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Abstract

A method is presented to characterize general sound-absorbing materials through a pole-based identification

of the equivalent fluid. This is accomplished by 1) determining the extended equivalent fluid of the material

sample through the transfer function method (TFM), 2) identification of the acoustic response of the material

through the poles of the extended effective density and compressibility, and 3) build the effective density

and compressibility from the poles associated to the local acoustic response. Real pole pairs describe a

dissipative medium (or equivalently an over-damped resonating medium), which is the natural behavior of

rigid-frame porous materials, while complex-conjugate pole pairs describe a locally-resonant medium typical

of metamaterials. Complex-conjugate poles associated to elastic resonances of the sample are discarded.

We test the method for several non-conventional porous materials. In general, a better fit to the measured

surface impedance is obtained than with an acoustics-based identification to the Johnson-Champoux-Allard-

Pride-Lafarge model (JCAPL), and the method appears also to be robust to errors of the TFM.

Keywords: Porous materials, effective acoustic medium, partial fraction decomposition

1. Introduction

The increasing global need for diminishing the environmental noise levels pushes the development of ma-

terials with improved acoustic performance in multiple applications: architectural acoustics, air conditioning

systems, silencers of terrestrial motorized vehicles, ventilation systems, aircraft engine noise, etc. An accu-

rate acoustic modeling of these materials is crucial in order to make predictions in untested configurations,

and to implement optimization strategies.

Many sound-absorbing materials behave like an equivalent fluid characterized by an effective density

and effective compressibility, which are complex functions of frequency. Based on the physics of acoustic

perturbations at the microstructure level followed by homogenization, a number of models for the effective

density and effective compressibility have been proposed, such as Attenborough’s model [], the Johnson-

Champoux-Allard-Pride-Lafarge model (JCAPL) [2,,,], Wilson’s relaxational model [6], or the recent
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three-parameter model of Horoshenkov et al. [7]. All of them rely on a distinct set of physical hypotheses

and on a certain knowledge of the geometrical properties of the microstructure. They are characterized in

general by a set of parameters which can be measured through specific tests, like the resistivity [8], porosity

[9], tortuosity [10], etc. The validity of the resulting models is then classically verified by acoustic impedance

measurements in a Kundt’s tube. This process can become complex and long because of the large number of

parameters and thus of independent testing rigs, requiring in general multiple samples, whose homogeneity is

not guaranteed. This is why many users choose to perform the parameter identification entirely from acoustic

measurements in a Kundt’s tube, and the parameters are determined from a best-fit of the measured and

predicted surface impedance in the frequency range of interest. But this method is not always satisfactory.

Besides relying on different physical assumptions which may not be met by certain types of microstructure,

it frequently leads to parameter values outside the ranges compatible with their physical grounds.

The concept of equivalent fluid strictly requires that the material sustains a single acoustic wave mode. In

the particular case of porous materials this implies that the frame is rigid to acoustic perturbations. But in

reality porous materials do not have a rigid frame, even if they can behave as rigid in certain conditions, and

the deformation of the frame needs to be accounted in general. In a first approximation, small deformations

of the frame can be modelled linearly, leading to the so-called poro-elastic materials. Description of poro-

elastic materials requires the full theory of Biot [11, 12, 13] in order to account for the coupling of the acoustic

field and the elastic frame. For conventional air-saturated porous materials, where the mass density of the

frame is much larger than the mass density of air, this coupling is in practice only important in the vicinity

of the elastic resonances of the sample [14]. Away from the resonances the material behaves close to the

rigid-frame limit. However, the high sensitivity of the resonant response to the sample boundary conditions,

together with the difficulty of determining the exact experimental boundary conditions, make impractical a

direct identification to the full poro-elastic model.

Double porosity materials are another example of materials beyond the scope of existing equivalent fluid

models. These materials are composed of a microstructure and a mesostructure: a number of inclusions of a

secondary material are embedded inside the primary microstructure. The models of the microstructure and

the mesostructure need to be appropriately coupled, which in general depends on the particular geometry

of the inclusions. In the simple case of cylindrical inclusions under normal incidence, an analytical coupling

model has been proposed [15].

Locally-resonant acoustic metamaterials have been widely studied in the last two decades due to their

high absorption potential. This type of metamaterials are characterized by local/inner resonances which

can absorb incoming acoustic energy [16]. These local resonances can induce a negative effective density

[17, 18, 19] and/or negative effective compressibility [20, 21] (real parts) in certain frequency bands, leading

to an imaginary sound speed and no propagation of sound there. These materials are not found in nature but

can be manufactured artificially. The continuous improvement of fabrication technologies will soon allow

to manufacture locally-resonant metamaterials with optimal absorption properties [22]. Although simple
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equivalent fluid models exist around the local resonances [23], no general physical model exists for these

materials.

The transfer function method (TFM) [24] can be used to determine the equivalent fluid of any given

material sample. TFM was originally proposed for porous materials, but it can be applied to any material

that can be acoustically described through an equivalent fluid. As the concept of equivalent fluid, TFM

assumes there is a single acoustic plane wave mode in the material, for which reason it is conventionally

restricted to rigid-frame porous materials. Nevertheless, it can in principle be applied to more general

materials, in which case the deduced equivalent fluid needs to be interpreted appropriately.

The fast development of 3D-printing technology allows nowadays to fabricate rigid porous networks with

a deterministic microstructure [25]. However, the pore sizes are still limited to the order of millimeters, which

is significantly larger than the wavelengths of interest in acoustics, but may be of the order of the sample

sizes used. Even if these rigid-frame, porous-like materials are strictly described by JCAPL [26], the use of

samples of material which are not large enough (compared to the microstructure characteristic length), may

induce errors in the determination of the equivalent fluid through TFM.

A new identification approach is proposed here based on a pole identification of the effective density

and compressibility determined from TFM, thus relying only on acoustic measurements of a single material

sample. First, a partial fraction expansion is fitted to the effective density and compressibility obtained

from TFM. And second, the real and complex-conjugate poles in the expansion are identified to certain

physical behaviors of sound propagation in the material, including dissipative, local resonances, or sample

resonances. Therefore, the model proposed allows to characterize not only rigid-frame porous materials, but

also poro-elastic materials, double-porosity materials and metamaterials. The sample resonances can then

be discarded to obtain the equivalent fluid characteristics of the material.

