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We construct the complementary short-range correlation relativistic local-density-approximation functional
to be used in relativistic range-separated density-functional theory based on a Dirac-Coulomb Hamiltonian in
the no-pair approximation. For this, we perform relativistic random-phase-approximation calculations of the
correlation energy of the relativistic homogeneous electron gas with a modified electron-electron interaction,

we study the high-density behavior, and fit the results to a parametrized expression. The obtained functional
should eventually be useful for electronic-structure calculations of strongly correlated systems containing heavy
elements.

I. INTRODUCTION

Range-separated density-functional theory (RS-DFT) (see,
e.g., Refs. 1 and 2) is an extension of Kohn-Sham density-
functional theory (KS-DFT) [3] which allows one to rig-
orously combine a multideterminant wave-function method
accounting for the long-range part of the electron-electron
interaction with a complementary short-range density func-
tional. RS-DFT can improve over usual Kohn-Sham density-
functional approximations for the electronic-structure calcu-
lations of strongly correlated systems (see, e.g., Refs. 4 and
5) and/or systems involving weak intermolecular interactions
(see, e.g., Refs. 6 and 7), while still enjoying a fast basis con-
vergence [8].

With the aim of describing compounds with heavy ele-
ments which involve both strong correlation and relativistic
effects, RS-DFT has been extended to a four-component rel-
ativistic framework [9–12]. In this relativistic RS-DFT, the
no-pair [13, 14] ground-state electronic energy of the Dirac-
Coulomb Hamiltonian is written as [12]

E0 = 〈Ψ+|T̂D + V̂ne + Ŵ
lr,µ
ee |Ψ+〉 + Ē

sr,µ

Hxc
[nΨ+], (1)

where T̂D is the kinetic + rest mass Dirac operator, V̂ne is

the nuclei-electron interaction operator, Ŵ
lr,µ
ee is the electron-

electron interaction operator associated with the long-range

pair potential w
lr,µ
ee (r12) = erf(µr12)/r12, and Ē

sr,µ

Hxc
[nΨ+]

is the corresponding complementary short-range relativistic
Hartree-exchange-correlation functional evaluated at the den-
sity of Ψ+. The no-pair multideterminant wave function Ψ+ is
constructed from positive-energy states only and can in princi-
ple be obtained using a minmax principle [11, 12, 15–20]. The
range-separation parameter µ ∈ [0,+∞) controls the range of
the separation. For µ = 0, the long-range interaction vanishes
and no-pair relativistic KS-DFT (see, e.g., Refs. 21 and 22)
is recovered. For µ → ∞, the long-range interaction reduces
to the full-range Coulomb interaction and no-pair relativistic
wave-function theory (see, e.g., Refs. 19 and 23) is recovered.

While any existing wave-function approximation can di-
rectly be used for Ψ+, new approximations need to be devel-
oped for the short-range relativistic functional Ē

sr,µ

Hxc
[n]. As
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usual, this functional can be decomposed into Hartree, ex-
change, and correlation contributions

Ē
sr,µ

Hxc
[n] = E

sr,µ

H
[n] + E

sr,µ
x [n] + Ē

sr,µ
c [n]. (2)

The short-range Hartree functional is

E
sr,µ

H
[n] =

1

2

"
n(r1)n(r2)w

sr,µ
ee (r12)dr1dr2, (3)

where w
sr,µ
ee (r12) = 1/r12 − w

lr,µ
ee (r12) is the short-range pair

potential. The short-range exchange functional is

E
sr,µ
x [n] = 〈Φ+[n]| Ŵsr,µ

ee |Φ+[n]〉 − E
sr,µ

H
[n], (4)

