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Introduction

A probability measure µ on R d is said to satisfy a Poincaré inequality when there exists a positive finite constant C such that for all functions f in the Sobolev space H 1 (µ),

Var µ (f ) ≤ C |∇f | 2 dµ. (1) 
We denote by C P (µ) the smallest constant for which the above inequality holds. Poincaré inequalities have many applications (see for instance the survey [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF]). For instance they can be seen as embeddings of weighted Sobolev spaces in L 2 , or as quantifying concentration of measure phenomenon (see e.g. [START_REF] Troyanov | Concentration et inégalité de Poincaré[END_REF]). The sharp Poincaré constant governs ergodicity of the underlying dynamic in the L 2 sense, and the convergence rate of some algorithms used for numerical simulations (see e.g. [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF][START_REF] Yin | The Kannan-Lovász-Simonovits conjecture[END_REF]). When µ is reversible for a Markov process, a Poincaré inequality has a spectral interpretation: the infinitesimal generator L of the Markov process is symmetric on L 2 (µ) and the quantity λ µ := 1 CP (µ) is then the spectral gap of the positive symmetric operator -L (see [2, 

section 4.2.1]).

Stability results for Poincaré constant began to appear in the late 80's. Chen [START_REF] Louis | Characterization of probability distributions by Poincaré-type inequalities[END_REF]Corollary 2.1] showed that all isotropic probability measures on R d have sharp Poincaré constant greater than 1. He proved furthermore that the standard Gaussian is the only one attaining 1. Then Utev [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF] refined this result in dimension one, quantifying the difference between Poincaré constants in term of total variation distance:

C P (ν) ≥ 1 + 1 9 d T V (ν, γ) 2
where ν is a normalized probability measure on R, γ is the standard Gaussian and d T V is the total variation distance. More recently, Courtade, Fathi and Pananjady [START_REF] Courtade | Existence of Stein kernels under a spectral gap, and discrepancy bounds[END_REF], extended it to the multidimensional case with the Wasserstein-2 distance:

C P (ν) ≥ 1 + W 2 (ν, γ) 2 d ( 2 
)
where ν is a centered probability measure on R d , normalized such that |x| 2 dν = d, γ denotes the Gaussian N (0, I d ) and W 2 is the 2-Wasserstein distance (see [19, chapter 6]). Our goal is to get such stability results in a more abstract framework, say for a general reference probability measure µ on a manifold instead of the Gaussian on R d . What we call stability results for Poincaré constant with respect to some distance d, are inequations of the form d(µ, ν) ≤ φ(C P (µ), C P (ν))

where d is a distance on the space of probability measures, φ : {(x, y) ∈ R 2 | y ≥ x > 0} → R + is a continuous function such that ∀x > 0, φ(x, x) = 0, and C P (µ), C P (ν) are respectively sharp Poincaré constants for µ a reference measure, and ν satisfying some constraints. From now on, let us consider L an infinitesimal reversible Markov diffusion generator on a Riemannian manifold M with domain D, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Sect. 1.4] for further details. Let Γ(f, g) := 1 2 (L(f g) -f Lg -gLf ) be the carré du champ operator. To lighten the notation, we set Γ(f ) := Γ(f, f ). The diffusion property means that ∀φ ∈ C 2 (R), Γ(φ(f )) = φ ′ (f ) 2 Γ(f ) and also L(φ(f )) = φ ′′ (f )Γ(f ) + φ ′ (f )L(f ), see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Section 1.11]. Let us assume µ to be the only reversible probability measure on M for the Markovian process generated by L. This existence and uniqueness assumption is verified for instance if the process is irreducible and strongly Feller (see [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF]Chapter 4]).

Assume that µ satisfies the following Poincaré inequality:

∀f ∈ H 1 (µ), Var µ (f ) ≤ C P (µ) Γ(f ) dµ (4) 
where H 1 (µ) := {f ∈ L 2 (µ) | f dµ = 0 and Γ(f )dµ < ∞} [START_REF] Louis | Characterization of probability distributions by Poincaré-type inequalities[END_REF] and C P (µ) = sup

f ∈H 1 (µ) Varµ(f ) Γ(f )dµ < ∞ is the sharp Poincaré constant.
Assumptions on (L, µ).

1. There exists an eigenfunction f 0 attaining the spectral gap: -Lf 0 = λ µ f 0 . We will always choose it to be normalized with respect to µ, i.e. such that f 0 dµ = 0 and f 2 0 dµ = 1. 2. Γ(f 0 ) can be written as h • f 0 for some smooth function h : I → R + with I := f 0 (M ).

The function h does not vanish on the interior of I.

Assumption 1 is used to push forward the diffusion from M to I ⊂ R through f 0 (see Section 2). This assumption is necessary. Indeed for M = R and Lf (x) = f ′′ (x) -sgn(x)f ′ (x) where sgn(x) denotes the sign of x, the spectral gap is not attained (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Section 4.4.1]). Assumption 2 guarantees the push forward process to be Markovian (see Section 2). This assumption would obviously be verified as soon as f 0 is injective. In dimension 1, it is always the case (see Lemma 3). Assumption 3 guarantees the diffusion on I to be irreducible (see Section 2.1).

Let ν be another measure on M satisfying the same Poincaré inequality with sharp constant C P (ν):

∀f ∈ H 1 (ν), Var ν (f ) ≤ C P (ν) Γ(f )dν.
where H 1 (ν) is defined similarly as above. We also ask ν to be f 0 -normalized, that is f 0 ∈ H 1 (ν) and

f 0 dν = 0, f 2 0 dν = 1, and Γ(f 0 ) dν ≤ 1 C P (µ) . ( 6 
)
The class of measures satisfying the three equations f 0 dν = 0, f 2 0 dν = 1, and Γ(f

0 ) dν = 1 CP (µ)
being a space of codimension 3 in the space of all probability measures on M , one sees that ( 6) is satisfied on a half-space of codimension 3 in the infinite dimension space of probability measures. Applying Poincaré inequality for ν to f 0 , one immediately gets C P (ν) ≥ C P (µ). We refine this minorization by proving the following stability theorem: Theorem 1. Under Assumptions 1, 2 and 3,

W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ , (7) 
where µ * (resp.

ν * ) is the pushforward of µ (resp. ν) by f 0 , W 1 is the 1-Wasserstein distance (see Definition 2), δ := CP (ν)-CP (µ) CP (ν) CP (µ)
, and C h is a constant defined in Proposition 17 whose finitness only depends on the behavior of h at the boundary of I.

The method followed in this article is to derive some approximate integration by part formula for ν (see Section 3) and then to use Stein's method (see Section 4). The problem is then reduced to bound the carré du champ operator of the solution (see Section 4.1).

A particuliar case, treated by Courtade and Fathi [START_REF] Courtade | Existence of Stein kernels under a spectral gap, and discrepancy bounds[END_REF][START_REF] Courtade | Stability of the Bakry-Émery theorem on R n[END_REF], is when L = ∆-x•∇ is the Ornstein-Uhlenbeck process on R d . The invariant measure is the standard Gaussian measure γ and the d coordinate projections x 1 , ...x d are orthogonal eigenfunctions satisfying Assumption 1, 2 and 3. Choosing any of these projections gives the one dimensional Gaussian N (0, 1) for the pushforward measure. In this case, the approach described above works using only classical results of Stein's method for the Gaussian (see [START_REF] Ross | Fundamentals of Stein's method[END_REF]Section 2]). Moreover, if we use the same approach with f 0 = (x 1 , ..., x d ) a vector valued function, it works thanks to technical bounds obtained in [START_REF] Nourdin | Multivariate normal approximation using Stein's method and Malliavin calculus[END_REF]Lemma 3.3] and it gives similar results as (2). Taking vector valued eigenfunction when the dimension of the eigenspace is greater than 1 appears to be the natural extension of this method. Technical issues come here from the fact that Stein's method involves control of the Hessian of solutions to a family of PDE.