From a practical standpoint the method used is similar to an acoustic JCAL identification, but it has the

advantage that it benefits from vector fitting [27] or Padé approximants [28] to determine the optimum pole

parameters. In a JCAPL identification the parameters are determined by a generic minimization algorithm,

in general less efficient.

Finally, another advantage of the proposed identification method has to do with its relationship with the

formulation of sound propagation in the time-domain. Using the Additional Differential Equation (ADE)

method [29], a pole-based model of the effective medium leads to a time-domain formulation of the propa-

gation of acoustic waves through the material. As opposed to other methods, this approach is compatible

with high-order numerical schemes [30].

After describing the method in sections 2, 3 and 4, in section 5 we validate it and compare it against an

an acoustic-based JCAPL identification, for various conventional and non-conventional porous materials: a

melamine sample, a rock wool exhibiting an acoustic-elastic coupling, a double-porosity rock wool sample,

and two 3D-printed porous networks with a large pore size.
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2. Extended equivalent fluid

We define an extended equivalent fluid as the effective density, ρ̃ext, and the effective compressibility,

K̃−1ext, leading to the correct acoustic field outside the material when modelled through the equations (using

the exp(jωt) convention):

jωρ̃ext(ω)û+
∂p̂

∂x
= 0, (1)

jωK̃−1ext(ω)p̂+
∂û

∂x
= 0, (2)

where p̂ and û are the temporal Fourier transforms of the pressure and the velocity fields, respectively. These

equations need to be accompanied by the appropriate acoustic boundary conditions. The extended effective

speed of sound in the material is then:

c̃ext(ω) =

√
K̃ext(ω)

ρ̃ext(ω)
, (3)

and the extended characteristic impedance and propagation wavenumber can be expressed as:

Z̃ext(ω) =

√
ρ̃ext(ω)K̃ext(ω), (4)

k̃ext(ω) = ω

√
ρ̃ext(ω)

K̃ext(ω)
. (5)

Consider a sample of material of thickness Hm in a duct. The surface impedance corresponding to a

rigid-backing and a configuration with an air gap of depth Lag are, respectively:

Zs(ω) = −j
Z̃ext(ω)

φ
cot(k̃ext(ω)Hm), (6)

Zs,ag(ω) =
Z̃ext(ω)

φ

−φcot(ωHmLag/c0)cot(k̃ext(ω)Hm) + Z̃ext(ω)

−jφcot(ωHmLag/c0) + jZ̃ext(ω)
, (7)

where φ is the porosity of the material. The absorption coefficient is then determined directly from either

surface impedance as:

α = 1−
∣∣∣∣Zs − ρ0c0Zs + ρ0c0

∣∣∣∣2 . (8)

Equations (1-2) imply that there is a single wave mode in the material which obeys the acoustic boundary

and interface conditions. If there are more than one wave modes, as in the case of poro-elastic materials, the

acoustic wave mode is interpreted as an equivalent acoustic wave mode leading to the correct acoustic field

outside the material. In general, the extended equivalent fluid of a material sample cannot be regarded as

an actual equivalent fluid because it depends on the sample dimensions and boundary conditions, and not

only on the material itself. The effective density and compressibility of an actual equivalent fluid model are

labelled ρ̃, and K̃−1.
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2.1. Relationship between the extended equivalent fluid and TFM

The TFM [24] unveiled a correspondence between the effective density and compressibility of a given

porous material sample and its surface impedance corresponding to two different rear boundary conditions,

and provided an experimental procedure to determine ρ̃ and K̃−1. The TFM equations are a direct con-

sequence of Eqs. (1-2) and the boundary and interface conditions, and they have the same assumptions:

there is a single wave mode propagating in the material which obeys the acoustic boundary and interface

conditions, leading to the correct acoustic field outside the material. This is why the output of TFM can

actually be interpreted as an extended effective density and compressibility. Furthermore, the generality of

the extended equivalent fluid concept allows the application of TFM not only to porous, but also to other

types of sound absorbing materials. In the identification method proposed, TFM is used to determine the

extended effective density and extended effective compressibility of the samples of sound-absorbing material.

3. Pole-based model of the equivalent fluid

In this section we present a method to characterize and extract the equivalent fluid from the extended

equivalent fluid. First we show how the poles of the extended effective density and compressibility determined

from TFM can be determined efficiently using a partial fraction expansion. Then we present the physical

interpretation of the poles, including the poles associated to the elastic resonances of the sample. Finally, a

summary of the process to extract the equivalent fluid model of a given material sample is presented.

3.1. Partial fraction expansion of the extended equivalent fluid

The extended effective density and extended effective compressibility obtained from TFM can be decom-

posed as a sum of real and complex poles through a partial fraction expansion:

ρ̃ext(ω) = ρe∞ +

Nrρ∑
k=1

Aρk
λρk − jω

+

Niρ∑
l=1

(
Bρl + jCρl

αρl + jβρl − jω
+

Bρl − jCρl
αρl − jβρl − jω

)
(9)

K̃−1ext(ω) = K−1e∞ +

NrC∑
k=1

ACk
λCk − jω

+

NiC∑
l=1

(
BCl + jCCl

αCl + jβCl − jω
+

BCl − jCCl
αCl − jβCl − jω

)
, (10)

where the complex poles come in complex-conjugate pairs because the inverse Fourier transform of ρ̃ext(ω)

and K̃−1ext(ω) must be real. There exist various algorithms in the literature to determine the optimal pole

parameters for given ρ̃ext(ω) and K̃−1ext(ω), such as vector fitting [27] or the Padé approximants [28]. In order

that all solutions are stable all the poles of ρ̃ext and K̃−1ext need to have positive real values of λi and αi,

which is not an issue because both algorithms allow to search for stable poles only. Vector fitting has been

used here.