whereΦ+[n] is the relativistic Kohn-Sham single-determinant
wave function and Ŵ

sr,µ
ee is the electron-electron interaction

operator associated with w
sr,µ
ee (r12). In Refs. 9 and 10, the

relativistic short-range exchange and correlation functionals
E

sr,µ
x [n] and Ē

sr,µ
c [n] were approximated by non-relativistic

short-range exchange and correlation functionals, which is
a reasonable first approximation since for valence properties
relativistic effects are usually dominated by the kinematic con-
tribution and the induced change in the density (see, e.g.,
Ref. 24). To go beyond this non-relativistic approximation
and put relativistic RS-DFT on a firmer ground, we have con-
structed for the short-range exchange functional E

sr,µ
x [n] the

relativistic local-density approximation (RLDA) in Ref. 11
and approximations going beyond the RLDA in Ref. 12. In
the present work, we turn to the short-range correlation func-
tional Ē

sr,µ
c [n] and we develop the RLDA for it.

The complementary short-range correlation RLDA func-
tional is defined as

Ē
sr,RLDA,µ
c [n] =

∫

dr n(r) ǭ
sr,RHEG,µ
c (n(r)), (5)

with

ǭ
sr,RHEG,µ
c (n) = ǫRHEG

c (n) − ǫlr,RHEG,µ
c (n), (6)

where ǫRHEG
c (n) and ǫ

lr,RHEG,µ
c (n) are the correlation ener-

gies per particle of the relativistic homogeneous electron gas
(RHEG) with full-range and long-range electron-electron in-
teractions, respectively. We express each of these correlation
energies per particle as the correlation energy per particle of
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the corresponding non-relativistic homogeneous electron gas
(HEG) multiplied by a relativistic correlation factor

ǫRHEG
c (n) = ǫHEG

c (n) φc(n), (7)

ǫ
lr,RHEG,µ
c (n) = ǫ

lr,HEG,µ
c (n) φ

µ̃
c (n), (8)

where we have introduced the scaled range-separation param-
eter

µ̃ =
µ

kF
, (9)

where kF = (3π2n)1/3 is the Fermi wave vector. The scaled
range-separation parameter µ̃ is a natural adimensional param-
eter measuring the range of the interaction relative to the den-

sity. We must have φ
lr,µ̃→∞
c (n) = φc(n) since the long-range

interaction reduces to the full-range one in this limit. Equa-
tions (7) and (8) allow one to use already existing parametriza-

tions for ǫHEG
c (n) and ǫ

lr,HEG,µ
c (n) [25, 26].

The correlation energy per particle of the RHEG ǫRHEG
c (n)

was first estimated at the random-phase approximation (RPA)
level by Ramana and Rajagopal [27] (see also Refs. 21, 28–
31), and the corresponding relativistic correlation factor φc(n)
was parametrized by Schmid et al. [32]. In the same spirit,
we estimate in this work the relativistic long-range correlation

factor φ
lr,µ̃
c (n) at the RPA level, i.e.

φ
lr,µ̃
c (n) ≈ φlr,RRPA,µ̃

c (n) =
ǫ

lr,RRPA,µ̃
c (n)

ǫ
lr,RPA,µ̃
c (n)

, (10)

where ǫ
lr,RRPA,µ̃
c (n) is the long-range relativistic random-phase-

approximation (RRPA) correlation energy per particle of the

RHEG and ǫ
lr,RPA,µ̃
c (n) is its non-relativistic analog. The use

of the RPA appears consistent considering that relativistic ef-
fects are most important in the high-density regime, for which
the RPA provides a good approximation to the correlation en-
ergy. Contrary to the RRPA calculations of Ramana and Ra-
jagopal [27] which included the transverse contribution from
the full quantum-electrodynamics (QED) photon propagator
and were performed within the no-sea approximation (i.e., in-
cluding a renormalization contribution from negative-energy
states) [31], here our RRPA calculations are limited to the lon-
gitudinal component of the interaction in the Coulomb gauge
and within the no-pair approximation. We do so for consis-
tency since in the relativistic RS-DFT of Eq. (1), the long-
range wave-function part is treated at the same level. The nu-
merically calculated relativistic long-range correlation factor

φ
lr,RRPA,µ̃
c (n) is then fitted to a parametrized expression impos-

ing the correct high-density limit.
Hartree atomic units (a.u.) are used throughout the paper.