In Section 6.2, we obtain stability result for the Laguerre process as Corollary of Theorem 1. As far as we know, stability results had not yet been investigated in this case.

One can ask for another distance than the 1-Wasserstein in the stability inequality [START_REF] Courtade | Stability of the Bakry-Émery theorem on R n[END_REF]. The main difference lies in the set of target function chosen using Stein's method. We will see in Section 5 that replacing the condition C h < ∞ by h > κ > 0, where κ is a constant, gives a stability result in total variation distance (and hence in Kolmogorov distance). We illustrate this result in Section 6.3 with uniformly log-concave measures.

A natural question arising is then to compare stability results involving different distances. We will say that a d 1 stability result

d 1 (µ, ν) ≤ φ 1 (C P (µ), C P (ν)) (8) 
is stronger than a d 2 one

d 2 (µ, ν) ≤ φ 2 (C P (µ), C P (ν)) (9) 
if [START_REF] Courtade | Existence of Stein kernels under a spectral gap, and discrepancy bounds[END_REF] implies the existence of φ 2 in [START_REF] Evans | Partial differential equations[END_REF]. Comparison between stability results in Kolmogorov distance obtained from Theorems 12 and 18 shall be discussed in Section 7.

The quotient process

In the one dimensional Ornstein-Uhlenbeck process, the first non zero eigenfunction is injective. So one may expect the important properties of L to be preserved when mapping it onto I through such eigenfunction. In a broader context, according to [2, page 60], Assumption 2 implies that all of the Markovian structure on the manifold is mapped onto a Markovian structure on I := f 0 (M ) ⊂ R. Assuming that M is connected, I is an interval since f 0 is continuous. We define a := inf I and b := sup I. Moreover, the diffusion property allows to write that

∀φ ∈ C 2 (R), L(φ(f 0 )) = φ ′′ (f 0 )Γf 0 + φ ′ (f 0 )Lf 0 = φ ′′ (f 0 )h(f 0 ) -φ ′ (f 0 ) 1 C P (µ) f 0 .
Hence, the induced Markov process has generator

L * (φ)(x) := h(x)φ ′′ (x) - x C P (µ) φ ′ (x) (10) 
and reversible measure µ * := f # 0 µ. This one dimensional Markov process will be called the quotient process.

If h is constant, then it is equal to 1 CP (µ) . Indeed, one gets that Γ(f 0 ) = h, but we know that Γ(f 0 )dµ = 1 CP (µ) . In this case, L * is reduced to the Ornstein-Uhlenbeck generator with reversible measure N (0, 1 CP (µ) ). Therefore, µ * = N (0, 1 CP (µ) ). Similarly, ν * := f # 0 ν will satisfy Poincaré inequality with sharp constant C P (ν * ) ≤ CP (ν) CP (µ) . Indeed, using Poincaré inequality for ν,

var ν * (φ) = var ν (φ • f 0 ) ≤ C P (ν) Γ(φ • f 0 )dν = C P (ν) φ ′ (f 0 ) 2 h(f 0 )dν = C P (ν) C P (µ) φ ′2 dν * .
Of course the carré du champ operator used in Poincaré inequalities on R is the square of the first derivative. At that point, we can apply known stability results (see [START_REF] Courtade | Existence of Stein kernels under a spectral gap, and discrepancy bounds[END_REF]) and obtain:

C P (ν) C P (µ) ≥ C P (ν * ) ≥ C P (µ) + W 2 (ν * , µ * ) 2 .
In the sequel, the goal will be to prove such stability inequalities in a broader context, that is without assuming h to be constant. Let us now compute the carré du champ of the quotient process.

Proposition 2. The carré du champ operator associated to (L * , µ * ) is

(Γ * ψ)(t) = h(t)ψ ′ (t) 2 .
Moreover, with this operator, µ * satisfies a Poincaré inequality with sharp constant C P (µ) and the inequality becomes an equality for ψ = Id.

Proof. It is simply a computation using the basic definition of Γf :

= 1 2 [L(f 2 ) -2f Lf ].
The Poincaré inequality for µ * follows from the Poincaré inequality for µ:

var µ * (ψ) = var µ (ψ • f 0 ) ≤ C P (µ) Γ(ψ • f 0 )dµ = C P (µ) ψ ′ (f 0 ) 2 h(f 0 )dµ = C P (µ) Γ * ψdµ * .
Now taking ψ = Id, the inequality becomes an equality because of the definition of f 0 , showing that C P (µ) is sharp. Replacing µ * by ν * in the proof above, we get that ν * statisfies a Poincaré inequality with constant C P (ν). However in this case, C P (ν) may not be the sharp constant for ν * .

The non vanishing assumption

Let us consider the case where Lf := αf ′′ +βf ′ is a diffusion operator on an interval M = J := (c, d) ⊂ R, with α and β two continuous functions on J such that α > 0 and

ρ(x) := 1 α(x) exp x c β(t) α(t) dt
is well defined on J. So dµ := ρ(x)dx is reversible for L. Assume the operator L satisfies both a Poincaré inequality with sharp constant C P and Assumption 1. Then the following holds.

Lemma 3. The first eigenfunction f 0 is strictly monotone.

Proof. We extend the proof in e.g. [15, Section 2] which treats the case α ≡ 1. First, recall that f 0 is a minimizer of the Rayleigh ratio J Γ(f0)dµ varµ(f0) , and introduce g(x) :=

x c |f ′ 0 (t)| dt. Then g ′ (x) = |f ′ 0 (x)| hence Γ(g) = Γ(f 0 ). So g has same energy than the eigenfunction f 0 : J Γ(g) dµ = J Γ(f 0 ) dµ
On the other hand, g has greater variance than f 0 . Indeed,

Var µ (g) = 1 2 J J y x |f ′ 0 (t)| dt 2 dµ(x)dµ(y) ≥ 1 2 J J y x f ′ 0 (t) dt 2 dµ(x)dµ(y) = Var µ (f 0 )
But f 0 being a minimizer of the Rayleigh ratio, one can infer, since f 0 ∈ C 1 (J), that f ′ 0 has same sign on the interval J, hence f 0 is monotone. Assume now f ′ 0 ≥ 0 and let us show that f ′ 0 > 0. The eigenfunction f 0 being centered and continuous, it is negative in a neighborhood of c, then it is zero, and then positive up to d. Using classical ODE tools for the equation αf ′′ 0 + βf ′ 0 = -1 CP f 0 , one gets the formulas:

f ′ 0 (x) = 1 C P α(x)ρ(x) d x f 0 (t)dµ(t) (11) = -1 C P α(x)ρ(x) x c f 0 (t)dµ(t) (12) 
Hence if f ′ 0 (x) = 0 with x ∈ (c, d), then either f 0 (x) < 0 but Formula 12 implies f ′ 0 (x) > 0, or f 0 (x) > 0 but Formula 11 implies f ′ 0 (x) > 0, or f 0 (x) = 0 but both formulas give then again f ′ 0 (x) > 0. Hence f ′ 0 is positive on J, justifying the claim that f 0 is strictly monotone.

