REF] Gaillard | Towards a classification of the quasi rational solutions to the NLS equation[END_REF] by

C = 2g+1 k=1 E k -2 g k=1 a k zdU k = C 1 + C 2 ,
can be evaluated as follows.

C 2 = -2 g k=1 a k zdU k = -2 g k=1 a k -κ k zdz 2π √ z(z + α k ) = g k=1 κ k π a k √ zdz (z + α k ) = g k=1 κ k π 2iπ(-iκ k ) = g k=1 2κ 2 k = 2 g k=1 α k .
Thus when the gaps tends to points,, the coefficient C tends to C equal to 

C = 2 g k=1 -α k + 2 g k=1 α k = 0.
(-1) j j∈J k / ∈J κ j + κ k κ j -κ k exp   j∈J 2(κ j x -4κ 3 j t + κ j x j )     , ( 15 
)
with κ j , and x j arbitrary real parameters, is a solution to the KdV equation (1).

4 From theta function to Fredholm determinant

The link between the degenerate solution and the Fredholm determinant

In a recent paper, Kirillov and Van Diejen [START_REF] Van Diejen | Kirillov Determinantal formulas for zonal spherical functions on hyperboloids[END_REF] have given formulas in terms of determinants for zonal spherical functions on hyperboloids. In particular, they compute det(I + A), where I is the unit matrix and A = (a jk ) 1≤j,k≤m the matrix defined as :

a jk = 2ǫ j κ j κ j + κ k exp(-2κ j x) l =j κ l + κ j κ l -κ j , (16) 
where ǫ j ∈ {-1; +1} and κ j > 0 for 1 ≤ j ≤ N . Then det(I + A) has the following form

det(I + A) = J⊂{1,...,N } exp   -2x j∈J κ j   j∈J ǫ j j∈J k / ∈J κ j + κ k κ j -κ k . ( 17 
)
Using the same strategy, we can compute det(I + A) where A = (a jk ) 1≤j,k≤m is the matrix defined as :

a jk = (-1) j 2κ j κ j + κ k exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ j κ l -κ j ,
x j being an arbitrary parameter.

Then det(I + A) has the following form

det(I + A) = J⊂{1,...,N } exp   j∈J 2(κ j x -4κ 3 j t + κ j x j )   j∈J (-1) j j∈J k / ∈J κ j + κ k κ j -κ k , (18) 
By the previous section, θ = J⊂{1,...,g} j∈J

(-1) j j∈J k / ∈J κ j + κ k κ j -κ k exp   j∈J (2(κ j x -4κ 3 j t + κ j x j )   . ( 19 
)
If we compare the expression ( 18) to ( 19), we have clearly the equality with

g = N θ = det(I + A). (20) 

Solution to the KdV equation in terms of Fredholm determinant

So we have the following representation of the solutions to the KdV equation Theorem 4.1 The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + A)), (21) 
with A the matrix defined by A = (a jk ) 1≤j,k≤N

a jk = (-1) j 2κ j κ j + κ k exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ j κ l -κ j , (22) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation (1).

If we consider the matrix B defined by

b jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k κ l + κ j κ l -κ k ,
it is easy to verify that det(I + A) = det(I + B), and so we can give another representation of the solutions to the KdV equation. We get the following statement :

Theorem 4.2 The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + B)), (23) 
with B the matrix defined by B = (b jk ) 1≤j,k≤m

b jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k κ l + κ j κ l -κ k , ( 24 
)
and κ j , x j arbitrary real parameters, is a solution to the KdV equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF].

We can also consider the matrix C defined by

c jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k |κ l + κ j | l =j |κ l -κ j | .
It is easy to check that det(I + A) = det(I + C), and so we can give a third representation of the solutions to the KdV equation :

Theorem 4.3
The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + C)), (25) 
with C the matrix defined by C = (c jk ) 1≤j,k≤m

c jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =k |κ l + κ j | l =j |κ l -κ j | , (26) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation (1).

Another possibility is to choose the matrix D defined by

d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ k κ l -κ j .
It is also easy to check that det(I + A) = det(I + D), and so we can give another representation of the solutions to the KdV equation :

Theorem 4.4
The fonction u defined by

u(x, t) = -2∂ 2 x ln(det(I + D)), (27) 
with C the matrix defined by D = (d jk ) 1≤j,k≤m

d jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j ) l =j κ l + κ k κ l -κ j , (28) 
and κ j , x j arbitrary real parameters, is a solution to the KdV equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF].