II. LONG-RANGE CORRELATION ENERGY FROM

RANDOM-PHASE APPROXIMATION

A. Relativistic random-phase approximation

As already indicated, we want to determine the long-range
RRPA correlation energy per particle of the RHEG within the
no-pair approximation and for the longitudinal component of
the electron-electron interaction in the Coulomb gauge. With

these approximations, the expression of ǫ
lr,RRPA,µ̃
c (n) is the

same as its non-relativistic counterpart (see, e.g., Refs. 33 and
34)

ǫ
lr,RRPA,µ̃
c (n) = − 1

2π n

∫

dq

(2π)3
wlr,µ̃(q)

∫ ∞

0

du

∫ 1

0

dλ

[

χ0(q, iu)
]2

f
lr,µ̃,λ

H
(q)

1 − χ0(q, iu) f
lr,µ̃,λ

H
(q)

, (11)

where λ is a coupling constant. In this expression, χ0(q, iu) is the relativistic longitudinal non-interacting linear-response function
of the RHEG within the no-pair approximation at wave vector q = |q| and imaginary frequency iu (see Refs. 27, 31, and 35 and
Appendix A)

χ0(q, iu) = −kf

∫

dk̃

(2π)3
θ(1 − k̃)

(√
k̃2 + c̃2 +

√

|k̃ + q̃|2 + c̃2

)2

− q̃2

√
k̃2 + c̃2

√

|k̃ + q̃|2 + c̃2

c̃

(
√

|k̃ + q̃|2 + c̃2 −
√

k̃2 + c̃2

)

ũ2 + c̃2

(
√

|k̃ + q̃|2 + c̃2 −
√

k̃2 + c̃2

)2
, (12)

where we have introduced the adimensional variables

k̃ =
k

kF

, q̃ =
q

kF

, ũ =
u

k2
F

, c̃ =
c

kF

, (13)

where c = 137.036 a.u. is the speed of light. Note that the
scaled speed of light c̃ is a natural adimensional parameter
measuring the importance of relativistic effects (relativistic ef-
fects are negligible for c̃ ≫ 1 and increase as c̃ decreases). In

Eq. (11), f
lr,µ̃,λ

H
(q) is the long-range Hartree kernel at the cou-

pling constant λ given by the Fourier transform of the long-
range interaction

f
lr,µ̃,λ

H
(q) = λwlr,µ̃(q) = λ

4π

q̃2k2
F

exp

[

−q̃2

4µ̃2

]

. (14)

Performing the integrals in Eq. (11) over the angular variables
of q and over the coupling constant λ gives
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FIG. 1. Non-relativistic (a) and relativistic (b) long-range RPA correlation energies per particle of the HEG.

ǫ
lr,RRPA,µ̃
c (n) = − 3

4π

∫ ∞

0

dq̃

∫ ∞

0

dũ

(

4π exp

[

−q̃2

4µ̃2

]

χ0(q̃kF, iũk2
F) + q̃2k2

F ln













1 − 4π

q̃2k2
F

exp

[

−q̃2

4µ̃2

]

χ0(q̃kF, iũk2
F)













)

. (15)

As in the non-relativistic case, the integral over q̃ and ũ

are performed numerically. However, contrary to the non-
relativistic case, we also do numerically the integral over k̃ in
the linear-response function in Eq. (12). In total, this gives a
four-dimensional numerical integration that we calculate us-
ing the software Wolfram Mathematica [36] with six digits
of accuracy. In the non-relativistic limit, i.e. c̃ → ∞, the
integral defining the linear-response function in Eq. (12) can
easily be done analytically and Eq. (12) reduces to the well-
known non-relativistic Lindhard function [37]. However, for
consistency, we also use a four-dimensional numerical inte-
gration with the same precision for c̃ → ∞ to obtain the
non-relativistic RPA long-range correlation energy per parti-