In this case the monotonicity implies that h cannot vanish in the interior of I. This motivates Assumption 3 already mentioned in the introduction. Furthermore, since a (respectively b) is the global minimum (resp. maximum) of f 0 , it can be reformulated as:

Assumption 3. All x 0 ∈ M such that Γ(f 0 )(x 0 ) = 0 are global extrema of f 0 .
If Γ = |∇| 2 for the metric of M , then the assumption can be reformulated: all critical points of f 0 are global extrema. The following is immediate and justify why we often write I instead of its interior Proof. Assume that Assumption 3 holds, and let t ∈ I such that h(t) = 0. Then there exists x ∈ M such that t = f 0 (x) and so Γ(f 0 (x)) = 0. Hence x is a global extremum of f 0 . Hence t = a / ∈

• I or t = b / ∈ • I. Conversely let x ∈ M such that Γ(f 0 )(x) = 0. Then f 0 (x) is a zero of h.
Hence by assumption it is on the boundary of I, so it is a global extremum of f 0 .

Density of µ *

First, we point out that f 0 dµ ∈ I. Indeed f 0 is continuous, so I = f 0 (M ) is connected in R, hence convex. Therefore its expectation belongs to I. Recall that λ µ := 1 CP (µ) . We now define the function

v : I → R + by v(t) := exp -λ µ t 0 u du h(u) (13) 
Taking 0 as reference point in the integral is justified by the above observation since f 0 was choosen to be centered. Moreover Assumption 3 garuantees that dividing by h makes sense.

Proposition 5. The measure

ρ(x)dx := 1 h(x) exp -λ µ x 0 u du h(u) 1 I dx
is invariant for the quotient process, where 1 denotes an indicator.

Proof. It is enough to show that

I L * (f ) 1 h(x) exp -λ µ x 0 u du h(u) dx = 0
for all functions f compactly supported in I. Let f be such a function. Recall that L * f = hf ′′ -x CP (µ) f ′ . We first compute by an integration by parts:

I f ′′ (x)v(x)dx = [f ′ (x)v(x)] b a =0 + λ µ I xf ′ (x) h(x) v(x)dx,
and this allows us to conclude. We know that the quotient process admits f # 0 µ as invariant probability measure. Since we assumed µ to be the only invariant probability measure for L, Proposition 5 gives that the measure ρ(x)dx is finite and then f # 0 µ = 1 Z ρ(x)dx where Z is a normalization constant. Let us conclude this section with a control of the tail of µ * . We denote the cumulative distribution of µ * by

q(t) := µ * (] -∞, t]) = t -∞ 1 I Zh(y) exp -λ µ y 0 u du h(u) dy.
Recall that a := inf I, b := sup I and let us denote I -:= I ∩ R -and I + := I ∩ R + .

Lemma 6. One can bound the tail q of µ * as follows:

• ∀t ∈ I -, q(t) ≤ min q(0),

-C P (µ) Zt v(t). • ∀t ∈ I + , 1 -q(t) ≤ min (1 -q(0)), C P (µ) Zt v(t).
Proof. We only process on I -. The proof is similar on I + .

1. Let us define f :

I -→ R, by f (t) = q(t) -q(0)v(t). We want to show that f ≤ 0. Compute f ′ (t) = 1 Zh(t) exp -λ µ t a u du h(u) + λ µ q(0) t h(t) v(t) = v(t) h(t) 1 Z + λ µ q(0)t . If -CP (µ) q(0) Z < a, then f ′ ≥ 0 so f ≤ f (0) = 0. Else, f decreases on (a, -CP (µ)
q(0) Z ) and increases on (-CP (µ) q(0) Z , 0) but lim t→a f (t) ≤ 0 and f (0) = 0, so we have the first claim.

Let us define f :

I -→ R, by f (t) = q(t) + CP (µ)
Z t v(t). We want to show that f ≤ 0. Compute:

f ′ (t) = 1 Z h(t) exp -λ µ t 0 u du h(u) - C P (µ) Zt 2 v(t) -λ µ tC P (µ) Z h(t)t v(t) = - v(t) Z C P (µ) t 2 < 0. Hence f ≤ lim t→a f (t) ≤ 0.
3 Exact and approximate integration by parts formulas

Let us recall a classical result in Γ-calculus which we will often use in the sequel. For all f, g ∈ H 1 (µ), the following integration by parts formula holds (see formula [START_REF] Louis | Characterization of probability distributions by Poincaré-type inequalities[END_REF] for the definition of

H 1 (µ)). Γ(f, g)dµ = -f Lg dµ (14)
Indeed, since µ is the invariant measure of the process generated by L, Lφ dµ = 0 for all functions φ ∈ D. Hence, integrating the definition of the carré du champ operator Γ(f, g) := 1 2 (L(f g) -f Lg -gLf ) and using the reversibility of µ, one gets the result. Let us now state an integration by parts formula for the quotient process.

Proposition 7. For all C 1 (I) functions ψ :

I → R such that ψ • f 0 ∈ H 1 (µ), it holds that: R xψ(x)dµ * (x) = C P (µ) R h(x)ψ ′ (x)dµ * (x) (15) 
Proof. As a consequence of the integration by part formula [START_REF] Ross | Fundamentals of Stein's method[END_REF] for the initial diffusion process, one gets

Γ(f 0 , g)dµ = -gLf 0 dµ = 1 C P (µ) gf 0 dµ.
We then use this equality with g := φ • f 0 and use the diffusion property of Γ and the definition of h. 

H 1 (ν) := {f ∈ L 2 (ν) ∩ D | f dν = 0 and Γ(f )dν < ∞}.
Theorem 8. The following inequality holds for all g ∈ H 1 (ν):

f 0 g dν -C p (ν) Γ(f 0 , g)dν ≤ (C P (ν) -C P (µ)) 1 2 C P (ν) C P (µ) 1 2 Γ(g) dν 1 2 (16) 
Proof. Let t ∈ R and g ∈ H 1 (ν). Let us apply the Poincaré inequality for ν to α

:= f 0 + tg. Computing that Var ν (α) = (f 0 + tg) 2 dν = f 2 0 dν =1 + 2t f 0 g dν + t 2 g 2 dν,
and that Γ(α)dν = Γ(f 0 )dν

≤CP (µ) -1 + 2t Γ(f 0 , g)dν + t 2 Γ(g)dν,
we get that

1 + 2t f 0 g dν + t 2 g 2 dν ≤ C P (ν) C P (µ) -1 + 2t Γ(f 0 , g)dν + t 2 Γ(g)dν .
Now, writting C P (ν) = C P (ν) -C P (µ) + C P (µ) =: ∆C P + C P (µ), we obtain :

2t f 0 g dν + t 2 g 2 dν ≤ ∆C P C P (µ) + 2C P (ν)t Γ(f 0 , g)dν + t 2 C P (ν) Γ(g)dν.
Hence, for all t ∈ R,

∆C P C P (µ) + 2t C P (ν) Γ(f 0 , g)dν -f 0 g dν + t 2 C P (ν) Γ(g)dν ≥ 0.
This polynomial of degree 2 takes only non-negative values, hence its discriminant is non-positive:

b 2 -4ac = 4 C P (ν) Γ(f 0 , g)dν -f 0 g dν 2 -4C P (ν) Γ(g)dν ∆C P C P (µ) ≤ 0,
which yields the result.