It remains to find the link between this Fredholm determinant and a certain wronskian.

5 From Fredholm determinants to wronskians

Link between Fredholm determinants and wronskians

In this section, we consider the following functions

φ j (x) = sinh(κ j x -4κ 3 j t + κ j x j ), (29) 
where κ j are real numbers such that κ 1 ≤ . . . ≤ κ N , and x j an arbitrary constant independent of x.

We use the following notations :

θ j = (κ j x -4κ 3 j t + κ j x j ). W = W (φ j , . . . , φ N ) is the classical Wronskian W = det[(∂ j-1 x φ i ) i, j∈[1,...,N ]
]. We consider the matrix A = (a jk ) j, k∈[1,...,N ] defined by a jk = (-1) j exp 2(κ j x -4κ 3 j t + κ j x j )

l =j κ l + κ k κ l -κ j . ( 30 
)
Then we have the following statement Theorem 5.1

det(I + A) = 2 N (-1) N (N +1) 2 exp( N j=1 θ j ) N j=2 j-1 i=1 (κ j -κ i ) W (φ 1 , . . . , φ N ) (31) 
Proof : We start to remove the factor 2 -1 e θj in each row j in the Wronskian

W for 1 ≤  ≤ N . Then W = N j=1 e θj 2 -N × W 1 , (32) 
with

W 1 = (1 -e -2θ1 ) κ 1 (1 + e -2θ1 ) . . . (κ 1 ) N -1 (1 + (-1) N e -iθ1 ) (1 -e -2θ2 ) κ 2 (1 + e -2θ2 ) . . . (κ 2 ) N -1 (1 + (-1) N e -2θ2 ) . . . . . . . . . . . . (1 -e -2θN ) κ N (1 + e -2θN ) . . . (κ N ) N -1 (1 + (-1) N e -2θN )
The determinant W 1 can be written as

W 1 = det(α jk e j + β jk ),
where α jk = (-1) k (κ j ) k-1 , e j = e -2θj , and

β jk = (κ j ) k-1 . Denoting U = (α ij ) i, j∈[1,...,N ] , V = (β ij ) i, j∈[1,...,N ] , the determinant of U is clearly equal to det(U ) = (-1) N (N +1) 2 N ≥l>m≥1 (κ l -κ m ). ( 33 
)
Then we use the following Lemma

Lemma 5.1 Let A = (a ij ) i, j∈[1,...,N ] , B = (b ij ) i, j∈[1,...,N ] , (H ij ) i, j∈[1,...,N ]
, the matrix formed by replacing the jth row of A by the ith row of B Then

det(a ij x i + b ij ) = det(a ij ) × det δ ij x i + det(H ij ) det(a ij ) (34) 
Proof : For à = (ã ij ) i, j∈[1,...,N ] the matrix of cofactors of A, we have the well known formula

A × t à = det A × I. So it is clear that det( Ã) = (det(A)) N -1 . The general term of the product (c ij ) i,j∈[1,..,N ] = (a ij x i + b ij ) i,j∈[1,..,N ] ×(ã ij ) i,j∈[1,..,N ]
can be written as

c ij = N s=1 (a is x i + b is ) × ãjs = x i N s=1 a is ãjs + N s=1 b is ãjs = δ ij det(A)x i + det(H ij ). We get det(c ij ) = det(a ij x i + b ij ) × (det(A)) N -1 = (det(A)) N × det(δ ij x i + det(H ij ) det(A) ). Thus det(a ij x i + b ij ) = det(A) × det(δ ij x i + det(H ij ) det(A) ). 2 
Using the previous lemma (34), we get :

det(α ij e i + β ij ) = det(α ij ) × det(δ ij e i + det(H ij ) det(α ij ) ),
where (H ij ) i, j∈[1,...,N ] is the matrix formed by replacing the j-th row of U by the i-th row of V defined previously. We compute det(H ij ) and we get det(H ij ) = (-1)

N (N +1) 2 +1 N ≥l>m≥1, l =j, m =j (κ l -κ m ) l<j (-κ k -κ l ) l>j (κ k + κ l ). ( 35 
)
We can simplify the quotient q = det(H ij ) det(α ij ) : e -2θj det(I + A).

q = (-1) j l =j |κ l + κ k | l =j |κ l -κ j | . So
The wronskian can be written as

W (φ 1 , . . . , φ N ) = N j=1
e θj 2 -N (-1)

N (N +1) 2 N j=2 j-1 i=1 (κ j -κ i ) N j=1
e -2θj det(I + A)

It follows that det(I + A) = e N j=1 θj (2) N (-1) N (N +1) 2 N j=2 j-1 i=1 (κ j -κ i ) W (φ 1 , . . . , φ N ) (36) 2 

Solutions to the KdV equation in terms of wronskians

From the previous subsection, we can give the following wronskian representation of the solutions to the KdV equation.

