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This paper is the continuation of work done in our previous papers [A.A. Doinikov et al.,
Phys. Rev. E 100, 033104, 033105 (2019)]. The overall aim of the study is to develop a theory
for modeling the velocity field of acoustic microstreaming produced by nonspherical oscillations of
an acoustically driven gas bubble. In our previous papers, general equations have been derived
to describe the velocity field of acoustic microstreaming produced by modes m and n of bubble
oscillations. After solving these general equations for some particular cases of modal interactions
(cases 0-n, 1-1 and 1-m), in this paper the general equations are solved analytically for the case
that acoustic microstreaming results from the self-interaction of an arbitrary surface mode n ≥ 1.
Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes
are assumed to be known and serve as input data for the calculation of the velocity field of acous-
tic microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous
penetration depth. The self-interaction results in specific streaming patterns: a large-scale cross
pattern and small recirculation zones in the vicinity of the bubble interface. Particularly the spatial
organization of the recirculation zones is unique for a given surface mode and therefore appears as
a signature of the n-n interaction. Experimental streaming patterns related to this interaction are
obtained and good agreement is observed with the theoretical model.

I. INTRODUCTION

Applications of bubble-induced phenomena mainly
concern medical therapy and material surface cleaning.
In both cases, the immediate candidate usually consid-
ered for damage of substrate material or biological cell
is the liquid jet impact and shock wave induced by bub-
ble collapses [1, 2]. However the existence of additional
mechanisms that result in controlled and weak damages
have recently received growing attention. Such mecha-
nisms are induced by highly nonlinear oscillatory behav-
ior of bubbles, and bubble-mediated liquid flows. Ap-
plications of soft interaction of bubbles with surround-
ing media concern the bubble penetration within cracks
between substrate and contamination [3], the permeabi-
lization of biological cells [4] and the blood-brain barrier
opening [5], to name a few. Among the different me-
chanical effects of steady-oscillating microbubbles, mi-
crostreaming is commonly considered as an important
one due to the associated shear stress applied to sur-
rounding solid or elastic walls. Microstreaming is a slow
mean flow induced by a fast oscillating body [6]. In op-
position to acoustic streaming, caused by the attenua-
tion of an acoustic wave in the fluid, microstreaming is
driven by streaming inside the oscillatory boundary layer
around the bubble, the so-called Stokes layer. Nonlin-
ear second-order effects are responsible for the extension
of the streaming patterns much further than the Stokes

∗ claude.inserra@inserm.fr

layer. The flow pattern is directly related to the bubble
oscillation modes, including the radial mode, the trans-
lational one, and the surface modes. Most of the avail-
able theoretical studies restrict their analysis to the sim-
plest analytical cases. Davidson and Riley [7] are the
first to consider the case of a translating bubble, where
microstreaming is produced by the dipole (translation)
mode alone. In the present study, we shall refer to
this study as the microstreaming induced by the self-
interacting translation mode, or 1-1 interaction. Wu and
Du [8] and Longuet-Higgins [9] considered the case of
a translating and pulsating bubble, where streaming is
produced by the dipole mode and the monopole (pulsa-
tion) mode. In more recent studies, attempts have been
made to consider shape modes of higher order [10, 11, 16].
Doinikov and Bouakaz [10] and Spelman and Lauga [11]
developed theories that include modes of all orders but
their calculations assume that all the modes oscillate at
the same frequency, which means that the parametric
generation of shape modes is disregarded. This makes
these theories difficult to apply to real experimental con-
ditions, such as these reported by Guédra et al. [12, 13]
and Cleve et al. [14, 15], where predominant oscillatory
modes are generated parametrically and hence oscillate
at half the driving frequency. Only Maksimov [16] de-
rived an asymptotic solution for microstreaming gener-
ated by a parametrically excited shape mode of order
n, assuming that the amplitude of the shape mode is
much greater than the one of the pulsation mode so that
the contribution of the former to the microstreaming is
dominant. Maksimov’s analysis corresponds to the self-
interacting nonspherical mode, or n-n interaction, in the



2

present model. However, Maksimov’s model is developed
to describe liquid flows induced by millimeter-sized bub-
ble driven at a frequency of a few kilohertz [17]. This so-
lution is therefore not valid for microfluidic and biomedi-
cal applications, where one has to deal with micron-sized
bubbles driven at high kHz and MHz frequencies [18].
It should also be emphasized that the above-mentioned
theoretical studies assume that the bubble radius R0 is
much greater than the viscous penetration depth δ. This
means that viscous effects are considered to be suffi-
ciently small and to verify the condition δ/R0 � 1. As a
consequence, the above-mentioned theoretical works are
performed approximately, only up to leading terms with
respect to the ratio δ/R0. It makes these theories invalid
when this ratio is not small compared to unity, as it is
the case with high-viscosity liquids and/or micron-sized
bubbles. In our previous studies [19, 20], we developed a
general theory for modeling the velocity field of acoustic
microstreaming produced by axisymmetric nonspherical
oscillations of an acoustically-driven gas bubble. A first
study [19] was dedicated to the case that acoustic mi-
crostreaming is generated by the interaction of the radial
mode (mode 0) with a mode of arbitrary order m ≥ 1.
In a second study the contribution of the translational
mode was investigated through the self-interacting mode
1-1, and the interaction of translation with any arbitrary
nonspherical mode m > 1.