Since the number of poles is an input to the vector fitting algorithm, the question then arises of whether

to directly fit with a small number of poles or fitting with a larger number of poles, and then retain the

desired poles. In all cases tested the difference between both cases is small. The results shown correspond

to fitting with a reduced number of poles.
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3.2. Local effective response: dissipative and resonant

The physical grounds for using real and complex-conjugate pole pairs of the effective density and effective

compressibility to describe an equivalent fluid are taken from the theory of metamaterials. According to

effective medium theory arguments in electromagnetic metamaterials, together with the electromagnetic-

acoustic analogy, a locally-resonant acoustic metamaterial can be modelled by a continuous distribution of

harmonic oscillators leading to an effective compressibility of the form [31, 32, 23, 20]:

K̃−1(ω) ≈ 1

ρ0c20
− FCω

2
∗C − jωω∗CGC

ω2 − ω2
∗C − jΓCω

, (11)

where ω∗C and ΓC are the natural resonance frequencies of the effective medium and their damping coeffi-

cients, respectively. An additional derivative forcing term (which is zero in the metamaterial literature) has

been added in the numerator, and will be justified later. An analogous expression can be supposed for the

effective density:

ρ̃(ω) ≈ ρ0 −
Fρω

2
∗ρ − jωω∗ρGρ

ω2 − ω2
∗ρ − jΓρω

. (12)

As simple examples, a 1D duct coupled to a continuous distribution of Helmholtz resonators is equivalent

to an effective medium defined by Eq. (11) [23, 21], and this is also the case of a layered composite material

[33]. On the other hand, a duct filled with a distribution of membranes is equivalent to an effective medium

defined by Eq. (12) [19, 21].

Equations (11) and (12) lead to two different behaviors depending on the relative value of the dissipation

and the resonant frequency: over-damped and under-damped.

3.2.1. Dissipative behavior: real pole pairs

In the case of an equivalent fluid associated to ρ̃ (an analogous argument applies to K̃−1), if Γρ > 2ω∗ρ

the resonance is over-damped, and the resonator is equivalent to a pair of real poles:

ρ̃(ω) = ρ0 +
Aρ1

λρ1 + jω
+

Aρ2
λρ2 + jω

, (13)

λρ1 =
−Γρ −

√
Γ2
ρ − 4ω2

∗ρ

2
, λρ2 =

−Γρ +
√

Γ2
ρ − 4ω2

∗ρ

2
, (14)

Aρ1 =
Fρω

2
∗ρ − λρ2ω∗ρG√
Γ2
ρ − 4ω2

∗ρ

, Aρ2 =
−Fρω2

∗ρ − λρ1ω∗ρGρ√
Γ2
ρ − 4ω2

∗ρ

. (15)

In this case the dissipation overwhelms the underlying resonant behaviour. Note that the additional terms

Gρ, GC in Eqs. (11-12) allow that Aρ1 + Aρ2 6= 0, AC1 + AC2 6= 0, leading to a more general real pole pair

(as in Eq. (9)).

All rigid-frame porous materials obeying JCAPL appear to be well-described using a reduced number of

real poles for the effective density and effective compressibility. Figure 1 shows the fit for two rigid-frame

foams of low resistivity (φ = 0.98, α∞ = 1.04, σ = 2850 N·s·m−4, Λ = 2 · 10−4 m, Λ′ = 5 · 10−4 m) [34] and

moderate resistivity (φ = 0.65, α∞ = 2.25, σ = 19700 N·s·m−4, Λ = 1 · 10−4 m, Λ′ = 3.5 · 10−4 m) [35],
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using one real pole pair. More real poles may be added for higher accuracy or if a larger frequency band is

considered.
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Figure 1: JCAL prediction of the effective density (a,b) and the effective compressibility (c,d) of a rigid-frame polyurethane

foam with σ = 2850 N·s·m−4 ( ), and a rigid-frame metallic foam with σ = 19200 N·s·m−4 ( ), reconstruction using

one pair of real poles of the polyurethane foam ( ), and the metallic foam ( ).

3.2.2. Locally-resonant behavior: complex-conjugate pole pairs

On the other hand, if the resonance is under-damped, i.e. Γρ < 2ω∗ρ, the resonator is equivalent to a

pair of complex conjugate poles:

ρ̃(ω) = ρ0 +
Bρ + jCρ

αρ + jβρ + jω
+

Bρ − jCρ
αρ − jβρ + jω

, (16)

αρ = −Γρ
2
, βρ =

√
−Γ2

ρ + 4ω2
∗ρ

2
, Bρ =

ω∗ρGρ
2

, Cρ =
Fρω

2
∗ρ − αρω∗ρGρ√
−Γ2

ρ + 4ω2
∗ρ

, (17)

and in this case the equivalent fluid responds to an impulsive source as a damped resonator at its natural

frequency, ω∗ρ. Note that the additional terms Gρ, GC in Eqs. (11-12) allow that Bρ 6= 0, BC 6= 0, leading

to a general complex-conjugate pole pair (as in Eq. (9)). This locally-resonant behavior, described through

a complex-conjugate pole pair of the equivalent fluid, is associated to metamaterials. For frequencies where

Re(ρ̃) < 0 or Re(K̃−1) < 0 the sound velocity (Eq. (3)) becomes purely imaginary and plane waves decay

exponentially. In the even more peculiar, but realizable case that Re(ρ̃) < 0 and Re(K̃−1) < 0, the sound
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velocity is real and plane waves propagate. However, the effective medium response is anomalous: it expands

under a pressure rise and moves to the right when pushed to the left (and viceversa) [36].

3.3. Elastic resonances of the sample

Once the poles of the extended equivalent fluid have been identified from a partial fraction expansion of

ρ̃ext and K̃−1ext, only the ones associated to the local acoustic response should be retained in the equivalent

fluid model of the material. The poles associated to resonances of the sample, as the ones usually appearing

in poro-elastic materials, are discarded. As will be shown in section 5.2, the surface impedance around the

elastic resonances is well captured by a real pole pair plus a complex-conjugate pole pair of ρ̃ext and K̃−1ext.