cle ǫ
lr,RPA,µ̃
c (n) = limc̃→∞ ǫ

lr,RRPA,µ̃
c (n). We use 41 values of the

Fermi wave vector kF ranging from 0.005 to 1200 a.u. (corre-
sponding to a range of Wigner-Seitz radius rs = [3/(4πn)]1/3

from 384 to 0.0016 a.u.). The highest sampled density corre-
sponds to more than twice the maximal core electronic den-
sity of uranium, thus encompassing all chemically relevant
electronic densities. For the scaled range-separation param-
eter µ̃ = µ/kF, we consider 25 different values ranging from
0.005 to 20 a.u., in addition to the µ̃→ ∞ limit giving the full-

range RRPA and RPA correlation energies ǫ
lr,RRPA,µ̃→∞
c (n) =

ǫRRPA
c (n) and ǫ

lr,RPA,µ̃→∞
c (n) = ǫRPA

c (n). Note that the speed of
light c is fixed to its physical value in our calculations, i.e. we
do not try to obtain the dependence on c of the RRPA corre-
lation energy. For more details on the numerical calculations,
see Ref. 38.

B. Long-range correlation energy

We show in Fig. 1 the non-relativistic and relativistic long-
range RPA correlation energies per particle as a function of kF

for several values of µ̃. As regards the non-relativistic results,

for µ̃ → ∞, we correctly reproduce the high-density expan-
sion of the full-range RPA correlation energy per particle (see,
e.g., Ref. 39) that we expressed here in terms of kF

ǫRPA
c (n) = −1 − ln 2

π2
ln kF − 0.05083 + O

(

ln kF

kF

)

. (16)

This is the usual weak-correlation limit where the correlation
energy per particle is negligible compared to the exchange en-
ergy per particle which is linear in kF. We observe a similar
logarithmic behavior also for the long-range RPA correlation
energy per particle on our chosen range of kF for values of
µ̃ larger than 0.1 a.u.. For µ̃ & 20 a.u., the long-range RPA
correlation energy is nearly identical to the full-range RPA
correlation energy.

Turning now to the relativistic results, we observe a very
different behavior. Namely, for µ̃ → ∞, the full-range RRPA
correlation energy per particle is linear with respect to kF

ǫRRPA
c (n) ∼

kF→∞
−0.0014 kF, (17)

which is in agreement with other RRPA calculations reported
in the literature [31, 32]. This is the ultra-relativistic limit,
c̃ → 0, which is akin to a strong-correlation limit where both
the exchange and correlation energies per particle are linear
with respect to kF. A similar linear behavior is also observed
for the case of the long-range interaction. Again, for µ̃ & 20
a.u., the long-range RRPA correlation energy is nearly identi-
cal to the full-range RRPA correlation energy.

C. Relativistic long-range correlation factor

We show in Fig. 2 the relativistic long-range correlation fac-

tor φ
lr,RRPA,µ̃
c as a function of kF and µ̃. We observe that, for all

values of µ̃ and all relevant values of kF, the relativistic factor
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FIG. 2. Relativistic long-range correlation factor φ
lr,RRPA,µ̃
c (n) as a function of kF (a) and µ̃ = µ/kF (b).

is greater than 1, i.e. relativistic effects increase the magnitude

of the correlation energy. Moreover, φ
lr,RRPA,µ̃
c is an increasing

function of kF, i.e. the relative relativistic effects increase as
we increase the density.