In the present study we derive the exact analytical so-
lution of the Lagrangian streaming velocity induced by
the self-interacting mode n, without restriction on the
bubble radius to the viscous penetration depth. In Sec-
tion II the solution for the Lagrangian streaming velocity
is derived, compared to previous theories available in the
literature, and numerical examples are provided. In Sec-
tion III experimental streaming patterns exhibiting the
specific signature of n-n interaction are analyzed.

II. THEORY

We consider a gas bubble undergoing axisymmetric os-
cillations, which include the radial pulsation (mode 0),
translation (mode 1), and shape modes of order m > 1.
The liquid motion produced by the bubble oscillations is
described in the spherical coordinates r and θ whose ori-
gin is at the equilibrium center of the bubble, and the axis
z is the axis of symmetry. The geometry of the problem
is depicted in Fig. (1).

Our derivation assumes that the amplitudes of the bub-
ble oscillation modes are small compared to the equi-
librium bubble radius. This assumption allows us to
linearize the equations of liquid motion (Navier-Stokes
equations) and to find their solutions, assuming that
the amplitudes of the bubble oscillation modes are given
quantities. These solutions give us the linear velocity
field produced by the bubble in the liquid. This calcu-
lation is performed in Sec. II A and leads to expressions
for the linear radial and tangential velocity components
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FIG. 1. Geometry of the system under study. (a) Three-
dimensional representation of the zonal spherical harmonics
(here mode 4 is shown), where z is the axis of axial symmetry.
(b) Axial symmetry allows using polar coordinates (r,θ) to
parametrize the bubble interface rs.

given by in Eqs. (2) and (3). To calculate the first-order
liquid velocity, boundary conditions at the bubble sur-
face are applied. Firstly, the normal component of the
bubble surface velocity is equated to the normal compo-
nent of the fluid particle velocity at the interface. Sec-
ondly, the tangential stress is supposed to vanish on the
bubble surface when considering a non-contaminated in-
terface. In the next step, the equations of liquid motion
are written with accuracy up to terms of the second or-
der of smallness with respect to the linear solutions and
averaged over time. This operation leads to Eq. (7) that
describes the time-independent velocity field of acoustic
microstreaming produced by the bubble oscillations. The
solution of Eq. (7) is derived in Sec. II B. To derive the
velocity field of acoustic streaming, the boundary condi-
tions of vanishing normal velocity and tangential stress
of the Lagrangian streaming are applied at the mean po-
sition of the interface. The use of these boundary condi-
tions is described in Appendix A.

A. Linear solutions

The bubble oscillation is decomposed over N axisym-
metric surface modes, corresponding to the basis of Leg-
endre polynomials [21]. The oscillation frequencies of the
modes may differ between each other due to the para-
metric behavior of nonspherical bubble dynamics. The
bubble surface is hence represented by

rs = R0 +

N∑
n=0

sne
−ıωntPn (µ) , (1)

where R0 is the bubble radius at rest, sn is the complex
amplitude of the nth mode, ωn is the angular frequency of
the nth mode, µ = cos θ, and Pn is the Legendre polyno-
mial of order n. It is assumed that |sn|/R0 � 1. The val-
ues of sn and ωn are considered as known quantities, pos-
sibly experimentally measured, and serve as input data
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in the proposed model.
The linearized equations of an incompressible viscous

liquid allow us to determine the radial, v1r, and tan-
gential, v1θ, components of the first-order liquid veloc-
ity [19]:

v1r = − 1

R0

N∑
n=0

(n+ 1)e−ıωnt

[
an

(
x̄n
xn

)n+2

+ nbn
x̄n
xn
h(1)
n (xn)

]
Pn(µ), (2)

v1θ =
1

R0

N∑
n=0

e−ıωnt

[
an

(
x̄n
xn

)n+2

− bn
x̄n
xn
{h(1)

n (xn) + xnh
(1)′
n (xn)}

]
P 1
n(µ), (3)

where xn = knr, kn = (1 + ı)/δn, δn =
√

2ν/ωn, ν is
the kinematic liquid viscosity, x̄n = knR0, h

(1)
n is the

spherical Hankel function of the first kind of order n,
h

(1)′

n (xn) = dh
(1)
n (xn)/dxn and P 1

n is the associated Leg-
endre polynomial of the first order and of degree n, as
defined in [22]. The terms an and bn are linear scatter-
ing coefficients of, respectively, the potential and vortical
parts of the scattered wave from the bubble. Their ex-
pression is given by [19]

an =
ıR0ωnsn[x̄n

2h1′′
n (x̄n)− (n2 + n− 2)h

(1)
n (x̄n)]

(n+ 1)[x̄n2h1′′
n (x̄n) + (n2 + 3n+ 2)h

(1)
n (x̄n)]

,

for n ≥ 1, (4)

bn =
2ıR0(n+ 2)ωnsn

(n+ 1)[x̄n2h1′′
n (x̄n) + (n2 + 3n+ 2)h

(1)
n (x̄n)]

for n ≥ 1. (5)