An analytical justification for this is hard to find from the full poro-elastic model, mainly because the two

wave modes in the material are important and neither can be directly identified with an elastic mode or an

acoustic mode. However, an argument can be made to justify the apparent simplicity observed. Consider

an elementary mechanical model (EMM) of the elastic sample consisting of a two-degree-of-freedom mass-

spring-damper, characterized by a mass m∗, a damper of constant χ∗ and a spring of constant k∗, as shown

in Fig. 2. As the excitation is harmonic (∼ exp(jωt)) so is the resulting acoustic field and the vibration of

the EMM. The acoustic field in the duct is equal to:

p̂(x) = Aexp(jkx) +Bexp(−jkx), (18)

where A is the amplitude of the incoming wave and B the amplitude of the reflected wave. The external

forcing on the EMM is equal to the pressure in the duct at x = 0, i.e. F̂a = A+B. The acoustic velocity at

x = 0 is equal to the velocity of the mass-less piston, ûa = −(A−B)/(ρ0c0). The surface impedance of the

EMM is:

Zs∗ = − F̂a
ûa

= ρ0c0
A+B

A−B
. (19)

The application of the force/velocity relations for the spring and the damper, plus Newton’s law for the

mass leads to the impedance of the EMM [37]:

Zs∗ =
jωk∗

−ω2 + k∗
m∗

+ jω k∗χ∗

. (20)

The choice of the two-degree-of-freedom mass-spring-damper instead of the conventional one-degree-of-

freedom configuration [38] responds to the presence of two wave modes in the material, and will be evident

in section 5.2 from the measured surface impedance. In the proposed analogy, the degree of freedom at x = 0

can be associated to the movement of the air, which has a negligible mass, while the degree of freedom of

the mass element can be associated to the vibration of the frame. This type of resonance is similar to the

mass-air-mass resonance encountered for example in double-glazed windows [39].

Now that we have put forward a model for the acoustic impedance associated to the elastic resonances,

can we identify it with a complex-conjugate pole pair of ρ̃ext and K̃−1ext? Using Eqs. (6), (16) and (13)

to compute the surface impedance associated to a complex-conjugate pole pair of ρ̃ext and/or K̃−1ext, it is
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observed that it indeed creates a complex-conjugate pole pair of the surface impedance, as in Eq. (20), but

also introduces a pair of real poles, due to the divergence of the cotangent at low frequencies. This behavior

is not accounted by the simple EMM model. Nevertheless, the contribution of the complex-conjugate pole

pair on the impedance can be obtained by subtracting the surface impedance component associated to the

real pole pair to the total surface impedance:

Zs∗ = Zs − Zreal poles
s , (21)

where Z
real poles
s is obtained from Eqs. (6-7) retaining only the real poles and the constant term of ρ̃ext and

K̃−1ext. The resulting impedance contribution due to the elastic resonance should then approach Eq. (20).

Loudspeaker 

Aexp(jkx) 

Bexp(-jkx) 

k* χ* 
m* 

A + B 

x 

Figure 2: EMM for the elastic resonances of the sample.

Since local and sample resonances may look similar in the extended effective density and compressibility,

some a priori knowledge of the nature of the material and the boundary conditions, such as the elastic bulk

modulus, may be helpful to identify the sample resonances. In the case of conventional porous materials

where no local resonances are expected, the complex-conjugate poles can be directly identified to elastic

resonances of the sample. Another way to identify the elastic sample resonances is to slightly modify the

boundary conditions of the sample in the Kundt’s tube. A large impact on the surface impedance around

the resonance is indication of a sample resonance.

3.4. Summary of the method to extract the equivalent fluid

In summary, the procedure proposed to determine experimentally the equivalent fluid is composed of

three successive steps:

1. experimental determination of the extended equivalent fluid, ρ̃ext, K̃
−1
ext, through TFM,

2. identify the pole pairs of ρ̃ext, K̃
−1
ext via partial fraction expansion,

3. identify the sample resonances and build the equivalent fluid of the material, ρ̃, K̃−1, by superposing

the pole pairs describing the local acoustic response of the material, dissipative (real pole pairs) or

resonant (complex-conjugate pole pairs).

Figure 3 shows a conceptual map of the entire procedure to extract the equivalent fluid.
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Vector 
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−1
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Figure 3: Conceptual map leading to the choice of real and complex-conjugate pole pairs to build the equivalent fluid model,

according to their dissipative/resonant and local/sample nature.

4. Experimental methods

In this section the experimental methodology to characterize the material samples is presented, including

the description of the samples, the TFM method and the complementary JCAPL identification.

4.1. Material samples

We have tested the proposed method against several conventional and non-conventional porous materials:

(a) As a case of approximately rigid-frame porous material a sample of melamine foam of thickness equal

to 30 mm has been tested in a small Kundt’s tube (D = 30 mm).

(b) We have tested three samples of a 30 mm thickness rock wool layer exhibiting elastic behavior. The

first sample contains no perforations (RW), the second sample (RW-7) and the third sample (RW-19)

contain respectively 7 and 19 cylindrical perforations. The diameter of the perforations is 8 mm. The

samples were tested in a large Kundt’s tube (D = 100 mm).

(c) We have also considered two samples of rigid 3D-printed porous networks consisting of cubic periodic

cells [40, 41, 26, 42]. The first sample (OPC, one-pore-cell) contains one centered spherical pore per

unit cell, connected to the adjacent cell pores through six cylindrical channels. It has a cell size of 3

mm and is composed of 12 cells across the sample thickness (total sample thickness of 36 mm) and

10 cells across the sample diameter. The second material sample (FPC, four-pore-cell) is also formed
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Table 1: Properties of the material samples tested.

Porous material Hm (m) D (m) Frequencies (Hz) Expected elastic behavior Double-porosity

Melamine 0.03 0.03 200 - 5500 Yes No

RW 0.03 0.10 150 - 1900 Yes No

RW-7 0.03 0.10 150 - 1900 Yes Yes

RW-19 0.03 0.10 150 - 1900 Yes Yes

OPC 0.036 0.03 200 - 5500 No No

FPC 0.05 0.03 200 - 5500 No No

of periodic cubic cells, but it contains four pores of different sizes per cell, and it is anisotropic. It

has a cell size of 5 mm and is composed of 10 cells across the thickness (total sample thickness of 50

mm) and 6 cells across the sample diameter. They have been tested in a small Kundt’s tube (D = 30

mm). The material consists of ABS polymer filaments Z-ultra (Zortrax M200), with a Young modulus

of about 1.85 GPa. Note that the actual Young modulus and Poisson ratio of the porous networks are

necessarily lower due to the presence of the pores. The rigidity of the samples suggest however that

their Young modulus is still much larger than the melamine and rock wool samples.