Theorem 5.2

The function u defined by

u(x, t) = -2∂ 2 x (ln [W (φ 1 , . . . , φ N )]) , (37) 
where = W (φ 1 , . . . , φ N ) = det[(∂ j-1 x φ i ) i, j∈[1,...,N ]
] is the wronskian of the functions φ defined by φ j (x, t) = sinh(κ j x -4κ 3 j t + κ j x j ), κ j , x j being real numbers, is a solution to the KdV equation (1).

Proof : From the result of the previous subsection, the solution to the KdV equation u can be written as u(x, t) = -2∂ 2

x (det(I + A)). From (31), we have

det(I + A) = e N j=1 θj (2) N (-1) N (N +1) 2 N j=2 j-1 i=1 (κ j -κ i ) W (φ 1 , . . . , φ N ).
We can conclude that u can be rewritten as

u(x, t) = -2∂ 2 x ln e N j=1 θj (2) N (-1) N (N +1) 2 N j=2 j-1 i=1 (κ j -κ i ) W (φ 1 , . . . , φ N ) = -2∂ 2 x (ln(W (φ 1 , . . . , φ N ))) . 2 
It is relevant to note that we recover the result given by the Darboux dressing [START_REF] Matveev | Generalized Wronskian Formula for solutions of the KdV equation[END_REF]. This realize the connection between the algebro-geometric approach and the Darboux dressing method.

Remark 5.1 The choices of functions φ j are not unique. For example, we can choose : φ j (x) = cosh(κ j x -4κ 3 j t + κ j x j ), or φ j (x) = exp(κ j x -4κ 3 j t + κ j x j ), or φ j (x) = exp(-(κ j x -4κ 3 j t + κ j x j )) or any combinations of these different last functions. We can also choose the following functions : φ j (x) = sin(κ j x + 4κ 3 j t + κ j x j ), or φ j (x) = cos(κ j x + 4κ 3 j t + κ j x j ), or φ j (x) = exp(i(κ j x + 4κ 3 j t + κ j x j )), or φ j (x) = exp(-i(κ j x + 4κ 3 j t + κ j x j )) any combinations of these different last functions.

6 Another approach and degenerate multi-parametric rational solutions to the KdV equation

Solutions to the KdV equation in terms of elementary exponentials

We consider the KdV equation ( 1)

u t = 6uu x -u xxx .
We consider the following elementary functions :

f ij (x, t) = (a j e) i-1 exp(a j ex -4(a j e) 3 t + c j e 2N -1 ) -(a j e) i-1 exp(-a j ex + 4(a j e) 3 t + d j e 2N -1 ), for 1 ≤ i ≤ N (38)
Then, we have the following statement :

Theorem 6.1 The function v defined by v(x, t) = -2∂ 2 x ln(det(f ij ) (i,j)∈[1,N ] ) (39)
is a solution to the KdV equation ( 1) with e, a j , c j and d j , 1 ≤ j ≤ N arbitrarily real parameters.

Proof : The corresponding Lax pair to the KdV equation ( 1) is

-φ xx + uφ = λφ, φ t = -4φ xxx + 6uφ x + 3u x φ. ( 40 
)
This system is covariant by the Darboux transformation. If φ 1 , . . . , φ N are solutions of the system (40), then φ[N ] defined by φ[N ] = W (φ 1 , . . . , φ N , φ) W (φ 1 , . . . , φ N ) is another solution of this system (40) where u is replaced by u

[N ] = u - 2∂ 2 
x (ln W (φ 1 , . . . , φ N ) [START_REF] Matveev | Darboux transformations and solitons[END_REF]. We choose u = 0. Then the functions φ j = f 1j verify the following system

-φ xx = λφ, φ t = -4φ xxx . ( 41 
)
Then the solution of ( 1) can be written as v(x, t) = -2∂ 2 x (ln

W (φ 1 , . . . , φ N )which is nothing else that (39) v(x, t) = -2∂ 2 x ln(det(f ij ) (i,j)∈[1,N ]
). 2

Multi-parametric rational solutions to the KdV equation

To obtain rational solutions to the KdV equation, we are going to perform a limit when the parameter e tends to 0.