B. Acoustic microstreaming produced by the mode
n alone

The derivation of the equations of acoustic stream-
ing relies on taking the nonlinear incompressible Navier-
Stokes equations up to second-order terms with respect to
the linear solution of first-order fluid velocity, and averag-
ing it over time. Time averaging leads to the result that
nonzero contributions to acoustic streaming can come ei-
ther from pairs of modes that oscillate at the same fre-
quency or from the interaction of a mode with itself. We
already provided exact analytical solutions for the cases
of microstreaming induced by the interaction of the ra-
dial mode [19] or the translation mode n = 1 [20] with
any arbitrary surface mode n. Here the case of the self-
interaction of a surface mode is considered. According to
the theory developed in Part I [19], in the self-interacting
case, the Eulerian streaming velocity is represented by

〈vnn2 〉 = ∇× [〈ψnn2 (r, θ)〉eε] , (6)

where 〈 〉 denotes the time average, eε is the unit az-
imuthal vector, and 〈ψnn2 (r, θ)〉 is the amplitude of the
vector potential of the streaming velocity that is calcu-
lated from Eq. (33) of Part I:

D2〈ψnn2 〉 =
n+ 1

2νr2

(
R0

r

)n+1

Pn(µ)P 1
n(µ)Re {α1(xn)}

−
√

1− µ2

νr2
P 1
n(µ)P 1′

n (µ)Re {α2(xn)} , (7)

where D is the linear operator given by

D =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

r2 sin2 θ

=
k2
n

x2
n

∂

∂xn

(
x2
n

∂

∂xn

)
+
k2
n

x2
n

[
(1− µ2)

∂2

∂µ2
− 2µ

∂

∂µ
− 1

1− µ2

]
(8)

and the functions α1,2(xn) are

α1(xn) = k2
nanb

∗
n

[
(n+ 1)h(1)

n (xn)− xnh(1)′
n (xn)

]∗
, (9)

α2(xn) = k2
nh

(1)∗
n (xn)

[
anb
∗
n

(
R0

r

)n+1

− bnb∗nxnh(1)′
n (xn)

]
,

(10)
where the asterisk denotes the complex conjugate. In
order to find an exact solution for the equation ruling
the vector potential ψnn2 , one may simplify the angular
dependency in Equation (7) which is decomposed over
two terms involving Legendre polynomials and associ-
ated Legendre polynomials. This is done through the
transformation√

1− µ2P 1
n(µ)P 1′

n (µ) = n2Pn(µ)P 1
n(µ)

−
n−1∑
i=1

(2i+ 1)Pi(µ)P 1
i (µ), (11)

obtained when using common identities of associated
Legendre functions [22]. Substituting Eq. (11) into Equa-
tion (7) and using the set of equations (4, 5) for the co-
efficients an and bn, one obtains

D2〈ψnn2 (xn, µ)〉 =
|bn|2k4

n

ν
Re

{
n∑
k=1

[δknG1(xn) (12)

+ (1− δkn)(2k + 1)G2(xn)]Pk(µ)P 1
k (µ)

}
where δkn is the Kronecker delta, and the functions
G1(xn) and G2(xn) are defined by

G1(xn) =
n2

xn
h(1)∗
n (xn)h(1)′

n (xn)

− x̄n
2h

(1)′′
n (x̄n)− (n2 + n− 2)h

(1)
n (x̄n)

4(n+ 2)x2
n

(
x̄n
xn

)n+1

×[
(n2 − 2n− 1)h(1)

n (xn) + (n+ 1)xnh
(1)′
n (xn)

]∗
,(13)
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G2(xn) =

[
x̄n

2h
(1)′′
n (x̄n)− (n2 + n− 2)h

(1)
n (x̄n)

2(n+ 2)

(
x̄n
xn

)n+1

− xnh
(1)′
n (xn)

] h(1)∗
n (xn)

x2
n

. (14)

Solving Eq. (12) requires cumbersome calculations that
are provided in Appendix A. As a result, the solution of
Eq. (12) is found to be

〈ψnn2 (x, µ)〉 =
|bn|2
ν

Re

{
n∑
k=1

Fk(xn)Pk(µ)P 1
k (µ)

}
, (15)

where the functions Fk(xn) are defined by Eq. (A12).
Equation (15) leads to the following expressions for the
components of the Eulerian streaming velocity:

〈vnn2r 〉 =
|bn|2
νr

Re

{
n∑
k=1

Fk(xn)
[
(P 1
k (µ))2 − k(k + 1)(Pk(µ))2

]}
,

(16)

〈vnn2θ 〉 = −|bn|
2

νr
Re

{
n∑
k=1

Pk(µ)P 1
k (µ) [Fk(xn) + xF ′k(xn)]

}
,

(17)
where the functions F ′k(xn) are defined by Eq. (A21).

In the process of calculating Eqs. (16) and (17), we
have also obtained the following expressions for the com-
ponents of the Stokes drift velocity [9] (see Appendix A):

vnnSr = − (n+ 1)|bn|2
2νR0

× (18)[
(P 1
n(µ))2 − n(n+ 1)(Pn(µ))2

]
Re {S1(xn)} ,

vnnSθ =
(n+ 1)|bn|2

2νR0
Pn(µ)P 1

n(µ)Re {S2(xn)} , (19)

where the functions S1(xn) and S2(xn) are defined by
Eqs. (A33) and (A34). The summation of the Eulerian
streaming velocity and the Stokes drift velocity provides
the Lagrangian streaming velocity,

vnnL = 〈vnn2 〉+ vnnS , (20)

for which the radial and tangential components can be
calculated using Eqs. (16)-(19). It has been verified that
the Lagrangian streaming velocity given by Eq. (20) cor-
responds to the one derived in our previous work [20] for
the particular case n = 1.