In Fig. 2 (a), it appears at first sight that φlr,RRPA,µ̃ is a mono-
tonic decreasing function of µ̃, but the dependence on µ̃ is in
fact more complicated and is plotted in Fig. 2 (b) for several
values of kF. For clarity, we show only values of kF lower
than 200 a.u., but the behavior is similar for the whole range
of Fermi wave vectors that we have considered. For any value
of kF, it appears that φlr,RRPA,µ̃ starts as an increasing function
of µ̃ until it reaches a maximum for a value µ̃max(kF), after
which it becomes a decreasing function of µ̃ converging to
its full-range interaction limit. The value of µ̃max(kF) is itself
an increasing function of kF, going from µ̃max(10) ≈ 0.5 to
µ̃max(1200) ≈ 1.5 a.u.. Furthermore, while φlr,RRPA,µ̃ increases
rapidly before µ̃max(kF), it decreases only slightly afterward.
This behavior explains why in Fig. 2 (a) we observe that all
curves for µ̃ higher than 1 appear to be superposed since there
is little variation of φlr,RRPA,µ̃ with respect to µ̃ for these val-
ues, and why we observe a monotonic decreasing behavior
with respect to µ̃ only for lower values of µ̃. It appears that for
µ̃→ 0 the relativistic correction factor goes to 1 for all values
of kF, i.e. the relativistic effects disappear when only the very
long-range part of the electron-electron interaction remains.
In this limit, however, the long-range correlation energy itself
vanishes.

III. PARAMETRIZATION

We now construct parametrizations of our numerical data.
As building blocks for a parametrization of φlr,RRPA,µ̃, we first
parametrize the high-density limits of the non-relativistic and
relativistic long-range correlation energies.

A. High-density limit of the non-relativistic long-range

correlation energy

The parametrization of the high-density limit of the
non-relativistic correlation energy is done by combining a
parametrization for large values of µ̃ and a parametrization
for small values of µ̃.

For sufficiently large values of µ̃, the non-relativistic long-
range RPA correlation energy per particle in the high-density
limit follows a logarithmic behavior similar to the one of the
non-relativistic full-range RPA correlation energy per particle
[see Eq. (16)], and we found that the dependence on µ̃ can be
approximated by

ǫ
lr,RPA,µ̃,hd1
c (n) = −1 − ln 2

π2
ln kF

+

(

−0.0508324+
1 + a1µ̃

a2 + a3µ̃ + a4µ̃2 + a5µ̃3

)

, (18)

giving our first high-density (hd1) parametrization. The pa-
rameters a1 = 3.72862, a2 = 3.53869, a3 = 43.4382,
a4 = 40.2625, and a5 = 53.1731 have been fitted on numeri-
cal values of ǫ

lr,RPA,µ̃
c (n)+ [(1− ln 2)/π2] ln kF at kF = 9600 a.u.

for 21 values of µ̃ ≥ 0.1 a.u..
For sufficiently small values of µ̃, the high-density limit

of the non-relativistic RPA long-range correlation energy per
particle can be approximated by the expression of Paziani et

al. [26]

ǫ
lr,RPA,µ̃,hd2
c (n) =

2 ln 2 − 2

π2
ln

[

1 + b1x + b2x2 + b3x3

1 + b1x + b4x2

]

, (19)

with x = µ
√

rs = (3
√
π/2)1/3µ̃

√
kF and the parameters b1 =

5.84605, b2 = 7.44953, b3 = 3.91744, and b4 = 3.44851 are
taken from Ref. 26. This gives us our second high-density
(hd2) parametrization.

We now combine these two high-density parametrizations
in a single parametrization by interpolating using the switch-
ing function f (µ̃) = erf(3µ̃)4

ǫ
lr,RPA,µ̃,hd
c (n) = f (µ̃)ǫ

lr,RPA,µ̃,hd1
c (n)

+(1 − f (µ̃))ǫ
lr,RPA,µ̃,hd2
c (n). (20)
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The use of the fourth power of the error function allows for
a steep enough switching and using 3µ̃ as the argument puts
the transition between the two parts around µ̃ = 0.3 a.u..
Equation (20) thus constitutes our high-density approximation
for the non-relativistic long-range RPA correlation energy per
particle valid for all µ̃. In particular, for µ̃ → ∞, it correctly
reduces to the full-range behavior in Eq. (16).