Rational solutions as a limit case

We get the following result :

Theorem 6.2 The function v defined by v(x, t) = lim e→0 -2∂ 2 x ln(det(f ij ) (i,j)∈[1,N ] ) (42) 
is a rational solution to the KdV equation ( 1) depending on 3N parameters a j , c j and d j , 1 ≤ j ≤ N .

Proof : Performing a passage to the limit when e tends to 0, it is an obvious consequence of the previous result. 2

Degenerate rational solutions

If we want a formulation without a limit, we consider the following functions g ij and h ij defined by g ij (x, t, e) = (a j e) i-1 exp(a j ex -4(a j e) 3 t + c j e 2N -1 ) -(a j e) i-1 exp(-a j ex + 4(a j e) 3 td j e 2N -1 ),

h ij = ∂ 2j-1 f ij (x, t, 0) ∂e 2j-1 , for 1 ≤ i ≤ N
Then get the following result :

Theorem 6.3 The function v defined by v(x, t) = -2∂ 2 x ln(det(h ij ) (i,j)∈[1,N ] . (43) 
is a rational solution to the KdV equation [START_REF] Ablowitz | On solutions of the KdV equation[END_REF].

Proof : It is sufficient to combine the columns of the determinant and to take a passage to the limit when e tends to 0 for each column different from the first one.

2 So we obtain an infinite hierarchy of rational solutions to the KdV equation depending on the integer N .

In the following we give some examples of rational solutions. These results are consequences of the previous result (43).

First order rational solutions

We have the following result at order N = 1 :

Proposition 6.1 The function v defined by v(x, t) = 8 a 1 2 (2 a 1 x + c 1 -d 1 ) 2 , ( 44 
)
is a solution to the KdV equation ( 1) with a 1 , c 1 , d 1 arbitrarily real parameters.

Remark 6.1 This solution independent of t does not present any interest.

Second order rational solutions

Proposition 6.2 The function v defined by

v(x, t) = -2 n(x, t) d(x, t) 2 , (45) 
with n(x, t) = 12 a2a1(-3 a2 2 +a1 2 )(3 a2 3 a1 -a1 3 a2)x 4 +12 a2a1(-3 a2 2 +a1 2 )(-72 a2 3 ta1 + 24 a1 3 ta2 + 9 c2a1 + 3 d1a2 -9 d2a1 -3 c1a2)x d(x, t) = (-6 a2 3 a1 +2 a1 3 a2)x 3 -72 a2 3 ta1 +24 a1 3 ta2 +9 c2a1 +3 d1a2 -9 d2a1 -3 c1a2
is a rational solution to the KdV equation ( 1), quotient of two polynomials with numerator of degree 4 in x, 1 in t, and denominator of degree 6 in x, 2 in t.

In the case where all the parameters c j and d j are equal to 0 and the parameters a j are equal to 1, the solution can be expressed as u(x, t) = -6

x 24 tx 3 (x 3 + 12 t) 2 .

Rational solutions of order three

We get the following rational solutions given by : Proposition 6.3 The function v defined by

