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Abstract: The two-dimensional hexagonal Fourier transform is introduced to re-

duce the background anisotropy in the numerical calculations with periodic condi-

tions. Comparing to traditional Fourier transform with cartesian mesh, the large-

scale background anisotropy is significantly reduced under different energy spectra.

In addition, the phenomenon of small-scale background anisotropy is found to be

related to the type of low-pass filter. Considering the standard deviation of second-

order velocity correlation function with fixed two-point distance, the scaling at small

scales is a result of Taylor expansion, while the scaling at large scales can be explained

by using a simplified single-wavenumber analytical model. The hexagonal Fourier

transform can be easily implemented by using fast Fourier transform (FFT) libraries,

and is expected to be applied in future pseudo-spectral methods of two-dimensional

and quasi-three-dimensional turbulent flows to minimize the background anisotropy.
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I. INTRODUCTION

The isotropy conditional has been widely used in many fundamental studies of turbulence

as a basic assumption. In order to numerically generate isotropic turbulence, the most com-

mon method is to present the continuous physical field via a number of discrete points and to

involve periodic conditions[1]. However, periodic conditions will also yield a-posteriori large-

scale effects and reduce the reliablity of direct numerical simulation (DNS) databases[2]. In a

previous study, we attributed the large-scale effects to the a-priori background scalar-level

anisotropy, which is mainly related to the shape of energy spectrum[3]. We pointed out

that enlarging the wavenumber of the energy-containing peak can significantly reduce the

background anisotropy. In practice, this means that the energy-containing scale L should

be much smaller than the period of computational domain R. For example, in Ref. [2] it

was suggested to use L < 0.1R to obtain negligible large-scale effect. However, in practice

this criterion is difficult to be satisfied because of the limitation of computation resources,

for example in literature it is usually L ∼ 0.25R[4–7] which does not satisfy the sugges-

tion of Ref. [2]. Therefore, it would be substantial to investigate a method to reduce the

background scalar-level anisotropy without changing the location of the energy-containing

peak. In the following, we will briefly revisit our previous understanding on the background

scalar-level anisotropy, which directly leads to the idea of the present contribution.

In a turbulence field, the concept of anisotropy can be classified to two levels, i.e., the

scalar level and the tensor level. In Ref. [3] we remarked that the scalar-level anisotropy is

the precondition to discuss the tensor-level anisotropy. In the present contribution we will

focus on the scalar-level anisotropy, since it is a background phenomenon directly affected by

the periodic condition. Specifically, in statistically homogeneous turbulence, we can select

the second-order structure function, defined as

Rθθ(r⃗) := ⟨θ(⃗0)θ(r⃗)⟩, (1)

where θ is a scalar, ⟨⟩ is ensemble average and r⃗ is the two-point distance. The scalar-level

isotropy then implies that the value of Rθθ(r⃗) should be independent to the direction of r⃗,

i.e., Rθθ(r⃗) = Rθθ(r) with r = |r⃗|. However it is indeed mathematically impossible if we

assume periodic conditions (see Ref. [8] for a proof). In order to quantitatively estimate

this background scaler-level anisotropy, we simply introduced the standard deviation over a
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spherical surface with radius r, written as

A(r) =
1

Rii(⃗0)

√
2

π

∫ π/2

θ=0

∫ π/2

ϕ=0

[Rii(r, θ, ϕ)− µ(r)]2 sin θdϕdθ, (2)

with µ(r) the surface average of the scalar field under spherical coordinate Rii(r, θ, ϕ):

µ(r) =
2

π

∫ π/2

θ=0

∫ π/2

ϕ=0

Rii(r, θ, ϕ) sin θdϕdθ. (3)

By using these definitions, we can observe that in a periodic box, the axis direction and

diagonal directions show obvious differences, indicating a background anisotropy (see Fig.

1 of Ref. [3] for example). This background anisotropy is indeed because the calculation

domain is a square or a cube, rather than ideally a circle or a sphere which has no direction

difference. Undoubtedly, using Fourier expansion always implies periodicity and cannot be

applied in a circular or spherical domain. However in the present contribution, we are aiming

at searching for an alternative method to reduce the background scalar-level anisotropy,

instead of eliminating it.