C. Numerical examples

Numerical simulations were performed at the follow-
ing values of physical parameters: ρ = 1000 kg/m3,
η = 0.001 Pa · s, f = 50 kHz, and R0 = 50µm. Figure 2
exemplifies Lagrangian streamline patterns produced by
the self-interaction of modes 1 to 4, respectively. As one

can see, the main vortices present a two-scale pattern. In
the bubble vicinity, the vortices have a form of lobes. Ac-
cording to the presented examples, the number of lobes is
equal to 4n for the n-n interaction. Far from the bubble,
the vortices have a cross-like shape. This cross-like shape
is similar to the one induced by the purely translating
bubble, case 1-1 (Figure 2(a)). In the present analysis,
a specific pattern is revealed and appears as a signature
of the case of self-interaction. Indeed, when consider-
ing the interaction 0-n between the radial mode and a
nonspherical mode [19], the streamline patterns looked
like lobes whose number equals 2n. When considering
the interaction between the translational mode and any
nonspherical mode n [20], streamlines form lobes whose
number is equal to 2(n− 1).

D. Comparison with previous theories

The present model is here compared to existing theo-
retical models, which take into account self-interaction of
axisymmetric nonspherical oscillations. Such cases have
been derived previously by Maksimov [16] and Spelman
and Lauga [11]. Before comparing our results to the
above-mentionned studies, it is worth noting that in both
of them the physical situation is different from ours. Both
studies assume that the bubble is fixed while the liquid
oscillates around it, whereas we assume that the bub-
ble is moving while the liquid at infinity is at rest. This
means that, in their case, at infinity the amplitude of the
first-order liquid velocity tends to a nonzero constant. In
this sense, their derivations follow the same mathemati-
cal approach as the one proposed by Longuet-Higgins [9]
who described the streaming velocity induced by purely
translating bubble and coupled radial-translational oscil-
lation. In addition, both theories assume that the viscous
penetration length scale is small compared to the body
size. Mathematically it means that their solutions are de-
rived approximatively, in powers of the small parameter
ε = δ/R0, within the viscous boundary layer. A solution
outside the boundary layer is derived, and the matching
between the inner and outer solution provides the overall
streaming velocity. The aim of the comparison we pro-
pose is hence to provide an idea of the difference between
our solution and the results of previous studies available
in the literature.

First our model is compared to the theory of Spelman
and Lauga who derived a theory that includes axisym-
metric modes of arbitrary orders, oscillating at the same
frequency. Their model provides the following expression
for the external leading order Lagrangian streaming:

〈ψL(r, µ)〉 =

∞∑
k=1

(
Tkr
−k + Skr

−(k−2)
)(∫ 1

µ

Pk(x)dx

)
,

(21)
where Tk and Sk are coefficients resulting from the
matching between the inner and outer solution of the
Eulerian streaming. In particular, their calculation de-
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FIG. 2. Numerical examples of streamline patterns produced by the self-interaction mode in cases: (a) 1-1, (b) 2-2, (c) 3-3,
(d) 4-4.
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FIG. 3. Comparison of the present model to the theory of Spelman and Lauga [11] for the self-interaction of mode 2. Upper line:
Streamline pattern according to (a) the theory of Spelman and Lauga and (b) the present model. Evolution of the normalized
(c) radial and (d) tangential components of the Lagrangian streaming velocity given by both theories and calculated for the
angle θ = π/5, as a function of the normalized distance r/R0.

pends on the investigated mode pair contribution and
phase shift between modes. It is shown that, if the modal
amplitudes sn are in-phase or π out-of-phase with each
other, then the contribution of these mode pairs to the
steady streaming is identical to zero at the first order
of the expansion over δ/R0. This case naturaly includes
the case of a self-interacting mode. It is thus necessary to
derive expressions to the upper order in the expansion,
up to the third order of the ratio δ/R0 in their anal-
ysis. Figure 3 compares the streamline pattern and La-
grangian streaming velocities between the theory of Spel-
man and Lauga and the present model, in case of the 2-2
interaction (see Fig. 4 in [11]). The velocity components
are normalized by the factor ωn|sn|2/R0. The parame-
ters are the same as in Fig. 2. The streamline patterns
present a qualitative agreement, with a smaller radial
extension of the vortices in the vicinity of the bubble in
the present model. Concerning the radial and tangen-
tial components of the Lagrangian velocity (Fig. 3(c,d)),
both models show a quantitative agreement, particularly
far from the bubble interface. The present model also
predicts a smaller radial velocity amplitude, confirming
this smaller extension of the streamline pattern.