v(x, t) = -2 n(x, t) d(x, t) 2 , (46) 
with n(x, t) = (-7200 a1 4 a2 6 a3 8 + 14400 a1 4 a2 4 a3 10 -4320 a1 6 a2 4 a3 8 -5400 a1 2 a2 10 a3 6 -216 a1 10 a2 2 a3 6 +2160 a1 6 a2 6 a3 6 -2400 a1 6 a2 2 a3 10 +1440 a1 8 a2 2 a3 8 -21600 a1 2 a2 6 a3 10 + 21600 a1 2 a2 8 a3 8 )x 10 + (72900 a1a2 6 a3 6 d1 + 243000 a1 4 a2 6 a3 3 c3 -243000 a1 4 a2 6 a3 3 d3 -72900 a1a2 6 a3 6 c1 + 729000 a1 2 a2 8 a3 3 d3 -729000 a1 2 a2 8 a3 3 c3 + 243000 a1 4 a2a3 8 c2 -243000 a1 4 a2a3 8 d2-72900 a1 6 a2a3 6 c2-48600 a1 8 a2 2 a3 3 c3+48600 a1 8 a2 2 a3 3 d3-145800 a1 6 a2 4 a3 3 d3+ 72900 a1 6 a2a3 6 d2 + 145800 a1 6 a2 4 a3 3 c3 -364500 a1 2 a2 5 a3 6 d2 + 48600 a1 3 a2 2 a3 8 d1 + 162000 a1 6 a2 2 a3 5 c3 -162000 a1 6 a2 2 a3 5 d3 -48600 a1 3 a2 2 a3 8 c1 -14580 a1 5 a2 2 a3 6 d1 + 14580 a1 5 a2 2 a3 6 c1 -729000 a1 2 a2 3 a3 8 c2 -972000 a1 4 a2 4 a3 5 c3 + 972000 a1 4 a2 4 a3 5 d3 -1458000 a1 2 a2 6 a3 5 d3+729000 a1 2 a2 3 a3 8 d2+1458000 a1 2 a2 6 a3 5 c3+364500 a1 2 a2 5 a3 6 c2-145800 a1a2 4 a3 8 d1+145800 a1a2 4 a3 8 c1)x 5 +(116640000 a1 2 a2 8 t 2 a3 8 -29160000 a1 2 a2 10 t 2 a3 6 -12960000 a1 6 t 2 a2 2 a3 10 -1166400 a1 10 t 2 a2 2 a3 6 -38880000 a1 4 a2 6 t 2 a3 8 -23328000 a1 6 a2 4 a3 8 t 2 + 11664000 a1 6 a2 6 t 2 a3 6 +77760000 a1 4 a2 4 a3 10 t 2 +7776000 a1 8 t 2 a2 2 a3 8 -116640000 a1 2 a2 6 a3 10 t 2 )x 4 + (62208000 a1 8 a2 2 a3 8 t 3

-103680000 a1 6 a2 2 a3 10 t 3 -233280000 a1 2 a2 10 a3 6 t 3 -933120000 a1 2 a2 6 a3 10 t 3 + 622080000 a1 4 a2 4 a3 10 t 3 +93312000 a1 6 a2 6 a3 6 t 3 +933120000 a1 2 a2 8 a3 8 t 3 -9331200 a1 10 a2 2 a3 6 t 3 -311040000 a1 4 a2 6 a3 8 t 3 -186624000 a1 6 a2 4 a3 8 t 3 )x+364500 c1a2 4 a3 3 a1d3-182250 c1a2a3 6 a1d2-364500 c1a2 4 a3 3 a1c3+1822500 a1 2 d3a2 3 d2a3 3 -1822500 a1 2 d2a3 3 c3a2 3 -182250 d1a2a3 6 a1c2-121500 d1a2 2 a3 3 a1 3 c3+121500 d1a2 2 a3 3 a1 3 d3-364500 d1a2 4 a3 3 a1d3+182250 a1c2a3 6 c1a2-1822500 a1 2 c2a3 3 d3a2 3 +1822500 a1 2 c2a3 3 c3a2 3 +121500 a1 3 c3a2 2 c1a3 3 +607500 a1 4 c3a2d2a3 3 -121500 a1 3 d3a2 2 c1a3 3 -607500 a1 4 d3a2d2a3 3 -455625 a1 2 c2 2 a3 6 -1822500 a1 2 c3 2 a2 6 + 182250 d1a2a3 6 a1d2+364500 d1a2 4 a3 3 a1c3-607500 a1 4 c2a3 3 c3a2+607500 a1 4 c2a3 3 d3a2-1822500 a1 2 d3 2 a2 6 -18225 d1 2 a2 2 a3 6 +1215000 a1 4 d3 2 a2 4 -202500 a1 6 d3 2 a2 2 +36450 d1a2 2 a3 6 c1+ 911250 a1 2 c2a3 6 d2 + 405000 a1 6 c3a2 2 d3 -2430000 a1 4 c3a2 4 d3 + 3645000 a1 2 d3a2 6 c3 -18225 c1 2 a2 2 a3 6 -455625 a1 2 d2 2 a3 6 + 1215000 a1 4 c3 2 a2 4 -202500 a1 6 c3 2 a2 2 d(x, t) = (-6 a1 5 a2a3 3 -60 a1a2 3 a3 5 +20 a1 3 a2a3 5 +30 a1a2 5 a3 3 )x 6 +(1200 a1 3 ta2a3 5 -3600 a1a2 3 ta3 5