Using Theorem 8 with g := ψ•f 0 and dividing by C P (ν), we can state now the approximate integration by part formula for the quotient process.

Corollary 9. For all C 1 (I) functions ψ :

I → R such that ψ • f 0 ∈ H 1 (µ), h(x)ψ ′ (x) - x C P (ν) ψ(x) dν * ≤ C P (ν) -C P (µ) C P (ν) C p (µ) 1 2 h(x)ψ ′ (x) 2 dν * 1 2
.

The original point of view of Courtade and Fathi is the following [7, Section 1.3]. The Poincaré constant is considered as the minimizer of the energy Γ(f ) dµ for f with variance 1 in a large enough functional set. One can then write the Euler-Lagrange equation. The heuristic is that if another measure almost satisfies this equation, its Poincaré constant would not be so far from the one of µ. This is made rigorous with Stein's method. Here the integration by part formula [START_REF] Roustant | Poincaré inequalities on intervals-application to sensitivity analysis[END_REF] plays the role of the Euler-Lagrange equation.

Implementing Stein's method

The original idea of Stein's method is to control some distance between two probability measures by bounding the solution of some equation called Stein equation. For more details, see the survey [START_REF] Ross | Fundamentals of Stein's method[END_REF]. We start with the approximated integration by parts formula given in Corollary 9 above. The goal is to get stability inequalities of the form

C P (ν) ≥ C P (µ) + α d(µ * , ν * ) 2 ,
where α > 0 is a multiplicative constant and d is a metric on the space of probability measures defined by

d(µ, ν) := sup f ∈F f dµ -f dν
for some set of functions F . Metrics of this form include 1-Wasserstein, Kolmogorov and total variation distances. Denoting µ * (f ) := f dµ * , this goal would be achieved if one could solve the equation

S ν (ψ)(x) := h(x)ψ ′ (x) - x C P (ν) ψ(x) = f (x) -µ * (f ) , x ∈ I,
for all f ∈ F , and bound the term 

h(x)ψ ′ (x) 2 dν * independently of f ∈ F . The actual Stein equation is S µ (ψ)(x) := h(x)ψ ′ (x) - x C P (µ) ψ(x) = f (x) -µ * (f ) , x ∈ • I. Since S µ (ψ ′ ) = L * (ψ),
S µ ψ = S ν ψ + 1 C P (ν) - 1 C P (µ)
x ψ, Corollary 9 gives

S µ (ψ) dν * ≤ C P (ν) -C P (µ) C P (ν) C p (µ) 1 2 h(x)ψ ′ (x) 2 dν * 1 2 + C P (ν) -C P (µ) C P (ν) C p (µ)
x ψ dν * . Now, using that ν * is centered, the Cauchy-Schwarz inequality and the Poincaré inequality for ν * , we obtain, denoting Var ν * (ψ) := (ψ -ψdν * ) 2 dν * ,

x ψ dν * = x (ψ -ψdν * ) dν * ≤ (Var ν * (ψ)) 1 2 ( x 2 dν * ) 1 2 = (Var ν * (ψ)) 1 2 ( f 2 0 dν) 1 2 = (Var ν * (ψ)) 1 2 ≤ C P (ν) Γ * (ψ) dν * 1 2
.

Setting,

δ := C P (ν) -C P (µ) C P (ν) C P (µ)
we have proved that

S µ (ψ) dν * ≤ √ δ + C P (ν) δ Γ * (ψ) dν * 1 2 . ( 17 
)
So our goal would be achieved if for all f ∈ F , we can solve the Stein equation S µ (ψ) = f -µ * (f ), and get a bound for Γ * (ψ) dν * = b a h(x)ψ ′ (x) 2 dν * independently of f . Note that it would be enough to get a bound for ||

√ hψ ′ || ∞ , or for ||ψ ′ || ∞ since h(x)ψ ′ (x) 2 dν * ≤ ||ψ ′ || 2 ∞ h dν * = ||ψ ′ || 2 ∞ Γ(f 0 ) dν ≤ ||ψ ′ || 2 ∞ CP (µ)
, where || • || ∞ denotes the supremum norm .

Stein solution

Let f ∈ L 1 (µ * ). We consider the Stein equation

h(x)ψ ′ (x) - x C P (µ) ψ(x) = f (x) -µ * (f ) , x ∈ I (18) 
In the sequel, we will call f the target function. This equation is a first order linear ODE, which can be explicitly solved.

Lemma 10. The function

ψ(x) := exp x 0 u du C P (µ)h(u) x a (f (y) -µ * (f )) 1 h(y) exp - y 0 u du C P (µ)h(u) dy ( 19 
)
is a solution of [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF]. Moreover, it also can be written as

ψ(x) = -exp x 0 u du C P (µ)h(u) b x (f (y) -µ * (f )) 1 h(y) exp - y 0 u du C P (µ)h(u) dy (20) 
Proof. The solution ( 19) is obtained by classical tools for first order linear differential equations. The second formula is obtained from Proposition 5. Let us emphasize that this approach is only possible in dimension 1.

Boundedness of solutions for bounded target functions

Under the current framework one can give the following bounds for the solution of the Stein equation.

Proposition 11. Let f be a bounded measurable function on I, and let ψ be the solution of [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF] given by Lemma 10. Then

||ψ|| ∞ ≤ Z max(q(0), 1 -q(0)) ||f -µ * (f )|| ∞ ≤ Z ||f -µ * (f )|| ∞ ,
with Z the normalization constant (see Proposition 5) and q the cumulative distribution of µ * . Moreover,

||xψ(x)|| ∞ ≤ C P (µ) ||f -µ * (f )|| ∞ .
Proof. Let us recall that v(t) = exp -λ µ t 0 u du h(u) . If x ≤ 0 we use the writting [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF] of ψ, and get:

|ψ(x)| ≤ ||f -µ * (f )|| ∞ v(x) -1 Z q(x).
and by Lemma 6: sup

x∈I- |ψ(x)| ≤ Z q(0) ||f -µ * (f )|| ∞ .
If x > 0, we use the writting (20) of ψ in Lemma 10 together with Lemma 6:

sup x∈I+ |ψ(x)| ≤ Z (1 -q(0)) ||f -µ * (f )|| ∞ .
To prove the second inequation, we split off again the case x > 0 and x < 0 using in each case the appropriate representation of ψ in Lemma 10 and we conclude with Lemma 6. If

x ∈ I -, then |ψ(x)| ≤ v(x) -1 ||f -µ * (f )|| ∞ Z q(x) but q(x) ≤ CP (µ) Z |x| v(x) so |xψ(x)| ≤ C P (µ) ||f -µ * (f )|| ∞ . If x ∈ I + , then |ψ(x)| ≤ v(x) -1 ||f -µ * (f )|| ∞ Z (1 -q(x)) but (1 -q(x)) ≤ CP (µ) Z x v(x) so |xψ(x)| ≤ C P (µ) ||f -µ * (f )|| ∞ .

Stability in total variation under a uniform ellipticity condition

Let us recall the definition of the total variation distance.

Definition 1. The total variation distance between two measures α, β on I is

d T V (α, β) = sup A⊂I 1 A dα -1 A dβ ,
where the supremum is running over all measurable subsets of I.