The diameter of the samples was very close to the diameter of the tube. In the case that the sample

wasn’t rigidly fixed on its own, we added an additional layer of tape around the perimeter of the sample to

assure so. The only case in which this was necessary was the 3D-printed porous networks.

Table 1 shows the properties of the various material samples used, and Fig. 4 shows pictures of the

samples.

(a) Melamine (b) RW (left), RW-7 (center) and RW-19 (right) (c) OPC (left) and FPC (right)

Figure 4: Material samples tested.

4.2. Experimental determination of the extended equivalent fluid using TFM

The extended effective density and compressibility of the material samples are obtained experimentally

using TFM. They are determined from two surface impedance measurements corresponding to different

boundary conditions at the rear of the sample, namely two different air gaps between the sample and a rigid
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Figure 5: Kundt’s tube configuration in TFM [24] corresponding to two different boundary conditions at the rear face of the

sample: (a) rigid backing, (b) an air gap Lag.

wall. The setup in the Kundt’s tube for the two air gaps is shown in Fig. 5. The details of the method have

been included in Appendix A. The result is independent, in theory, of the chosen air gaps. In practice there

is a restriction at low frequencies: both the distance between microphones and the difference between the

two air gap depths need to be sufficiently high to capture the phase differences. Sensibly smoother results

are in general obtained when one of the air gaps is set to zero. All results presented, unless explicitly stated,

have been obtained using air gaps of Lag = 0 and 20 mm for the melamine and 3D-printed samples (small

Kundt’s tube), and of Lag = 0 and 60 mm for the rock wool samples (large Kundt’s tube). In all cases the

absorption coefficient is shown at the training case Lag = 0 mm and at the prediction case Lag = 40 mm.

4.3. JCAPL identification

In the case of porous materials a JCAPL identification may also lead to the underlying rigid-frame

porous medium. In order to check this and compare against the method proposed, an acoustics-based

JCAPL identification has also been performed for all single-porosity samples, through the surface impedance

with and without an air gap. In order to simplify the identification, the Pride contribution to the model

has been ignored, reducing to the JCAL model defined through only six parameters. It has been checked a

posteriori that the refinement by the Pride parameters is below the experimental and modeling error. For

generality, the full JCAPL model is presented in appendix B.

A more robust identification is obtained if performed in successive steps [43, 44]. The porosity (φ) and
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the viscous permeability (k0) have been determined a priori from the low frequency limits:

φ = limω→0
ρ0
Hmω

Im

(
1

Zms (ω)

)
, (22)

k0 = −limω→0
µ

Im(k̃ext(ω)Z̃ext(ω))
, (23)

where µ is the molecular viscosity of air. The remaining parameters have been determined from the mini-

mization of the difference between the computed and measured surface impedance, ∆, using the fminsearch

function of MATLAB©:

∆ =
∑
i

||Zms (ωi)− Zps (ωi)||2 + ||Zms,ag(ωi)− Zps,ag(ωi)||2 (24)

where Zms , Z
m
s,ag are the measured surface impedances without and with air gap, respectively, and Zps , Z

p
s,ag

are the predicted surface impedances obtained from Eqs. (6) and (7). The JCAL model for ρ̃(ω) and K̃−1(ω)

(Eqs. 30 and 31) is used to determine Zps (ω) and Zps,ag(ω).

Table 2 shows the JCAL parameters obtained for all the materials tested (except those with double

porosity). Note that the resistivity is directly calculated from the viscous permeability through the definition

σ = µ/k0.

5. Validation against conventional and non-conventional porous materials

In this section the method proposed is applied to the samples tested: melamine foam, rock wool, two

rock wool samples with double porosity, and two 3D-printed porous networks. We compare the proposed

method against an acoustics-based JCAL identification.

Table 3 shows a summary of the results obtained for all the samples, in terms of the poles required to

describe the extended equivalent fluid and the poles retained in the equivalent fluid model of the material.

5.1. Melamine foam

Figure 6 shows the absorption coefficients of the melamine sample corresponding to Lag = 0 mm (a) and

Lag = 40 mm (b). In this case the reconstruction using 1 real pole pair follows closely the full extended

equivalent fluid result, as well as the direct measurement (except around 2800 Hz). The JCAL identification

shows also an overall agreement with the direct measurement. The JCAL parameters identified to the

measured surface impedance are shown in Table 2, which are consistent with this type of porous material

: a porosity and static tortuosity very close to 1, viscous and thermal lengths of the order of 10−4 m and

viscous and thermal permeabilities of the order of 10−9 m2.

Figure 7 shows the extended effective density and compressibility together with their reconstruction using

one real pole pair and the JCAL identification. While K̃−1ext is well captured by both identification approaches,

ρ̃ext is better captured by the proposed method, even if the impact on the absorption coefficient is small.

13



0 2000 4000 6000
0

0.5

1

0 2000 4000 6000
0

0.5

1

(b)

(a)

Figure 6: Absorption coefficient of the melamine sample corresponding to the direct measurement ( ), the calculation from

the full extended equivalent fluid determined from TFM ( ), JCAL identification ( ), and the reconstruction using one

real pole pair ( ), for Lag = 0 mm (a) and Lag = 40 mm (b).

5.2. Rock wool

Figure 8 shows the measured absorption coefficient and the predicted absorption coefficients using a

full poro-elastic model and the rigid-frame limit prediction (infinite Young modulus), all corresponding to

rigid backing. The one-dimensional analytical solution for the case of a rigidly-backed poro-elastic layer is

included in Appendix C. The air-frame coupling is strongest around the resonance, around 350 Hz. A weaker

secondary resonance is appreciated at about 700 Hz. With an air gap the poro-elastic model doesn’t predict

any resonance (not shown), while the measurements reveal a resonance at about 250 Hz (see Fig. 9(b)). This

resonance is thought to be related to a flexural resonance of the sample, not described by the analytical,

one-dimensional poro-elastic model.

Table 2: JCAL parameters of the various samples obtained from the direct JCAL identification (JCAL).