-360 a1 5 ta3 3 a2 + 1800 a1a3 3 ta2 5 )x 3 + (-675 a1d2a3 3 + 135 d1a2a3 3 + 675 a1c2a3 3 +450 a1 3 c3a2 -450 a1 3 d3a2 -135 c1a2a3 3 -1350 a1c3a2 3 +1350 a1d3a2 3 )x-14400 a1 3 t 2 a2a3 5 + 43200 a1a2 3 t 2 a3 5 + 4320 a1 5 t 2 a3 3 a2 -21600 a1a3 3 t 2 a2 5 is a rational solution to the KdV equation ( 1), quotient of two polynomials with the numerator of order 10 in x, 3 in t, the denominator of degree 12 in x, 4 in t.

In the case where all the parameters c j and d j are equal to 0, and the parameters a j equal to 1 the solution can be expressed as u(x, t) = 12 x(x 9 + 43200 t 3 + 5400 t 2 x 3 ) (-x 6 -60 tx 3 + 720 t 2 ) 2 .

Further orders

We can go on, and calculate different solutions of the hierarchy. The solutions becoming very complexes. In the case of order 4, the numerator contains 1658 terms, the denominator 2396 terms; for order 5, the numerator contain 22200 terms and the denominator 31260 terms. So, we give only the solutions with the parameters c j and d j equal to 0, and the parameters a j equal to 1, at order 4 and 5 to shorten the paper.

Proposition 6.4 The solution v of order 4 can be expressed as v(x, t) = 20 x 18 + 2880 tx 15 + 453600 t 2 x 12 -42336000 t 3 x 9 -3048192000 t 4 x 6 + 182891520000 t 6 (x 10 + 180 tx 7 + 302400 t 3 x) 2 .

v is a rational solution to the KdV equation ( 1), quotient of two polynomials with numerator of degree 18 in x, 6 in t, and denominator of degree 20 in x, 6 in t.

Proposition 6.5 The solution v of order 5 is given by v(x, t) = n(x, t) d(x, t) 2 , (47) with n(x, t) = 30 x 28 +15120 tx 25 +3628800 t 2 x 22 +43436736000 t 4 x 16 +15362887680000 t 5 x 13 + 530019624960000 t 6 x 10 +5530639564800000 t 7 x 7 +580717154304000000 t 8 x 4 -4645737234432000000 t 9 x d(x, t) = -x 15 -420 tx 12 -25200 t 2 x 9 -2116800 t 3 x 6 + 254016000 t 4 x 3 + 1524096000 t 5

v is a rational solution to the KdV equation (1), quotient of two polynomials with numerator of degree 28 in x, 9 in t, and denominator of degree 30 in x, 10 in t.

Conclusion

In this paper, we succeed to construct different types of representations of the solutions to the KdV equation. First, it was essential to express the degenerate θ function into an explicit Fredholm determinant. The second step was to get the transformation of the Fredholm determinant into a wronskian. I have to mention a paper of Whitham [START_REF] Whitham | Comments on Periodic Waves and Solitons[END_REF] in connection with this work, and I would like to thank the referee about this information. The article [START_REF] Whitham | Comments on Periodic Waves and Solitons[END_REF] deals with equations as the KdV equation and the representation of solutions as sum of solitons, and also the relation of these solutions with Riemann theta functions in particular. It can be compared with the solutions given in the present work expressed in terms of Fredholm determinant and wronskians.

In another approach, we have given solutions to the KdV equation in terms of elementary exponential functions. In particular, performing a passage to the limit when one parameter goes to 0 we get rational solutions to the KdV equation. So we obtain an infinite hierarchy of multi-parametric families of rational solutions to the KdV equation as a quotient of a polynomials depending on 3N real parameters. But, unlike other equations such as the NLS equation [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Towards a classification of the quasi rational solutions to the NLS equation[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF][START_REF] Gaillard | N -Order rational solutions to the Johnson equation depending on 2N -2 parameters[END_REF] there are no specific structures that emerge as depending on parameters.

3. 2 3 . 1

 231 Degenerate solution to the KdV equation Therefore, we have the following representation of the degenerate solution to the KdV equation Theorem The fonction u defined by u(x, t) = -2∂ 2 x ln   J⊂{1,...,g} j∈J