The relative error of this high-density approximation

ǫ
lr,RPA,µ̃,hd
c (n) is plotted in Fig. 3 (a). For kF & 400 a.u. and
µ̃ ≥ 0.025 a.u., the high-density approximation gives a rel-
ative error of less than 0.2%. For smaller values of µ̃ (not
shown), the maximal relative error increases up to around 3%
but the error is made on very small values of the correlation
energy.

B. High-density limit of the relativistic long-range correlation

energy

In the high-density limit, the relativistic long-range RRPA
correlation energy is linear in kF for all values of µ̃ and it is
well approximated by

ǫ
lr,RRPA,µ̃,hd
c (n) = −0.185345

×
(

1 − 1 + c1µ̃ + c2µ̃
2 + c3µ̃

3 + c4µ̃
4

1 + c5µ̃ + c6µ̃2 + c7µ̃3 + c8µ̃4 + c9µ̃5

)

/c̃, (21)

where the parameters c1 = 63.6213, c2 = 161.703, c3 =

58.4589, c4 = −0.55375, c5 = 63.7034, c6 = 467.578,
c7 = 624.653, c8 = 952.370, and c9 = 159.956 have been
obtained by fitting at kF = 9600 a.u. using all 26 values for
µ̃ considered in this work. For µ̃ → ∞, Eq. (21) correctly
reduces to the full-range behavior in Eq. (17).

The relative error of this high-density approximation

ǫ
lr,RRPA,µ̃,hd
c (n) is plotted in Fig. 3 (b). For µ̃ → ∞, the rela-

tive error gets below 1% for kF & 1000 a.u. As µ̃ decreases,
the high-density regime is reached for smaller values of kF,
e.g. for µ̃ = 0.005 a.u. we obtain 1% accuracy for kF & 300
a.u.

C. Parametrization of the relativistic long-range correlation

factor

Having found parametrizations for the high-density limit of
the non-relativistic and relativistic long-range RPA correlation
energies per particle, we now use these expressions to build a
Padé-like expression for the relativistic long-range correlation

factor φ
lr,RRPA,µ̃
c . We found that it is accurately represented by
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TABLE I. Parameters for the relativistic long-range correlation factor φ
lr,RRPA,µ̃
c [Eq. (22)].

i a1,i a2,i a3,i b1,i b2,i b3,i

1 2.22080 ×10−2 9.66045 ×10−2 1.59065 ×10−4 - - -

2 7.04721 ×10−1 2.66457 9.62993 ×10−2 7.09439 ×10−1 2.91597 ×10−1 -2.40333 ×10−3

3 - 9.24891 ×10−1 6.30881 ×10−1 - 5.62594 ×10−1 6.077222 ×10−3

4 1.16165 ×10−1 1.50127 ×10−1 5.30353 ×10−3 - - -

5 - 3.07852 5.32685 ×10−1 - 7.56679 ×10−1 8.30363 ×10−1

φ
lr,RRPA,µ̃
c (n) =

1 +
a1,1 + a1,2µ̃

a1,4 + µ̃
/c̃ +

a2,1 + a2,2µ̃ + a2,3µ̃
2

a2,4 + a2,5µ̃ + µ̃2
/c̃2 +

a3,1 + a3,2µ̃ + a3,3µ̃
2

a3,4 + a3,5µ̃ + µ̃2
/c̃3 − ǫlr,RRPA,µ̃,hd

c (n)/c̃4

1 +
a1,1 + b1,2µ̃

a1,4 + µ̃
/c̃ +

a2,1 + b2,2µ̃ + b2,3µ̃
2

a2,4 + b2,5µ̃ + µ̃2
/c̃2 +

a3,1 + b3,2µ̃ + b3,3µ̃
2

a3,4 + b3,5µ̃ + µ̃2
/c̃3 − ǫlr,RPA,µ̃,hd

c (n)/c̃4

. (22)