Porous material φ α∞ Λ (m) Λ′ (m) k0 (m2) k′0 (m2) σ (N·s·m−4)

Melamine 0.99 1.0 1.3·10−4 1.6·10−4 4.0·10−9 4.0·10−9 4500

RW 0.99 1.0 2.4·10−5 3.5·10−5 4.0·10−10 1.5·10−10 44600

OPC 0.42 2.1 3.2·10−4 1.1·10−3 1.4·10−8 2.4·10−8 1500

FPC 0.35 2.4 2.2·10−4 1.0·10−5 9.0·10−9 5.8·10−8 2000
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Figure 7: (a,b) Extended effective density and (c,d) extended effective compressibility of the melamine sample ( ), recon-

struction using a real pole pair ( ) and JCAL identification ( ).

The measured and predicted absorption coefficients of RW are shown in Fig. 9, corresponding to Lag = 0

mm (a,c) and Lag = 40 mm (b,d), respectively. Note that in (b) and (d) the prediction from the extended

equivalent fluid is extremely accurate, which is the case in all the material samples tested. In (a,b) it is

appreciated how the reconstruction using one real pole pair and the JCAL identification both remove the

peaks and troughs associated with the elastic couplings, and follow closely the rigid-frame trend for Lag = 0

mm. With the air gap the measurements reveal a flexural elastic resonance at about 250 Hz, whose impact

on the acoustic field is accurately predicted by TFM. It is remarkable that the extended effective model

based on a single plane wave mode is capable of capturing the effect of such a three-dimensional elastic

mode. The reconstruction using a real pole pair is closer to the rigid-frame limit of the full poro-elastic

Table 3: Summary of the equivalent fluid characterization of the material samples tested.

Material JCAL Pole pairs of ρ̃ext Pole pairs of K̃−1ext Pole pairs of ρ̃ Pole pairs of K̃−1

Melamine Yes 1 real 1 real 1 real 1 real

RW No 1 real + 1 compl-conj 1 real + 1 compl-conj 1 real 1 real

RW-7 No 1 real + 1 compl-conj 1 compl-conj 1 real no poles

RW-19 No 1 real + 1 compl-conj 1 compl-conj 1 real no poles

OPC Yes 1 real 1 real 1 real 1 real

FPC Yes 1 real 1 real 1 real 1 real
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Figure 8: Absorption coefficient of RW with a rigid backing, measured ( ), predicted from a full poro-elastic model ( ),

and predicted in the rigid-frame limit E →∞ ( ).

model than the JCAL identification. In (c,d) the measured absorption coefficient and their reconstruction

using one real pole pair, one real pole pair plus one complex-conjugate pole pair, and one real pole pair

plus two complex-conjugate pole pairs are shown. The first complex-conjugate pole pair describes the effect

of the leading elastic resonance, and the second complex-conjugate pole pair describes the second elastic

resonance. The sum of both the real and the complex-conjugate pole pairs leads to a precise prediction of

the measured surface impedance.

Figure 10 shows the obtained effective density (a,b) and effective compressibility (c,d). A pair of real

poles are enough to capture the underlying rigid-frame behavior, and one complex-conjugate pole pair of

ρ̃ext describes the elastic resonance at 350 Hz. Similar results are obtained for the effective compressibility.

While the JCAL identification captures the overall trend, the reconstruction using a pair of real poles is

slightly closer to the rigid-frame limit from the full poro-elastic model.

Figure 11 shows the measured surface impedance around the leading elastic resonance, with the contri-

bution from the real poles of ρ̃ext and K̃−1ext subtracted, and is compared against the prediction from the

full poro-elastic model, and against a fit of the EMM (Eq. (20)). Figures 11(a,b) correspond to a rigid

backing and 11(c,d) to Lag = 40 mm. The prediction from the full poro-elastic model has been obtained by

subtracting the surface impedance of the rigid-frame limit (E →∞) to the surface impedance of the actual

elastic sample. This is equivalent to subtracting the contribution of the real poles of ρ̃ext and K̃−1ext because

they account for the rigid-frame behavior. It is observed that the real component is negative, which implies

that the EMM requires negative values of m∗, k∗ and χ∗. This shows that Zs∗ cannot be interpreted as an

actual surface impedance, but only as a local contribution to the impedance due to the complex-conjugate

pole pair of the equivalent fluid. This peculiar behavior can be used to identify elastic resonances. In the

air gap configuration the elastic resonance is flexural and it is thus not captured by the full poro-elastic

model, which is one-dimensional. For a rigid backing the measurement trend is well described by both the
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Figure 9: (a,b) Absorption coefficient of RW corresponding to the direct measurement ( ), the full extended equivalent fluid

from TFM ( ), the reconstruction using one real pole pair ( ), the JCAL identification ( ), and the prediction of a

full poro-elastic model in the rigid-frame limit, E →∞ ( ), for Lag = 0 (a) and Lag = 40 mm (b); (c,d) absorption coefficient

of RW corresponding to the direct measurement ( ), reconstruction using one real pole pair ( ), reconstruction using one

real pole pair plus one complex-conjugate pole pair for the leading elastic resonance of the sample ( ), and reconstruction

using one real pole pair plus two complex-conjugate pole pairs accounting for both elastic resonances of the sample ( ), for

Lag = 0 (c) and Lag = 40 mm (d)

poro-elastic model and the EMM. A certain bias between the measurement and both models is appreciated

at the lowest frequencies. This is attributed to an error in the pole identification due to the missing of the

low-frequency tail of the resonance. With the air gap the EMM model also fits well the measured trend,

showcasing its generality.

5.3. Rock wool with perforations: double porosity material

The impact of the air inclusions can be appreciated in Fig. 12, which compares the measured absorption

coefficient of RW and RW-19. The predictions using the double porosity model of Olny and Boutin [15]

(JCAL for the primary rock wool microstructure and Zwikker and Kosten’s model [45] for the cylindrical

air inclusions) are included. Such a coupling model is limited to this simple double-porosity configuration

consisting of cylindrical one-dimensional inclusions. Figure 13 shows the predictions for the effective density

and effective compressibility of RW (JCAL, assuming a rigid-frame) and RW with a 10% of perforated surface

with air inclusions of 1 mm in diameter. In order to capture the behavior of the effective density at low

frequencies the plots are shown in logarithmic scale. Their reconstruction using one real pole pair are in
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Figure 10: (a,b) Extended effective density and (c,d) extended effective compressibility of RW ( ), reconstruction using one

real pole pair ( ), reconstruction using one real pole pair plus one complex-conjugate pole pair ( ), prediction by the

full poro-elastic model in the rigid-frame limit, E →∞ ( ), and the JCAL identification ( ).

excellent agreement in the considered frequency range. The reconstructions using only one real pole are also

shown. While the proposed method requires in general two real poles, in some cases the contribution of one

of the poles is much lower than the other, leading to a good description using a single real pole. This can be

appreciated in the present case: for the double-porosity material the effective density is accurately matched

using a single real pole, and RW is also matched well by a single pole except at low frequencies.