We assume the following uniform ellipticity condition on h: 

κ := inf x∈R h(x)
d T V (µ * , ν * ) ≤ 4 √ κ √ δ + C P (ν) δ , (22) 
where µ * (resp. ν * ) is the pushforward of µ (resp. ν) by the first eigenfunction f 0 , and δ := CP (ν)-CP (µ) CP (ν) Cp(µ) . In order to prove Theorem 12, we need the following bounds on the solution of the Stein equation.

Proposition 13. Let f be a bounded function on R, and let ψ be the solution of the Stein equation given by Lemma 10. Then

||ψ ′ || ∞ ≤ 2 κ ||f -µ * (f )|| ∞ , and ||hψ ′2 || ∞ ≤ 4 κ ||f -µ * (f )|| 2 ∞ .
Proof. By direct calculation:

ψ ′ (x) = 1 h(x) f -µ * (f ) + x C P (µ) ψ(x) .
The lower bound on h and Proposition 11 yield the first claim. Similarly,

h(x)ψ ′ (x) 2 = 1 h(x) f -µ * (f ) + x C P ψ(x) 2 .
So from the elementary inequality (a + b) 2 ≤ 2a 2 + 2b 2 , and the same reasoning as above, we get the result.

Proof of Theorem 12 Let f : I → R be an indicator function. We solve the Stein equation with Lemma 10 and denote ψ the chosen solution. Then [START_REF] Troyanov | Concentration et inégalité de Poincaré[END_REF] and Proposition 13 give:

S µ (ψ) dν * ≤ √ δ + C P (ν) δ Γ * (ψ) dν * 1 2 ≤ √ δ + C P (ν) δ 2 √ κ ||f -µ * (f )|| ∞ .
But:

S µ (ψ) dν * = (f -µ * (f )) dν * = |ν * (f ) -µ * (f )| .
Hence for any indicator function f ,

|ν * (f ) -µ * (f )| ≤ 4 √ κ √ δ + C P (ν) δ .
Taking the supremum over all such f concludes the proof.

Let us point out that ( 22) is of the form (3) with φ(x, y) = 4

√ κ y-x xy + y-x x √ y .
When specialized to the Gaussian case, Theorem 12 gives that if ν is a normalized probability measure on R and C P (ν) -1 ≤ 1, then:

C P (ν) ≥ 1 + 1 16 1 + √ 2 d T V (γ, ν) 2 .
Our constant 16 1 + √ 2 is worse than the constant 9 from [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF].

Stability in W 1 distance

Let us recall the Kantorovitch-Rubinstein formula, which we will take as the definition of the W 1 distance.

Definition 2. (see [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF]Chapter 5] ) The 1-Wasserstein distance between two measures α, β on I is

W 1 (α, β) = sup f :I→R 1-Lipschitz f dα -f dβ .
We can now state the main theorem of this article.

Theorem 14. Let (L, µ) be a Markov diffusion on a Riemannian manifold M satisfying a Poincaré inequality with sharp constant C P (µ). Suppose that Assumptions 1, 2 and 3 are verified. Let

C h := sup x∈I Γ * (a 1 )(x) x a q(t) dt + Γ * (a 2 )(x) b x (1 -q(t)) dt ,
where a 1 and a 2 are defined in ( 27) and ( 28). Then for all measures ν on M normalized as in ( 6) and satisfying a Poincaré inequality with sharp constant C P (ν), it holds:

W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ ≤ C h C P (ν) -C P (µ) C P (µ) + C P (ν) -C P (µ) C P (µ) 3/2 ,
where µ * (resp. ν * ) is the pushforward of µ (resp. ν) by f 0 , W 1 is the 1-Wasserstein distance (see Definition 2), and δ := CP (ν)-CP (µ) CP (ν) Cp(µ) .

Proof. The proof is the same as in Theorem 12 but we replace the indicator functions by 1-Lipschitz functions, and we use Proposition 17 instead of Proposition 13. All the sequel of this section is devoted to prove Proposition 17. In [4, Appendix p. 37], Chen, Goldstein and Shao bound the derivatives of the solution of the Stein equation in the case where µ is the standard Gaussian measure. Here, we extend their approach to a broader class of measures. Let f : I → R be absolutely continuous, and let ψ be the solution of [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF] given by Lemma 10. We are looking for inequalities of the form

||hψ ′2 || ∞ ≤ C ||f ′ || ∞ ,
where C > 0 is a constant which does not depend on f . Recall that we denote by q(t) = t a dµ * the cumulative distribution function of the measure µ * , and v(t) = exp -λ µ x 0 u du h(u) (see [START_REF] Nourdin | Multivariate normal approximation using Stein's method and Malliavin calculus[END_REF]).

Proposition 15. Let f : I → R be in C 1 (I) ∩ L 1 (µ * ).
The associated solution (20) of Lemma 10 can be written as:

ψ(x) = -Z 1 -q(x) v(x) x t=a f ′ (t)q(t) dt -Z q(x) v(x) b t=x f ′ (t)(1 -q(t)) dt (23) Proof. First, write f (x) -µ * (f ) = x a (f (x) -f (y)) dµ * (y) - x b (f (x) -f (y)) dµ * (y) = x a x y f ′ (t) dt dµ * (y) - x b x y f ′ (t) dt dµ * (y) = x a f ′ (t) t a dµ * (y) dt - b x f ′ (t) b t dµ * (y) dt = x a f ′ (t)q(t) dt - b x f ′ (t)(1 -q(t)) dt. ( 24 
)
It follows that

ψ(x) = 1 v(x) x a (f (y) -µ * (f ))Z dµ * (y) = 1 v(x) x a y a f ′ (t)q(t) dt - b y f ′ (t)(1 -q(t)) dt Z dµ * (y).
Now, on the one hand:

x a y a f ′ (t)q(t) dt dµ * (y) = x a x t f ′ (t)q(t) dµ * (y) dt = x a f ′ (t)q(t) (q(x) -q(t)) dt,
on the other hand:

x a b y f ′ (t)(1 -q(t)) dt dµ * (y) = b x x a f ′ (t)(1 -q(t)) dµ * (y) dt + x a t a f ′ (t)(1 -q(t)) dµ * (y) dt = b x f ′ (t)(1 -q(t))q(x) dt + x a f ′ (t)(1 -q(t))q(t) dt.

From which one gets (23). By definition ψ satisfies

h(x)ψ ′ (x) = f (x) -µ * (f ) + x C P ψ(x) .
Hence, using Proposition 15 and Formula (24), we are now able to give a new formula for the derivative of the solution.

Corollary 16. We have:

h(x)ψ ′ (x) = 1 -Z(1 -q(x)) x C P (µ) exp x 0 u du C P (µ)h(u) x a f ′ (t)q(t) dt -1 + Zq(x) x C P (µ) exp x 0 u du C P (µ)h(u) b x f ′ (t)(1 -q(t)) dt.
In order to simplify the expression above, one can see that

1 -Z(1 -q(x)) x C P (µ) exp x 0 u du C P (µ)h(u) 1 h(x) = Γ * (a 1 )(x) (25) 
and

1 + Zq(x) x C P (µ) exp x 0 u du C P (µ)h(u) 1 h(x) = Γ * (a 2 )(x) (26) 
where

a 1 (x) := Z(1 -q(x)) exp x 0 u du C P (µ)h(u) (27) 
a 2 (x) := Zq(x) exp x 0 u du C P (µ)h(u) ( 28 
)
The following is then immediate.