The choice of using the opposite of the high-density correla-
tion energies as coefficients of 1/c̃4 terms ensures that these
coefficients are positive and reduces the risk of introducing
poles within the parametrization. The parameters are given
in Table I. They have been found by fitting to the numerical

values of ǫ
lr,RRPA,µ̃
c /ǫ

lr,RPA,µ̃
c using all values of kF and µ̃ con-

sidered in this work. The maximal absolute error is less than
0.4% for the smallest values of µ̃ considered. In the special
case µ̃ → ∞, we obtain the full-range relativistic correlation

factor φ
lr,RRPA,µ̃→∞
c (n) = φRRPA

c (n), with a maximal absolute er-
ror less than 0.1%. Again, we stress that the parametrization
of Eq. (22) is valid for the physical value of the speed of light
c, and not for an arbitrary value of c. For more details on the
fit, see Ref. 38.

D. Complementary short-range correlation energy per

particle

From Eqs. (6)-(8), we finally obtain our approximation for
the complementary short-range correlation energy per particle
of the RHEG

ǭ
sr,RHEG,µ
c (n) ≈ ǫHEG

c (n)φRRPA
c (n) − ǫlr,HEG,µ

c (n)φ
lr,µ̃,RRPA
c (n),

(23)

in which we use the Perdew-Wang-92 parametrization for
ǫHEG

c (n) [25] and the parametrization of Paziani et al. [26] for

ǫ
lr,HEG,µ
c (n).

In the limit µ = 0, this short-range correlation energy per
particle reduces to the full-range correlation energy per parti-

cle, i.e. ǭ
sr,RHEG,µ=0
c (n) = ǫRHEG

c (n). In Fig. 4, we compare our
obtained ǫRHEG

c (n) with its non-relativistic analog ǫHEG
c (n). As

already indicated, relativistic effects increase the magnitude of
the correlation energy for large densities and turn the logarith-
mic dependence with respect to kF into a linear dependence.

We plot in Fig. 5 the relativistic and non-relativistic com-
plementary short-range correlation energies per particle as a
function of µ̃ for several values of kF. For kF = 100 a.u.,
we already see the impact of the relativistic effects for small

values of µ̃. For kF = 550 a.u., the relativistic effects are im-
portant for all relevant values of µ̃. Note that the wiggling be-
havior with respect to µ̃ observed on the graphs for kF = 100
and 550 a.u. is most likely unphysical and comes from the
parametrization of the non-relativistic long-range correlation

energy per particle ǫ
lr,HEG,µ
c (n). This is not so surprising since

such high densities were not considered in the construction of
the parametrization of Ref. 26. This calls perhaps for a re-
finement of this parametrization. For high enough densities,

however, the possible refinement of ǫ
lr,HEG,µ
c (n) is secondary

in comparison to the relativistic effects.

Finally, we mention another possible limitation of our
parametrization: we did not impose the large-µ behavior of
the complementary short-range correlation energy per parti-
cle of the RHEG, which is expected to have the same form
as its non-relativistic analog [2, 26, 40] (as the large-µ behav-
ior of the relativistic and non-relativistic short-range exchange
energies had the same form [12]), i.e.

ǭ
sr,RHEG,µ
c (n) ∼

µ→∞

k3
F

gRHEG
c (0, n)

6πµ2
, (24)

where gRHEG
c (0, n) is the correlation contribution to the on-

top pair-distribution function of the RHEG. Indeed, we do not
have a good estimate of gRHEG

c (0, n) and RRPA is not expected
to be accurate for this quantity. Therefore, we do not expect
our parametrization to be very accurate for large µ. Fortu-
nately, the short-range correlation energy is small anyway for
large µ.