The periodicity is introduced by the discrete low-wavenumber truncation in Fourier spec-

tral space, therefore a natural idea is to reselect the discrete wavevectors which are more

isotropic. We remark that this selection cannot be arbitrary in the simulation of turbu-

lent flows. In fact, because of the nonlinear term of Navier-Stokes (NS) equation, any two

wavevectors p⃗ and q⃗ can exchange energy with the wavevector p⃗+ q⃗ via triad interactions[9].

Hence, if K is the set of discrete wavevectors, K must be a discrete group. In traditional

discrete Fourier analysis (DFT), all wavevectors are selected at cartesian mesh points, which

naturally form a group. We notice that in two-dimensional space, regular triangles can also

fill the plane, which means that the vertices of regular hexagons can form another discrete

group. We remark here that regular tetrahedrons cannot fill a three-dimensional space. Al-

though polyhedra can fill[10, 11], the vertices at polyhedra do not form a group. Therefore,

in the present contribution we will show that if we select the discrete wavevectors at this

vertices, a hexagonal periodicity will be implied instead of square periodicity. In Sec. II we

will introduce the method of hexagonal Fourier transform with these discrete wavenumbers.

In Sec. III we will show that the present method can effectively reduce the background

scalar-level anisotropy by comparing to traditional cartesian mesh.
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II. THEORETICAL ANALYSIS

A. Hexagonal Fourier transform

A few researchers have used the idea of hexagonal Fourier transform in the domain of

signal processing. Murphy and Gallagher [12] studied the hexagonal sampling techniques

including the fundamental period of sampling. They selected the sample points via hexag-

onal mesh in physical space and transformed it to cartesian mesh in spectral space via a

modified fast Fourier transform (FFT). Ehrhardt [13] introduced another fast algorithm to

transform the physical-space hexagonal samplings to rectangular spectrum output without

interpolation. Other existing studies, such as Refs. [14–16], focus on constructing low-level

fast algorithms. Our problem is opposite by comparing to these existing studies, since we

start from discrete hexagonal wavevectors in spectral space due to the purpose of reduc-

ing background anisotropy. In the following parts we will define our concept of hexagonal

Fourier transform and introduce a pertinent fast algorithm.

For a two-dimensional scalar field θ(r⃗) which is quadratically integrable, the general

formulas of the forward and inverse continuous Fourier transforms are respectively

θ̂(k⃗) = Fc(θ(r⃗)) =
1

4π2

∫
r⃗

θ(r⃗)e−ik⃗·r⃗dr⃗, (4)

θ(r⃗) = F−1
c (θ̂(k⃗)) =

∫
k⃗

θ̂(k⃗)eik⃗·r⃗dk⃗, (5)

where θ̂(k⃗) is a scalar at wavevector k⃗ in Fourier spectral space. If the scalar field can be

expressed as a summation of sinusoidal and cosinusoidal functions at discrete wavelengths,

a discrete version of Fourier transform can be used. For example, if the set of discrete

wavevectors is denoted as K, the inverse Fourier transform can reconstruct the physical-

space field via the form of Fourier series

θ(r⃗) = F−1(θ̂(k⃗)) =
∑
k⃗∈K

θ̂(k⃗)eik⃗·r⃗. (6)

Inspired from Ref. [12], here we select the discrete wavevectors at the vertices of regular

triangles in spectral space. We will start from the case with infinity number of wavevectors

without high-wavenumber truncation. As mentioned in Sec. I, this set of discrete wavevec-

tors form a group, which will not generate any harmonic wave outside this group under
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non-linear operations. In the following we will illustrate that the corresponding physical

space is periodic in three directions respectively.