Proposition 17. Let f : I → R be in C 1 (I) ∩ L 1 (µ * )
, and let ψ the associated solution (20). The following bound holds:

|| √ hψ ′ || ∞ ≤ C h ||f ′ || ∞ ,
where

C h := sup x∈I Γ * (a 1 )(x) x a q(t) dt + Γ * (a 2 )(x) b x (1 -q(t)) dt (29) 

Finitness of C h

If C h = ∞, the result of Theorem 14 degenerates. That is why in this section, we give explicit conditions on h that ensure the finitness of C h .

Theorem 18. Let (L, µ) be a Markov diffusion on a Riemannian manifold M satisfying a Poincaré inequality with sharp constant C P (µ). Suppose that Assumptions 1, 2 and 3 are verified. Recall that we denote a = inf f 0 (M ) < 0 and b = sup f 0 (M ) > 0. Assume that one of these two conditions is verified at a:

• either a = -∞ and c 1 |t| 2α-2 ≤ h(t) ≤ c 2 |t| α for t → -∞ with α ≤ 2 and c 1 , c 2 > 0, • or a > -∞ and c 1 (t -a) 2 ≤ h(t) ≤ c 2 (t -a) for t → a + with c 1 , c 2 > 0,
and one of these two conditions is satisfied at b:

• either b = +∞ and c 1 t 2α-2 ≤ h(t) ≤ c 2 t α for t → +∞ with α ≤ 2 and c 1 , c 2 > 0, • or b < +∞ and c 1 (b -t) 2 ≤ h(t) ≤ c 2 (b -t) for t → b -with c 1 , c 2 > 0.
Then for all measures ν on M normalized as in [START_REF] Cordero-Erausquin | Moment measures[END_REF] and satisfying a Poincaré inequality with sharp constant C P (ν), it holds:

W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ ,
where C h > 0 is a constant, µ * (resp. ν * ) is the pushforward of µ (resp. ν) by f 0 , W 1 is the 1-Wasserstein distance (see Definition 2), and δ := CP (ν)-CP (µ) CP (ν) Cp(µ) .

In order to prove Theorem 18, we will use the following results.

Theorem 19. Assume that:

1. There exists a non-negative function g 1 , defined on a neighborhoood of a, satisfying

x(g 1 (x) -1)

h(x) = O(1), x → a + (30) 
and

q(x) ≥ - C P (µ) Z v(x) g 1 (x) x , x → a + (31) 
2. There exists a non-negative function g 2 , defined on a neighborhoood of b, satisfying

x(g 2 (x) -1) h(x) = O(1), x → b - and 
1 -q(x) ≥ C P (µ) Z v(x) g 2 (x) x , x → b - (32) 
Then the constant C h defined in Theorem 14 is finite.

Proof. We only study boundedness of Γ * (a 1 )(x)

x -∞ q(t) dt at a and b and conclude by continuity. The case of Γ * (a 2 )(x) +∞ x

(1 -q(t)) dt is similar. We only deal with the case of a, the one of b is similar. Since v ′ (x) = -λ µ h(x)v(x) with an integration by parts, we get

x a q(t) dt = [tq(t)] x a - x a 1 Z t v(t) h(t) dt ≤ xq(x) + C P (µ) Z v(x).
The last inequality comes from Lemma 6 which gives lim

t→a -tq(t) -CP (µ) Z v(t) ≤ 0. Moreover, it is obvious that 1 -Zλ µ (1 -q(x))x exp λ µ x 0 u du h(u) ≥ 0, for x < 0. Hence for x < 0, using (25), Γ * (a 1 )(x) x a q(t) dt = 1 h(x) 1 -Zλ µ (1 -q(x))x exp λ µ x 0 u du h(u) x a q(t) dt ≤ 1 h(x) xq(x) + C P (µ) Z v(x) -Zλ µ 1 -q(x) h(x) x 2 v(x) q(x) - 1 -q(x) h(x)
x.

On the one hand, using first the assumption on g 1 , and next Lemma 6, one gets that for x → a + , 1

h(x) xq(x) + C P (µ) Z v(x) ≤ - C P (µ) Z h(x) v(x)g 1 (x) + C P (µ) Z h(x) v(x) ≤ (g 1 (x) -1)xq(x) h(x) → t→a 0.
On the other hand, the existence of g 1 gives

--Zλ µ 1 -q(x) h(x) x 2 v(x) q(x) - 1 -q(x) h(x) x ≤ x g 1 (x) h(x) (1 -q(x)) - 1 -q(x) h(x) x = x(g 1 (x) -1) h(x) (1 -q(x)),
which is bounded by assumption. The boundedness at b is obtained in the same way. By Lemma 6, one gets that 1-Zλ µ (1-q(x))x exp λ µ x 0 u du h(u) ≥ 0, for x > 0. By the assumption on g 2 , one gets

1 -Zλ µ (1 -q(x))x exp λ µ x 0 u du h(u) ≤ 1 -g 2 (x).
Hence using the same integration by parts as before, Γ * (a 1 )(x)

x a q(t) dt ≤ 1 h(x) xq(x) + C P (µ) Z v(x) (1 -g 2 (x)). Now 1-g2(x) √ h(x) v(x) = x(1-g2(x)) √ h(x) v(x)
x goes to zero when x goes to b since (32) gives v(x)

x → x→b 0. This concludes the proof. The standard Gaussian satisfies the requirements of Theorem 19 with g 1 (x) = g 2 (x) = x 2 1+x 2 . Let us now give sufficient conditions on h to ensure that such g 1 , g 2 functions exist. We prove the case of g 1 at a, the case of g 2 at b is similar.

Lemma 20. Let g 1 be a bounded non-negative C 1 function defined on a neighborhood of a such that for t → a + , g 1 (t) > tg ′ 1 (t) and

h(t) ≤ λ µ t 2 (1 -g 1 (t)) g 1 (t) -tg ′ 1 (t) , t → a + (33) If lim t→a v(t) = 0, then q(t) ≥ - C P Z v(t) g 1 (t) t , t → a + . Proof. Let f (t) := q(t) + CP Z g1(t) t v(t). Compute f ′ (t) = v(t) Z C P g ′ 1 (t) t - C P g 1 (t) t 2 + 1 h(t) - g 1 (t) h(t)
The assumption implies then that f ′ ≥ 0. Hence

f (t) ≥ lim x→a f (x) = 0.
Lemma 21. Let g 2 be a bounded non-negative C 1 function defined on a neighborhood of b such that for t → b -, g 2 (t) > tg ′ 2 (t) and

h(t) ≤ λ µ t 2 (1 -g 2 (t)) g 2 (t) -tg ′ 2 (t) , t → b - (34) If lim t→b v(t) = 0, then 1 -q(t) ≥ C P (µ) Z v(t) g 2 (t) t , t → b -.
Under a growth control on h, the condition v(t) → x→a 0 can easily be verified. One needs however to distinguish the case where a is finite from the one where it is infinite. For a = -∞: if h(t) ≤ c|t| α for t → -∞ with c > 0 and α ≤ 2, then for x → -∞,

-λ µ x 0 u h(u) du ≤ - λ µ c 0 x 1 |u| α-1 du → x→-∞ -∞,
and hence v(t) → x→-∞ 0. For a > -∞: if h(t) ≤ c(t -a) α for t ∼ a with c > 0 and α ≥ 1, then for

x ∈]a, 0[: Proposition 22. If a = -∞ and c 1 |t| β ≤ h(t) ≤ c 2 |t| α for t → -∞ with c 1 , c 2 > 0, α ≤ 2, and β ∈ [2α -2, α], then q satisfies (31) with g 1 (t) = 1 -c2 λµ |t| α-2 . Moreover, (30) is also satisfied. If a > -∞ and c 1 (t -a) β h(t) ≤ c 2 (t -a) α for t → a + with c 1 , c 2 > 0, α ≥ 1 and β ≤ 2α, then q satisfies (31) with g 1 (t) = 1 -4c2 λµa 2 (t -a) α .