We secondly compare our model to the theory de-
veloped by Maksimov [16]. The Maksimov model con-
siders acoustic streaming from a bubble undergoing a
parametrically-excited surface mode, hence oscillating at
ω/2, where ω is the angular frequency of the driving
ultrasound wave. This case corresponds exactly to the
self-interacting mode n-n discussed here, as no interac-
tion arises from the radial and the nonspherical modes at
the second order of approximation. Maksimov’s model
provides the following expressions for the radial and tan-
gential components of the Lagrangian velocity in the n-n
interaction:

ur =
(ω/2)|s2

n|
2πR0

2n+ 1

4π

(n+ 2)(2n+ 1)(n+ 3)

(n+ 1)(4n3)

(
R0

r

)2n−1

×
[

1−
(
R0

r

)2
]
sin((2n+ 1)θ)

sin θ
, (22)

uθ =
(ω/2)|s2

n|
2πR0

2n+ 1

4π

(n+ 2)(2n− 1)(n+ 3)

(n+ 1)(4n3)

(
R0

r

)2n+1

×
[

1− 2n+ 1

2n− 1

(
R0

r

)2
]
cos((2n+ 1)θ)

sin θ
. (23)



7

Maksimov model

Present model

r/R0

r/R0

0

0.01

0.02

0.03

0.04

1 1.05 1.1 1.15 1.2

vLr (r)

-0.04

-0.03

-0.02

-0.01

0

0.01

1.05 1.1 1.15 1.2

vLθ (r)

(a) (b)

FIG. 4. Comparison of the present model to the theory of Maksimov [16] for the self-interaction of nonspherical mode n = 10.
Evolution of the normalized (a) radial and (b) tangential components of the Lagrangian streaming velocity given by both
theories and calculated for the angle θ = π/5, as a function of the normalized distance r/R0.

In comparison to our derivation, the Lagrangian veloc-
ities obtained in Eqs. (22) and (23) contain simplified de-
pendences over the angle θ. Such simplification arises be-
cause Maksimov considered high-order distorsion modes
n � 1. This angular dependence nevertheless describes
a 4n-lobes pattern as the ones shown in Fig. 2. In addi-
tion, Maksimov hypothesizes that the streaming is dom-
inated by the surface wave contribution in the region of
the liquid from the bubble wall out to distances equiva-
lent to several wavelengths of that surface wave. This ex-
plains why the streamline pattern derived by Maksimov
does not contain the cross-like shape at larger distances
from the bubble interface. Figure 4 compares the depen-
dence on r given by Eqs. (22) and (23) to the results of
our theory for the particular angle θ = π/5. The veloc-
ity components are normalized by the factor ω|sn|2/R0.
The parameters are the same as in Fig. 2. As one can
see, the theory of Maksimov predicts a greater velocity
amplitude. However, it should be emphasized that two
different physical situations are compared.

III. EXPERIMENTAL RESULTS

In order to illustrate experimentally these theoretical
findings, one needs to observe the microstreaming around
a free (far from boundaries) non-spherically oscillating
bubble. In addition, both the bubble interface dynamics
and the surrounding fluid motion must be captured at
the same time. This experimental challenge has been re-
cently overcome, and is explained in more detail in previ-
ous works [15, 19]. A short summary of the here relevant
points is given in the following. The experiments rely on
the nucleation, trapping and excitation of a unique bub-
ble into a 31 kHz standing wave field established within
a 8 cm cubic acoustic levitation chamber. In order to
control the bubble nonspherical oscillations, the bubble

coalescence technique [14] has demonstrated its interest
in estabishing steady-state oscillation of an axisymmet-
ric surface mode with, in addition, a controlled symmetry
axis. By varying the bubble size and acoustic pressure,
several surface modes can be obtained on their first or
secondary parametric resonance. The establishment of a
steady-state regime of nonspherical oscillations is manda-
tory for the generation of a microstreaming pattern as-
sociated to a captured temporal dynamics of the bubble
interface. By decomposing the bubble interface over the
set of Legendre polynomials, similarly to Eq. (1), the
modal amplitudes sn of each mode, including the radial
(n = 0), translational (n = 1) and nonspherical (n > 1)
modes, are assessed. These modal coefficients are associ-
ated to a given microstreaming pattern, and can then be
used as input parameters in the developed theory.

In our experiment, surface modes are parametrically
excited. They hence oscillate primarily at half the driv-
ing frequency if excited on their first parametric reso-
nance. If the energy transfer between modes (includ-
ing translational and nonspherical modes m 6= n) is
weak enough, then the modal content of the bubble in-
terface dynamics contains one (volumic) oscillation at
ω and one (nonspherical) oscillation at ω/2. However,
it is known that contributions to microstreaming only
come from pairs of modes oscillating at the same fre-
quency or from self-interacting nonspherical modes. In
the case discussed here, recalling that radial oscillations
do not produce streaming flow by itself [19], then the pre-
dominant contribution to the liquid velocity field is the
self-interaction of mode n. In our experimental config-
uration, parametrically-excited modes on their first res-
onance, hence oscillating at ω/2, are modes n = 2 or
n = 3.