A sketch of the discrete wavevectors in spectral space is shown in Fig. 1. Denoting the

minimal distance in k1-axis as ∆k, the positions of these discrete wavevectors generally write

K =

{
k⃗

∣∣∣∣∣k⃗ = n1(∆k, 0) + n2(
∆k

2
,

√
3∆k

2
), n1, n2 ∈ Z

}
, (7)

and the inverse DFT (6) becomes

θ(r⃗) =
∑
k⃗∈K

θ̂(k⃗) exp
(
iG(r⃗, k⃗)

)
(8)

with

G(r⃗, k⃗) = r1n1∆k + r1n2
∆k

2
+ r2n2

√
3∆k

2
. (9)

It is easy to verify that there are three periodicity vectors for G(r⃗, k⃗) in physical space, s.t.

∀n1, n2 ∈ Z, k⃗ ∈ K,G(R⃗, k⃗) ≡ G (⃗0, k⃗). From Eq. (8) this will directly leads to θ(R⃗) = θ(⃗0).

These periodicity vectors are respectively

R⃗1 =

(
0,

4π√
3∆k

)
,

R⃗2 =

(
2π

∆k

,
2π√
3∆k

)
,

R⃗3 =

(
2π

∆k

,− 2π√
3∆k

)
,

(10)

which are all of length 4π√
3∆k

. Note that the traditional DFT at cartesian mesh yields a

period 2π
∆k

with ∆k the minimal distance in spectral space, which is shorter than the present

hexagonal case. As discussed in Ref. [3], the period is the only characteristic scale in physical

space and is used in normalization, thus larger period will generally reduce the anisotropy

for the same scale in physical space. In addition, here we have three periods, which are

more than the two periods in traditional DFT at cartesian mesh. As discussed in Sec. I,

this implies that the present case is more close to the ideal spherical computational domain,

thus it should be intuitively less anisotropic than traditional cartesian mesh.

We also developed a fast numerical algorithm for the numerical calculation of the present

hexagonal Fourier transform. In order to avoid scattering the main topic of the present

contribution, the detailed numerical algorithm is shown in Appendix A. Our algorithm has
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∆
∆

Figure 1. Locations of the discrete wavevectors in two-dimensional spectral space. N/2 = 3 is

selected as an example. The circle indicates the isotropic low-pass filter introduced in Eq. (16).

the same algorithm complexity as existing studies[14–16], and it is easier to be implemented

in real calculations by employing existing parallelizable FFT libraries.

In the following parts we will then quantitatively estimate the background scalar-level

anisotropy in two-dimensional turbulence.

B. Correlation function in homogeneous turbulence

In previous parts, the background scalar-level anisotropy is explained by involving a

scalar field θ. In homogeneous turbulence, this should correspond to a coordinate invariant

of velocity-velocity tensors. A most simple scalar field can be the second-order summation

correlation function Rii(r⃗) := ⟨ui(⃗0)ui(r⃗)⟩, with u⃗ velocity vector. The discrete wavevectors

in spectral space are selected at a hexagonal mesh described in previous subsections with

∆k = 2π/L with L a characteristic length. Considering practical calculations with finite

mesh resolution, we introduce high-wave-number numerical truncation, which means that

in both k1 and k2 directions there are N + 1 discrete wavevectors, centered at 0. Similar to



7

Appendix A, the set of these wavevectors writes

K =

{
2π

L
(2p, 2q),

2π

L
(2p+ 1, 2q),

2π

L
(2p+

1

2
, 2q + 1),

2π

L
(2p+

3

2
, 2q + 1)

∣∣∣∣
p = −N

2
,−N

2
+ 1, ...,−1, 0, 1, ...,

N

2
− 1,

N

2
, q =

√
3

2
p

}
.

(11)

Figure 1 is a sketch for these wavevectors. The velocity in spectral space is denoted as

⃗̂u, and the energy spectrum over these discrete points is defined as an energy spectrum

E(k) :=
∑

z⃗∈K,z=k
1
2
ûi(z⃗)û

∗
i (z⃗) with •∗ conjugation and k = |⃗k|. Note that the energy

spectrum defined at discrete wavevectors is slightly different with the continuous spectrum,

see Ref. [17] for a detailed discussion.