-λ µ x 0 u h(u) du ≤ λ µ 0 x u (u -a) α du = λ µ 0 x du (u -a) α-1 + aλ µ 0 x du (u -a) α → x→a -∞,
Proof. Let us compute, if a = -∞ and t < 0:

λ µ t 2 (1 -g 1 (t)) g 1 (t) -tg ′ 1 (t) = c 2 t 2 |t| α-2 1 -c2 λµ (3 -α)|t| α-2 ≥ c 2 |t| α , for t ∼ -∞. If a > -∞ and t ∈]a, a 2 [, λ µ t 2 (1 -g 1 (t)) g 1 (t) -tg ′ 1 (t) = 4c 2 a 2 t 2 (t -a) α 1 + 4c2 λµa 2 (t -a) α-1 [αt -(t -a)] ≥ c 2 (t -a) α ,
since αt -(t -a) < 0 and t 2 ≥ a 2 4 . Hence Lemma 20 and the above remark give us that q satisfies (31) in both case. In regards to (30), in the first case, one has

x(1 -g 1 (x)) h(x) = c 2 λ µ h(x) |x| α-1 ≤ c 2 λ µ √ c 1 |x| α-1-β 2 which is bounded at -∞ because α -1 -β 2 ≤ α -1 -2α-2 2 = 0.
Similarly in the second case,

x(1 -g 1 (x)) h(x) = 4c 2 |x| λ µ a 2 • |x -a| α h(x) ≤ 4c 2 λ µ |a| 1 √ c 1 |x -a| α-β 2 which is bounded at a > -∞ because β ≤ 2α.
The same result is valid at b, using Lemma 21. We summarize it in the following Proposition:

Proposition 23. Assume that one of these two conditions is verified at a:

• either a = -∞ and c 1 |t| 2α-2 ≤ h(t) ≤ c 2 |t| α for t → -∞ with α ≤ 2 and c 1 , c 2 > 0,
• or a > -∞ and c 1 (t -a) 2 ≤ h(t) ≤ c 2 (t -a) for t → a + with c 1 , c 2 > 0, and one of these two conditions is satisfied at b:

• either b = +∞ and c 1 t 2α-2 ≤ h(t) ≤ c 2 t α for t → +∞ with α ≤ 2 and c 1 , c 2 > 0, • or b < +∞ and c 1 (b -t) 2 ≤ h(t) ≤ c 2 (b -t) for t → b -with c 1 , c 2 > 0.
Then the constant C h defined in Theorem 14 is finite.

6.2 Application: stability of the Γ(s, θ) distributions, s > 0, θ > 0 Let us consider the Γ(s, θ) distribution dµ(x) := x s-1 e -x θ Γ(s)θ s 1 R+ (x)dx, where Γ denotes the Euler's Gamma function. This probability measure is the reversible measure of the Laguerre process with following generator on [0, ∞):

Lf (x) = xf ′′ (x) + (s - 1 θ x)f ′ (x). We have Γ(f ) = x(f ′ ) 2 , C P (µ) = θ and the first Laguerre polynomial f 0 (x) = s-x θ √
s is a normalized eigenfunction attaining the spectral gap. Hence I =] -∞, √ s], so we get h(x) = θ -1 (s -√ s x). So Assuptions 1, 2 and 3 are satisfied. Moreover, one can see that we are also under the conditions of Proposition 23, with at the infimum, a = -∞ and c

1 ≤ h(t) ≤ c 2 |t| for c 1 = s θ , c 2 = 2 √ s θ (and α = 1), and at the supremum, b = √ s < +∞, c 1 (b -t) ≤ h(t) ≤ c 2 (b -t) for c 1 = c 2 = √ s θ .
In this case the three conditions (6) are reduced to only two:

x dν = sθ and x 2 dν = s(s + 1)θ 2 (35) 
meaning that we only ask ν to have the same first and second moments as µ. So we can apply Theorem 18 for the gamma distributions Γ(s, θ), with s, θ > 0: for all measures ν on R + normalized as in (35) and satisfying the following Poincaré inequality with sharp constant C P (ν):

Var ν (f ) ≤ C P (ν) +∞ 0 xf ′ (x) 2 dν(x), (36) 
it holds for a finite constant C h :

W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ , (37) 
where W 1 is the 1-Wasserstein distance (see Definition 2), δ := CP (ν)-θ CP (ν) , ν * := f # 0 ν, and

dµ * (x) = √ s e s 1 Γ(s) ( √ s -x) s-1 e √ s x 1 ]-∞, √ s] (x)dx.

Application : stability for Brascamp-Lieb inequalities

Let M = R and dµ = e -φ dx be a probability measure with φ : R → R strictly convex and C 2 . Then µ satisfies the following inequality introduced by Brascamp and Lieb in 1976 in [START_REF] Herm | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF] :

Var µ (f ) ≤ f ′2 φ ′′ dµ for all functions f in the weighted Sobolev space H 1,2 φ,µ = {g ∈ L 2 (µ)| g ′ √ φ ′′ ∈ L 2 (µ)}. Then Lf = 1 φ ′′ f ′′ - φ ′ φ ′′ + φ (3) φ ′′2 f ′
is a Markov diffusion generator with reversible measure µ satisfying a Poincaré inequality with sharp constant 1 and carré du champ operator Γ

(f ) = f ′2 φ ′′ . Moreover L(φ ′ ) = -φ ′ ,
hence the spectral gap is attained with f 0 = φ ′ which is centered. One easily sees that φ ′ is a bijection, so I = R and Assumption 2 is satisfied with h = φ ′′ • φ ′-1 . The push forward measure µ * is then the moment measure of φ (see [START_REF] Cordero-Erausquin | Moment measures[END_REF][START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF]) and has density

dµ * = exp -φ(φ ′-1 (t)) φ ′′ (φ ′-1 (t)) dt.
In this setting, we can get two stability results with respect to two different distances. Firstly, Theorem 12 says that if φ ′′ ≥ κ > 0 (meaning that φ is uniformly convex) then µ * satisfies a stability result in total variation distance. It is a direct generalization of the Gaussian case [START_REF] Utev | Probabilistic problems connected with an integro-differential inequality[END_REF].