Figure 5 presents the experimental and numerical re-
sults corresponding to the self-interacting cases 2-2 and
3-3. In Fig. 5(a), a bubble of equilibrium radius 48µm
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2-2 interaction

(a) Experiment (b) Present model
3-3 interaction

(c) Experiment (d) Present model

FIG. 5. Experimental and numerical investigation of the microstreaming patterns induced by a self-interacting mode. First
line: A bubble of equilibrium radius 48µm is driven by a 31.25 kHz ultrasound field at the acoustic pressure amplitude 20 kPa.
(a) Streak photography of the resulting microstreaming pattern (image size 620 × 620 µm). (b) Numerical streaming pattern
of the 2-2 interaction. Second line: A bubble of equilibrium radius 64.5µm is driven by a 31.25 kHz ultrasound field at the
acoustic pressure amplitude 12 kPa. (c) Streak photography of the resulting microstreaming pattern (image size 700×700 µm).
(d) Numerical streaming pattern of the 3-3 interaction.

is driven at the acoustic amplitude 20 kPa. This set
of parameters leads to a predominant mode 2 oscilla-
tion. High-speed imaging of the bubble temporal dy-
namics reveals that mode 2 oscillates with an amplitude
s2 = 7µm, such that s2/R0 ∼ 0.15. The experimen-
tal streamline pattern reveals a cross-like shape with two
small recirculation zones in the vicinity of the bubble in-
terface, each of them composed of two vortices. The cor-
responding numerical streamline pattern, when applying
the experimental parameters s2 in the theoretical model-
ing, is presented in Fig. 5(b). This pattern also presents
8 lobes with a cross-like shape far from the bubble inter-
face. In particular, the asymmetry in the lobe ordering

is respected. In Fig. 5(c), a bubble of equilibrium ra-
dius 64.5µm is driven at the acoustic amplitude 12 kPa.
This set of parameters leads to a predominant mode 3
oscillation. High-speed imaging of the bubble temporal
dynamics reveals that mode 3 oscillates with an ampli-
tude s3 = 20µm, such as s3/R0 ∼ 0.3. The experimental
streamline pattern reveals a cross-like shape with four
vortices in the vicinity of the bubble interface. The cor-
responding numerical streamline pattern, when applying
the experimental parameters s3 in the theoretical mod-
eling, is presented in Fig. 5(d). This patterns presents
12 lobes and a cross-like shape far from the bubble in-
terface. Clearly, the numerical pattern captures more
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details in the recirculation zones than one can resolve
experimentally. However, a good agreement is observed
in the overall pattern, as well as in the location of the
four main vortices in the vicinity of the bubble interface.

IV. CONCLUSIONS

In the present paper, the general theory developed in
a previous study [19] has been applied to the case that
acoustic microstreaming results from the self-interaction
of an arbitrary surface mode n ≥ 1. Analytical solutions
are derived in terms of complex amplitudes of oscillation
modes, which means that the mode amplitudes are as-
sumed to be known and serve as input data when the ve-
locity field of acoustic microstreaming is calculated. No
restrictions are imposed on the ratio of the bubble radius
to the viscous penetration depth. The self-interaction
of a mode results in a specific streamline pattern. This
pattern exhibits a cross-like shape far from the bubble
in addition to small recirculation zones in the vicinity of
the bubble interface. The number of lobes in the bubble
vicinity equals 4n for the self-interacting case n-n. In
opposite to the 2n lobes obtained in the 0-n interaction
case and the 2(n − 1) lobes for the 1-n interaction case,
this specific pattern appears as a signature for the case
of self-interaction. Experimental streamline patterns are
presented for parametrically excited surface modes of a
bubble oscillating in an unbounded liquid. These exper-
imental patterns exhibit the particular signature of self-
interacting nonspherical mode, in agreement with our nu-
merical simulations.
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Appendix A: Solution of Eq. 12

The right-hand side of Eq. (12) suggests that a solution
can be sought in the following form:

〈ψnn2 (x, µ)〉 =
|bn|2
ν

Re

{
n∑
k=1

Fk(x)Pk(µ)P 1
k (µ)

}
, (A1)

where x = xn = knr is introduced for the sake of sim-
plicity, and Fk(x) is a function to be found. The action
of the operator D2 on the proposed solution (A1) results

in

D2〈ψnn2 (x, µ)〉 =
|bn|2k4

n

ν
Re

{
n∑
k=1

[
n∑
l=k

[
g

(1)
l δkl (A2)

+ g
(2)
l βlk + g

(3)
l

(
l∑

m=k

βlmβmk

)]]
PkP

1
k

}
,

where the gl functions are defined by

g
(1)
l =

1

x4

[
4x3 d

3Fk
dx3

+ x4 d
4Fk
dx4

]
, (A3)

g
(2)
l =

1

x4

[
2Fk(x) + 2x2 d

2Fk
dx2

]
, (A4)

g
(3)
l =

1

x4
Fk(x), (A5)

and by introducing the coefficients βnk = 2(2k + 1)[1 −
(1+k)δkn]. After substituting Eq. (A2) into Eq. (12), the
identification for each term over the functions PkP 1

k that
forms a set of linearly independent functions provides the
following equation for the Fk(x) functions:

d4Fk
dx4

+
4

x

d3Fk
dx3

− 4k(2k + 1)

x2

d2Fk
dx2

+
4k(2k + 1)(2k2 + k − 1)

x4
Fk

= δknG1(x) + (1− δkn)(2k + 1)G2(x)

−
n∑

l=k+1

[
4(2k + 1)

x2

d2Fl
dx2

− 4(2k + 1)

x4
[l(2l + 1)