Figure 14 shows the absorption coefficient (a,b) and the obtained effective density (c,d) of RW-7. As

before, (a) corresponds to Lag = 0 and (b) to Lag = 40 mm. The absorption coefficients corresponding to the

extended equivalent fluid are not shown as they match exactly the direct measurement. This double-porosity

sample shows a similar elastic coupling as RW, but at a lower frequency (≈ 280 Hz). Similarly to RW, using

one real pole pair plus one complex-conjugate pole pair leads to an accurate reconstruction of the trend

corresponding to the complete extended equivalent fluid, with the real pole pair describing the underlying

rigid-frame behavior, and the complex-conjugate pole pair describing the elastic sample resonance. In (c,d) it

can be observed that the effect of the elastic sample resonance on the effective density is accurately captured

by the complex-conjugate pole pair. RW-19 shows similar trends, but with a weaker impact of the resonance

(not shown).

18



100 200 300 400 500 600

-1

0

1

100 200 300 400 500 600

-1

0

1

(b)

(a)

100 200 300 400 500 600
-2

0

2

100 200 300 400 500 600
-2

0

2

(c)

(d)

Figure 11: Surface impedance of RW around the elastic resonance, with the contribution of the real pole pair of ρ̃ext and K̃−1
ext

subtracted, from the measurement ( ), the full poro-elastic model ( ), and the fit of the EMM (Eq. 20) ( ); (a,b)

rigid backing, (c,d) Lag = 40 mm.

0 500 1000 1500 2000
0

0.5

1

Figure 12: Measured absorption coefficient of RW-19 ( ) and predicted ( ), measured absorption coefficient of RW

( ) and predicted ( ), with a rigid backing.

5.4. 3D-printed porous material

Contrarily to the previous materials, an important variation of ρ̃ext and K̃−1ext of OPC and FPC is observed

when changing the air gap pairs used in TFM. In particular, spurious fluctuations in frequency appear for

both ρ̃ext and K̃−1ext. They can be seen in Fig. 15, which displays ρ̃ext for two pairs of air gaps, together with

its reconstruction using one pair of real poles. The reconstructions using one real pole pair are close to each

other, indicating that they are more robust to changes in the air gaps, thus providing a consistent model for
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Figure 13: Effective density (a,b) and effective compressibility (c,d) of RW (rigid-frame) ( ), fit of RW with one real pole

( ), fit of RW with two real poles ( ), RW with a double porosity of 10% of perforated surface ( ), fit of RW with

a double porosity of 10% of perforated surface using one real pole ( ), and fit of RW with a double porosity of 10% of

perforated surface using two real poles ( ).

the equivalent fluid of the material. The oscillations observed in ρ̃ext and K̃−1ext are interpreted as spurious

fluctuations due to the failure of the plane wave approximation in these samples, due to the limited ratio of

the sample thickness to the pore size (∼ 10).

The absorption coefficients of OPC are shown in Figs. 16(a,b), corresponding to Lag = 0 (a) and

Lag = 40 mm (b). With a rigid backing, the absorption coefficients from both the JCAL identification and

the reconstruction of ρ̃ext and K̃−1ext using one real pole pair mimic closely the direct measurement. On the

other hand, for the prediction case Lag = 40 mm the trend corresponding to the full extended equivalent fluid

obtained from TFM leads to an important error at the largest frequencies, while both the JCAL identification

and the reconstruction with one real pole pair predict accurately the direct measurement. This shows that

1) this material obeys closely JCAL when it comes to the surface impedance, and 2) the reconstruction using

a pair of real poles is robust to the failure of TFM at high frequencies.

The analogous results for FPC are presented in Fig. 16 (c,d). In this case the predictions of the

absorption coefficient at both air gaps are worse in general, with a slightly better agreement coming from

the reconstruction using a pair of real poles, especially for Lag = 40 mm. This shows that even in such an

anisotropic medium the proposed method captures better the behavior than a JCAL identification. Also, the

thermal length (Λ′) obtained from the JCAL identification is in this case smaller than the viscous length (Λ)
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Figure 14: (a,b) Absorption coefficient of RW-7 corresponding to the direct measurement ( ), a reconstruction using one

real pole pair of ρ̃ext and no real poles of K̃−1
ext ( ), and a reconstruction using two real poles plus a complex-conjugate pole

pair for ρ̃ext and two complex-conjugate pole pairs for K̃−1
ext ( ), for Lag = 0 (a) and Lag = 40 mm (b); (c,d) measured

extended effective density ( ), reconstruction using a real pole pair ( ) and reconstruction using a real pole pair plus a

complex-conjugate pole pair ( ).

(see Table 2). This contradicts the physical assumptions of the model and casts doubt on the validity of the

identification. On the other hand, it is also possible that this material in particular has a microstructure which

is not compatible with JCAL. A complete JCAL identification of the low- and high-frequency asymptotics

of this material is required to clarify this issue.
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Figure 15: Extended effective density of OPC corresponding to Lag = 0 and 20 mm ( ), Lag = 10 and 20 mm ( ), the

reconstruction of the former ( ) and the latter ( ) using one real pole pair.
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Figure 16: Absorption coefficient of (a,b) OPC and (c,d) FPC, corresponding to the direct measurement ( ), the full

extended equivalent fluid ( ), the reconstruction using one real pole pair ( ) and a JCAL identification ( ), for

Lag = 0 (a,c) and Lag = 40 mm (b,d).
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6. Conclusions

In this work a new framework to extract experimentally the equivalent fluid of general sound-absorbing

materials has been presented, based on a pole identification of the extended effective density and effective

compressibility. An extended equivalent fluid can approximate the acoustic response of non-rigid-frame

materials (characterized by multiple wave modes propagating in the material) using a single wave mode

approximation, and it is estimated from TFM. The proposed method goes beyond the rigid-frame porous

materials described by JCAPL, and this has been illustrated by rock wool samples exhibiting an elastic

coupling, rock wool samples with double-porosity, and by a sample of 3D-printed network formed of periodic

cells of high pore size. An acoustics-based JCAPL identification can also be performed to determine an

equivalent fluid of the medium, but the proposed method leads in general to a better agreement with the

rigid-frame limit. It appears also that the pole-based identification is robust to local errors of TFM.