Corollary 24. Let M = R and dµ = e -φ dx be a C 2 uniformly log-concave probability measure, i.e. ∀x ∈ R, φ ′′ (x) ≥ κ > 0. Let ν be a probability measure on R verifying the following Poincaré inequality: for all functions f in the weighted Sobolev space

H 1,2 φ,ν = {g ∈ L 2 (ν)| g ′ √ φ ′′ ∈ L 2 (ν)}, Var ν (f ) ≤ C P (ν) f ′2 φ ′′ dν,
and such that φ ′ dν = 0, φ ′2 dν = 1 and φ ′′ dν ≤ φ ′′ dµ. So C P (ν) ≥ 1, and moreover δ := CP (ν)-1

CP (ν) satisfies d T V (µ * , ν * ) ≤ 4 √ κ √ δ + C P (ν) δ ,
where µ * = φ ′ # µ and ν * = φ ′ # ν. Secondly, Theorem 18 yields a stability in 1-Wasserstein distance under a growth control of the second derivative of the potential φ at infinity. vol S d the riemannian volume measure on the sphere, normalized to be a probability measure, where Γ denotes Euler's Gamma function. Then µ is the reversible probability measure of the spherical Laplacian generating the Brownian motion on the sphere, which can be written as the restriction to the sphere of

Lf (x) = d+1 i,j=1 (δ ij -x i x j ) ∂ 2 ij f -d d+1 i=1 x i ∂ i f,
if f is the restriction to the sphere of a smooth function on a neighborhood of the sphere in R d+1 (see [2, Section 2.2.1] for more details), and where δ ij denotes the Kronecker delta.

We have Γ(f ) = d+1 i,j=1 (δ ij -x i x j ) ∂ i f ∂ j f , C P (µ) = 

(δ ij -x i x j ) ∂ i f ∂ j f dν(x). (39) 
Then it holds for a finite constant C h ,

W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ , (40) 
where W 1 is the 1-Wasserstein distance (see Definition 2), δ := CP (ν)-d CP (ν) , ν * := x # 1 ν, and

dµ * (t) = 1 Z d + 1 -t 2 d 2 -1 1 [- √ d+1, √ d+1] dx,
with Z a normalization constant.

Comparison

A natural question is to compare the scope of application of Theorem 12 and Theorem 18. Indeed, Theorem 12 require h to be uniformly bounded by below, while Theorem 18 only require a growth control on h at the boundary of I. In this section we get stability results involving the Kolmogorov distance under the assumptions of Theorems 12 and 18. Afterwards, we will see that the order of the bound obtained from Theorem 12 is stronger. Let us begin recalling: 

Proposition 4 .

 4 The eigenfunction f 0 satisfies Assumption 3 if, and only if, h does not vanish on • I.

  for any solution φ of the Poisson equation Lφ = f -µ * (f ), φ ′ solves the Stein equation. Hence one can study the Stein equation via the probabilistic analysis of the Poisson equation. Observing that

  and hence v(t) → x→a 0. The same results are valid at b, only replacing (t -a) α by (b -t) α when b < +∞.

Corollary 25 .

 25 Let M = R and dµ = e -φ dx be a C 2 strictly log-concave probability measure. Let ν be a probability measure on R verifying the following Poincaré inequality: for all functions f in the weighted Sobolev spaceH 1,2 φ = {g ∈ L 2 (ν)| g ′ √ φ ′′ ∈ L 2 (ν)}, Var ν (f ) ≤ C P (ν) f ′2 φ ′′ dν,and such that φ ′ dν = 0, φ ′2 dν = 1 and φ ′′ dν ≤ φ ′′ dµ. So C P (ν) ≥ 1, and if for some α ≤ 2,c 1 |t| 2α-2 ≤ φ ′′ (t) ≤ c 2 |t| α , t → ±∞, then δ := CP (ν)-1 CP (ν) satisfies W 1 (µ * , ν * ) ≤ C h √ δ + C P (ν) δ ,where µ * = φ ′ # µ and ν * = φ ′ # ν and C h is a finite constant defined by (29).

6. 4

 4 Application : stability of the Poincaré constant on the sphere S d Let M = S d , d ≥ 1 and µ =

2 vol

 2 applies to the canonical probability distribution on S d . Corollary 26. Let M = S d , d ≥ 1 and µ = S d . Let ν be a probability measure on S d normalized as in (38) and satisfying the following Poincaré inequality with sharp constant C P (ν): for all functions f which is the restriction to the sphere of a C 2 function on R d+1 , Var ν (f ) ≤ C P (ν)

Proposition 27. [ 14 ,

 14 Prop 1.2] If µ * has bounded density ρ with respect to the Lebesgue measure on R,then d K (ν * , µ * ) ≤ 2 C W 1 (ν * , µ * )where ρ ≤ C, W 1 is the 1-Wasserstein distance, andd K (ν * , µ * ) = sup t∈R t -∞ dν * -t -∞ dµ * is the Kolmogorov distance.Combining Proposition 27 above with Theorem 18 gives the following bound on the Kolmogorov distance.

  Under this ellipticity condition, one can get better estimates on the solutions of Stein equation. The vocabulary of ellipticity comes from PDE theory, see[START_REF] Evans | Partial differential equations[END_REF] Chapter 6]. This condition extends the Gaussian case discussed at the beginning of Section 2. We can now state the main result of this section. Theorem 12. Let (L, µ) be a Markov diffusion on a Riemannian manifold M satisfying a Poincaré inequality with sharp constant C P (µ). Suppose that Assumptions 1, 2 and 3 are verified. If κ := inf

	> 0	(21)

x∈R h(x) > 0, then for all measures ν on M normalized as in

[START_REF] Cordero-Erausquin | Moment measures[END_REF] 

and satisfying a Poincaré inequality with sharp constant C P (ν),

  1 d and all coordinate functions x → x j restricted to the sphere are centered eigenfunctions attaining the spectral gap. Let us choose f 0(x) = √ d + 1 x 1 which has variance one. Hence I = [-√ d + 1, √ d + 1] and Γ(f 0 ) = (d + 1) 1 -x 2 1, so we get h(t) = (d + 1) -t 2 . So Assuptions 1, 2 and 3 are satisfied. Furthermore, at the infimum a = --t . Hence the conditions of Theorem 18 are satisfied. In this case the three conditions (6) are reduced to only two:

	√ d + 1 √ d + 1	√ d + 1 + t ≤ h(t) ≤ 2 √ d + 1 -t ≤ h(t) ≤ 2 √ d + 1 √ d + 1	√ d + 1 + t , and at the supremum b = √ d + 1	√ d + 1, one sees d + 1, one similarly sees √
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Corollary 28. Let (L, µ) and h statisfy the requirements of Theorem 18. If moreover v(x) h(x) is bounded by a constant C, then it holds for δ := CP (ν)-CP (µ)

for all measures ν normalized as in [START_REF] Cordero-Erausquin | Moment measures[END_REF] and satisfying a Poincaré inequality with sharp constant C P (ν).

On the other hand, it is well-known that the total variation distance controls the Kolmogorov one:

Hence, Theorem 12 implies the following.

Corollary 29. Let (L, µ) and h ≥ κ > 0 statisfy the requirements of Theorem 12. Then it holds for δ := CP (ν)-CP (µ)

for all measures ν normalized as in ( 6) and satisfying a Poincaré inequality with sharp constant C P (ν).

In case where (L, µ) satisfies both assumptions of Corollary 28 and Corollary 29, one can see that the bound of Corollary 29 is better because it is of order 1 2 against 1 4 for the bound of Corollary 28. However, in the example of the gamma distributions, while Corollary 29 does not apply, although non-optimal, Corollary 28 gives us the following stability result in Kolmogorov distance.

Corollary 30. For all θ, s > 0 and for all measures ν on R + normalized as in (35) and satisfying the Poincaré inequality (36) with sharp constant C P (ν), it holds:

where δ := CP (ν)-θ CP (ν) , C = ( √ s)