+ k(2k + 1)− (1− δk+1,l)Ekl − 1]Fl] , (A6)

where the coefficient Ekl =
∑l−1
m=k+1(2m + 1) has been

introduced. At a first sight Eq. (A6) is a set of differn-
tial equations that couple the whole set of Fk functions.
However, the equation for k = n involves only the Fn
term, that can therefore be calculated. The equation for
k = n − 1 involves the two terms Fn and Fn−1, and the
knowledge of the Fn term allows calculating Fn−1. Fol-
lowing this procedure we can sequentially calculate all
the functions Fk. At all stages of this process we need to
solve the equation

d4Fk
dx4

+
4

x

d3Fk
dx3

− 4k(2k + 1)

x2

d2Fk
dx2

+
4k(2k + 1)(2k2 + k − 1)

x4
Fk = Hk(x), (A7)

where the right-hand side function Hk(x) is defined by

Hk(x) = = δknG1(x) + (1− δkn)(2k + 1)G2(x)

−
n∑

l=k+1

[
4(2k + 1)

x2

d2Fl
dx2

− 4(2k + 1)

x4
[l(2l + 1)

+ k(2k + 1)− (1− δk+1,l)Ekl − 1]Fl] . (A8)

Eq. (A7) can be solved by the method of variation
of parameters, also known as the Lagrange method [23].
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According to this method, we first need to find solutions
to a homogeneous equation that corresponds to the left-
hand side of Eq. (A7),

d4Fk
dx4

+
4

x

d3Fk
dx3

− 4k(2k + 1)

x2

d2Fk
dx2

+
4k(2k + 1)(2k2 + k − 1)

x4
Fk = 0. (A9)

The solutions are sought in the form xλ. Substitution
of xλ into Eq. (A9) leads to a polynomial of fourth order
in λ,

λ(λ− 1)(λ− 2)(λ+ 1)− 4k(2k + 1)λ(λ− 1) (A10)
+ 4k(2k + 1)(2k2 + k − 1) = 0.

The roots of this polynomial are −(2k − 1),−(2k +
1), 2k, 2k+2. Therefore, the general solution of Eq. (A9)
is written as

Fk(x) = Ck1x
2k+2 + Ck2x

2k +
Ck3

x2k−1
+

Ck4

x2k+1
, (A11)

where Cki are constants. According to the Lagrange
method, the solution of the inhomogeneous equation (A7)
is obtained by setting the coefficients Cki to be functions
of x, such as

Fk(x) = Ck1(x)x2k+2 + Ck2(x)x2k +
Ck3(x)

x2k−1
+
Ck4(x)

x2k+1
,

(A12)
where the Cki functions should obey the following system
of equations:

C ′k1y1 + C ′k2y2 + C ′k3y3 + C ′k4y4 = 0

C ′k1y
′
1 + C ′k2y

′
2 + C ′k3y

′
3 + C ′k4y

′
4 = 0

C ′k1y
′′
1 + C ′k2y

′′
2 + C ′k3y

′′
3 + C ′k4y

′′
4 = 0

C ′k1y
′′′
1 + C ′k2y

′′′
2 + C ′k3y

′′′
3 + C ′k4y

′′′
4 = Hk(x).(A13)

Here the prime denotes the derivative with respect to x
and the functions yi are given by

y1 = x2k+2, y2 = x2k, y3 = x−(2k−1), y4 = x−(2k+1).
(A14)

Equations (A13) is a system of algebraic equations on
the unknowns C ′ki. Solving this system and integrating
the solutions over x, one obtains

Ck1(x) = Ck10 +
1

2(4k + 1)(4k + 3)

∫ x

x̄n

s−2k+1Hk(s)ds,

(A15)

Ck2(x) = Ck20 −
1

2(4k − 1)(4k + 1)

∫ x

x̄n

s−2k+3Hk(s)ds,

(A16)

Ck3(x) = Ck30 +
1

2(4k − 1)(4k + 1)

∫ x

x̄n

s2k+2Hk(s)ds,

(A17)

Ck4(x) = Ck40 −
1

2(4k + 1)(4k + 3)

∫ x

x̄n

s2k+4Hk(s)ds,

(A18)
where the constants Cki0, i = 1 − 4, have to be de-
termined according to the boundary conditions. To
apply the boundary conditions, we first calculate the
components of the Eulerian streaming velocity by using
Eq. (A1):

〈vnn2r 〉 = −1

r

∂

∂µ

{
〈ψnn2 〉

√
1− µ2

}
(A19)

=
|bn|2
νr

Re

{
n∑
k=1

Fk(x)
[
(P 1
k (µ))2 − k(k + 1)(Pk(µ))2

]}
,

〈vnn2θ 〉 = −1

r

∂

∂x
{x〈ψnn2 〉} (A20)

= −|bn|
2

νr
Re

{
n∑
k=1

Pk(µ)P 1
k (µ) [Fk(x) + xF ′k(x)]

}
,

where the first derivative of the Fk function is written as

F ′k(x) = 2(k + 1)Ck1(x)x2k+1 + 2kCk2(x)x2k−1 (A21)
− (2k − 1)Ck3(x)x−2k − (2k + 1)Ck4(x)x−2k−2.