IV. CONCLUSION

From RRPA calculations on the RHEG, we have con-
structed the complementary short-range correlation RLDA
functional to be used in relativistic RS-DFT based on a Dirac-
Coulomb Hamiltonian in the no-pair approximation. This
short-range correlation RLDA functional could be tested on
atomic and molecular systems, and will most likely serve
a starting point for building more sophisticated relativistic
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FIG. 5. Non-relativistic and relativistic complementary short-range
correlation energy per particle of the HEG for kF = 1 a.u. (a), kF =

100 a.u. (b), and kF = 550 a.u. (c).

short-range correlation functionals, e.g. depending on the
density gradient or on the on-top pair density as already done
for the short-range exchange functional [12]. We believe that
the present work helps to establish relativistic RS-DFT on
a firm ground and will eventually be useful for electronic-
structure calculations of strongly correlated systems contain-
ing heavy elements.
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Appendix A: Non-interacting linear-response function of the

RHEG in the no-pair approximation

The non-interacting one-electron Green function of the
RHEG in the no-pair approximation at wave vector k and fre-
quency ω is

G0(k, ω) =
∑

s∈{↑,↓}
ψk,sψ

†
k,s

[

θ(k − kF)

ω − εk + i0+
+

θ(kF − k)

ω − εk − i0+

]

,

(A1)

where k = |k| and ψk,s are the four-component spinors associ-
ated with the positive-energy solutions of the non-interacting
Dirac equation

ψk,s =

√

εk + c2

2εk















ϕs
c(σ·k)

εk+c2 ϕs















, (A2)

where σ is the vector composed of the three Pauli matrices,

εk =
√

k2c2 + c4 are the one-electron energies, and ϕs are the
two-component spinors

ϕ↑ =













1

0













and ϕ↓ =













0

1













. (A3)

Note that the Green function G0(k, ω) is a 4×4 matrix.
The corresponding no-pair longitudinal (i.e. density-

density) non-interacting linear-response function at wave vec-
tor q = |q| and frequency q0 is

χ0(q, q0) =

∫

dk

(2π)3

∫ +∞

−∞

dω

2πi
Tr

[

G0(k, ω)G0(k + q, ω + q0)
]

,

(A4)

which, after calculating the trace of the products of spinors
(see, e.g., Ref. 11) and calculating the integral over ω by con-
tour integration, gives

χ0(q, q0) =

∫

dk

(2π)3

(

1 +
k · (k + q)c2 + c4

εkε|k+q|

)

θ(|k + q| − kF)θ(kF − k)

[

−1

q0 + ε|k+q| − εk − i0+
+

1

q0 + εk − ε|k+q| + i0+

]

. (A5)

Evaluating the linear-response function at imaginary frequency q0 = iu, and after simplifying, we find

χ0(q, iu) = −
∫

dk

(2π)3
θ(kF − k)

(

1 +
k · (k + q)c2 + c4

εkε|k+q|

)

2(ε|k+q| − εk)

u2 + (ε|k+q| − εk)2
, (A6)
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which can also be written as

χ0(q, iu) = −
∫

dk

(2π)3
θ(kF − k)

[

(

εk + ε|k+q|
)2 − q2c2

]

(

ε|k+q| − εk

)

εkε|k+q|
[

u2 + (ε|k+q| − εk)2
] . (A7)

This expression is equal, up to a trivial sign convention, to the
first term of the longitudinal non-interacting linear-response
function given by Ramana and Rajagopal [27] [Eq. (6) of
Ref. 27]. The expression determined in their work is not
within the no-pair approximation but within the no-sea ap-
proximation, and thus their expression includes a renormaliza-
tion term coming from the negative-energy states. The no-pair
longitudinal non-interacting linear-response function of the
RHEG was also calculated by Facco Bonetti et al. [31], who

gave a closed-form expression for real frequencies [Eq. (A1)
of Ref. 31]. However, to the best of our knowledge, their ex-
pression cannot be straightforwardly used for imaginary fre-
quencies. We prefer then to use Eq. (A7) in order to work with
imaginary frequencies. After introducing adimensional vari-
ables and simplifying, Eq. (A7) leads to Eq. (12) and we per-
form the integral numerically. For more details on the deriva-
tion of Eq. (A7), see Ref. 38.
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