One important application of the description of the equivalent fluid using poles is the derivation of a

time-domain formulation from Eqs. (1) and (2). Using the additional differential equation method (ADE)

[30, 46], the equations in the frequency domain can be transformed to an equivalent set of time-domain

equations compatible with high-order spatial and temporal schemes. Among others, this opens the possi-

bility of performing high-order, two- and three-dimensional temporal simulations of extended-reacting liners

composed of a wide variety of materials.
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Appendix

A. Transfer function method for the determination of the extended equivalent fluid

The extended characteristic impedance and extended propagation wavenumber of the material are de-

termined from a pair of measurements of a single material sample placed in a Kundt’s tube, at two different
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air gaps, Lag, L
′
ag, between the rear face of the sample and the rear piston (see Fig. 5):

Z̃ext = ±

√
ZsZ ′s(Zag − Z ′ag)− ZagZ ′ag(Zs − Z ′s)

(Zag − Z ′ag)− (Zs − Z ′s)
, (25)

k̃ext =
1

j2Hm
ln

[
(Zs + Z̃ext)(Zag − Z̃ext)
(Zs − Z̃ext)(Zag + Z̃ext)

]
, (26)

Zag = −jρ0c0φcot

(
ωLag

c0

)
, Z ′ag = −jρ0c0φcot

(
ωL′ag

c0

)
. (27)

The surface impedance at both air gaps are determined from the transfer function of the two microphone

signals:

Zs = jρ0c0φ
−Hsin(ωLm1/c0) + sin(ωLm2/c0)

Hcos(ωLm1/c0)− cos(ωLm2/c0)
, (28)

Z ′s = jρ0c0φ
−H ′sin(ωLm1/c0) + sin(ωLm2/c0)

H ′cos(ωLm1/c0)− cos(ωLm2/c0)
, (29)

where Lm1, Lm2 are the distances from the sample surface to each microphone, and H = p̂m1/p̂m2.

B. Johnson-Champoux-Allard-Pride-Lafarge model for the equivalent fluid of rigid-frame porous

materials

The Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) semi-phenomenological model characterizes a

rigid-frame porous material with eight parameters: the porosity (φ), the high-frequency limit of the tortuosity

(α∞), the viscous length (Λ), the thermal length (Λ′), the viscous permeability (k0), the thermal permeability

(k′0), the static viscous tortuosity (α0) and the static thermal tortuosity (α′0):

ρ̃(ω) =
ρ0
φ

(
α∞ +

1

jX
(
√

jMN2 + b2 − b+ 1)

)
, (30)

K̃−1(ω) =
φ

ρ0c20

(
γ − γ − 1

C

)
, C = 1 +

1

jX ′

(√
jM ′(N ′)2 + (b′)2 − b′ + 1

)
, (31)

b =
2α2
∞k0

Λ2φ(α0 − α∞)
, b′ =

2k′0
(Λ′)2φ(α′0 − 1)

, (32)

X =
ωρ0k0
µφ

, X ′ =
ωρ0k

′
0Pr

µφ
, (33)

M =
ωρ0
µ
, M ′ =

ωρ0Pr

µ
, (34)

N =
2α∞k0

Λφ
, N ′ =

2k′0
Λ′φ

. (35)

The JCAL model is obtained from ignoring the Pride contribution: b = b′ = 1. This determines α0 and

α′0 as a function of the other six parameters.

C. Analytical solution for a rigidly-backed poro-elastic layer

The surface impedance of a rigidly-backed layer of poro-elastic material of bulk modulus E and Poisson

ratio ν is given by the following equations [14]:
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Zs = − j

φ

Z ′L + FZ ′R
tan(kLHm)− F tan(kRHm)

(36)

k2R =
ω2

2(PR−Q2)

(
Pρ22 +Rρ11 − 2Qρ12 −

√
∆
)

(37)

k2L =
ω2

2(PR−Q2)

(
Pρ22 +Rρ11 − 2Qρ12 +

√
∆
)

(38)

F =
φR
φL

ZL
ZR

(39)

ZR = (P +QφR)
kR
ω
, ZL = (P +QφL)

kL
ω

(40)

Z ′R = (
Q

φR
+R)

kR
ω
, Z ′L = (

Q

φL
+R)

kL
ω

(41)

∆ = (Pρ22 +Rρ11 − 2Qρ12)2 − 4(PR−Q2)(ρ11ρ22 − ρ212) (42)

φR =
ω2ρ11 − Pk2R
Qk2R − ω2ρ12

, φL =
ω2ρ11 − Pk2L
Qk2L − ω2ρ12

(43)

P = Kb +
4N

3
+

(1− φ)2Kf

φ
, Q = (1− φ)Kf , R = φKf (44)

Kb =
E

3(1− 2ν)
, Kf = C (C defined in Eq. (31)) (45)

ρ11 = ρ̂11 − j
a

ω
, ρ12 = ρ̂12 + j

a

ω
, ρ22 = ρ̂22 − j

a

ω
(46)

a =
µφ2

k0

√
1 +

j4ρ0ωα2
∞k0

µΛ2φ2
(47)

ρ̂11 = ρ1 + φρ0(α∞−1), ρ̂22 = φρ0 + φρ0(α∞−1), ρ̂12 = −φρ0(α∞−1) (48)

In the limit E →∞, all sample resonances move to infinite frequencies, and Z ′R and kR go to zero. The

surface impedance becomes:

Zs ≈ −
j

φ
Z ′Lcot(kLHm), (49)

i.e. the material behaves like an effective medium of impedance Z ′L and effective wavenumber kL.
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