The condition of zero streaming velocity at infinity re-
quires that Fk(x)/r → 0 for r →∞, which leads to

Ck10 = − 1

2(4k + 1)(4k + 3)

∫ ∞
xn0

s−2k+1Hk(s)ds, (A22)

Ck20 =
1

2(4k − 1)(4k + 1)

∫ ∞
xn0

s−2k+3Hk(s)ds. (A23)

In order to calculate the coefficients Ck30 and Ck40,
boundary conditions at the bubble surface have to be ap-
plied. Equations (A19) and (A20) give the components
of the Eulerian streaming velocity. To apply the bound-
ary conditions at the bubble surface, we need to know
the Lagrangian streaming velocity, which is defined by

vL = 〈v2〉+ vS , (A24)

where vS is the Stokes drift velocity given by [9]

vS =

〈(∫
v1dt · ∇

)
v1

〉
nn

, (A25)

where v1 is the first-order liquid velocity. For the case of
a self-interacting mode n, Eq. (A25) reduces to

vnnS =
1

2ωn
Re {ı(v1n · ∇)v∗1n} , (A26)

where v1n is the first-order liquid velocity produced by
the mode n. As a result the components of the Stokes
drift velocity associated to the n-n interaction are given
by

vnnSr =
1

2ωn
Re
{
ıv1nr

∂v∗1nr
∂r

+
ıv1nθ

r

∂v∗1nr
∂θ

}
, (A27)
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vnnSθ =
1

2ωn
Re
{
ıv1nr

(
∂v1nθ

∂r
− v1nθ

r

)∗
+
ıv1nθ

r

∂v∗1nθ
∂θ

}
.

(A28)

The components of the first-order liquid velocity induced by the oscillation of any arbitrary axisymmetric mode n
have already been determined in our previous study [19]:

v1nr = − 1

R0
(n+ 1)e−ıωnt

[
an

(
R0

r

)n+2

+ nbn
R0

r
h(1)
n (x)

]
Pn(µ), (A29)

v1nθ =
1

R0
e−ıωnt

[
an

(
R0

r

)n+2

− bn
R0

r

[
h(1)
n (x) + xh(1)′

n (x).
]]
P 1
n(µ) (A30)

Substituting Eqs. (A29) and (A30) into Eqs. (A27) and (A28) leads to the calculation of the Stokes drift velocity
components:

vnnSr = − (n+ 1)|bn|2
2νR0

[
(P 1
n(µ))2 − n(n+ 1)(Pn(µ))2

]
Re {S1(x)} , (A31)

vnnSθ =
(n+ 1)|bn|2

2νR0
Pn(µ)P 1

n(µ)Re {S2(x)} , (A32)

where we introduce the functions

S1(x) =
nx̄n
x2

h(1)∗
n (x)h(1)′

n (x) (A33)

+

[
x̄n

2h
(1)′′
n (x̄n)− (n2 + n− 2)h

(1)
n (x̄n)

]
2(n+ 2)

( x̄n
x

)n+2
[
n+ 1

x2
h(1)
n (x) +

1

x
h(1)′
n (x)

]∗
,

S2(x) =
nx̄n
x
h(1)∗
n (x)h(1)′′

n (x) (A34)

+

[
x̄n

2h
(1)′′
n (x̄n)− (n2 + n− 2)h

(1)
n (x̄n)

]∗
2(n+ 2)

( x̄n
x

)n+2
[
h(1)′′
n (x)− (n+ 1)(n+ 2)

x2
h(1)
n (x)

]
.

Now the boundary conditions at the bubble surface can be applied. It is known that, for arbitrary surface periodic
deformations, both normal velocity component and tangential stress of the Lagrangian streaming must vanish at the
mean position of the interface. These two conditions are written in the following form:

vnnLr = 〈vnn2r 〉+ vnnSr = 0 at r = R0 (A35)
1

r

∂vnnLr
∂θ

+
∂vnnLθ
∂r
− vnnLθ

r
= 0 at r = R0 (A36)

Substituting Eqs. (A19), (A20), (A31) and (A32) into the conditions (A35) and (A36), after a cumbersome but
straightforward calculation, one obtains the coefficients

Ck30 = −Ck20x̄n
4k−1 − (1− δkn)

2k + 1

4k + 1
x̄n

2k−1
n∑

l=k+1

[
Cl10x̄n

2l+2 + Cl20x̄n
2l +

Cl30

x̄n2l−1
+

Cl40

x̄n2l+1

]

− (n+ 1)x̄n
2k−1

4(4k + 1)
{δkn [x̄nS

′
2(x̄n)− S2(x̄n)− 2n(2n+ 3)S1(x̄n)]

− (1− δkn)2(2k + 1)S1(x̄n)} , (A37)

Ck40 = −Ck10x̄n
4k+3 + (1− δkn)

2k + 1

4k + 1
x̄n

2k+1
n∑

l=k+1

[
Cl10x̄n

2l+2 + Cl20x̄n
2l +

Cl30

x̄n2l−1
+

Cl40

x̄n2l+1

]

+
(n+ 1)x̄n

2k+1

4(4k + 1)
{δkn [x̄nS

′
2(x̄n)− S2(x̄n)− 2(n− 1)(2n+ 1)S1(x̄n)]

− (1− δkn)2(2k + 1)S1(x̄n)} . (A38)
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To sum up, we have shown that the solution of Eq. (12) is given by Eq. (A1), which in turns leads to the calculation
of the components of the Eulerian streaming velocity given by Eqs. (A19) and (A20). We have calculated all the
quantities that appear in the above equations. In the course of this calculation, we have also calculated the Stokes
drift velocity, which, when being added to the Eulerian streaming velocity, gives the Lagrangian streaming velocity.
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