By using the properties of Fourier transform and the homogeneous condition[18], we can

write the relations for the correlation function Rii in two dimensional plane

Rii(r⃗) =⟨ui(⃗0)ui(r⃗)⟩ =
∑
k⃗∈K

⟨ûi(k⃗)û
∗
i (k⃗)⟩eik⃗·r⃗

=
∑
k⃗∈K

E(k)

πk
eik⃗·r⃗,

(12)

where

ûi(k⃗) = F (ui(r⃗)) =
1

4π2

∫
r⃗

ui(r⃗)e
−ik⃗·r⃗dr⃗. (13)

We also remark that besides the summation correlation functions, there can be other

coordinate invariants which can be used as a scalar field. However, it is usually difficult to

relate them to some commonly-known quantities. For instance, Gaussian assumption implies

that the fourth-order correlation functions can be represented by second-order correlation

functions, but in real turbulence the accumulation terms are also not negligible[19–21].

In addition, these high-order invariants are even usually less anisotropic than low-order

invariants. Hence, the second-order summation correlation function considered in the present

contribution can be considered as a minimum request for background scalar-level isotropy.

Similar to Eq. (2), in two-dimensional turbulence we can define the standard deviation

over a circle to quantitatively estimate the background scalar-level anisotropy, that is

A(r) =
1

Rii(⃗0)

√
1

2π

∫ 2π

θ=0

[Rii(r, θ)− µ(r)]2dθ, (14)

with µ(r) the surface average of the scalar field under spherical coordinate Rii(r, θ)

µ(r) =
1

2π

∫ 2π

θ=0

Rii(r, θ)dθ. (15)
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III. RESULTS

In this section, we will show that using the hexagonal Fourier transform in spectral

discretization can effectively reduce the background scalar-level anisotropy. In Sec. IIIA

we will give a quantitative overview, focusing on the influences of resolution and energy

spectrum. Comparison with traditional cartesian mesh will be presented in Sec. III B

to emphasize the advantage of the present method. In Sec. III C we will introduce a

simple analytical model to provide a quantitative explanation on the contribution of single

wavenumber to background anisotropy.

A. Background anisotropy and influence of energy spectrum under hexagonal

Fourier transform

We perform numerical cases to quantitatively show this background scalar-level anisotropy.

We select the maximum wavenumber N/2 = 64 (corresponding to a 1282 resolution) by em-

ploying an isotropic low-pass filter (see Fig. 1 as a sketch) and apply the traditional

Kolmogorov −5/3 energy spectrum at the discrete wavenumbers , that is

E(k) =

 0, if k = 0 or k >
√
3πN/(2L),

k−5/3, otherwise.
(16)

Figure 2 shows the values of Rii(r⃗) in the two-dimensional quarter space (r1, r2) for

r1, r2 > 0. The points that Rii(r⃗) = 1 correspond to the period of the physical-space field.

Two minimum periods R⃗1 and R⃗2 in Eq. (10) are shown in the figure. The third period

R⃗3 is in fact a linear combination of R⃗1 and R⃗2 since R⃗3 = R⃗1 − R⃗2. Anisotropy can be

illustrated in this figure, as in different directions of r⃗ the values of Rii(r⃗) change differently.

For example, in r1-direction the period is 2L, while in r2-direction it is 2L/
√
3. At small

scales it is quasi isotropic, as the isolines are nearly circles. Specifically, we select six typical

directions of r⃗ and show the values of Rii(r⃗) in Fig. 3 respectively. Note that several curves

completely overlap with each other because of hexagonal symmetry. For comparison, in the

ideal case where the background anisotropy is not present, all the curves are expected to

completely overlap.

As explained in Ref. [3], the resolution of discretization scarcely contributes to the

large-scale background anisotropy. The reason is that different resolutions lead to small-



9

Figure 2. Values of Rii(r⃗) in quarter space (r1, r2) for r1, r2 > 0. Energy spectrum is assumed to

be Eq. (16). The half-grid number is N/2 = 64. Rii(⃗0) is used for normalization.

Figure 3. Rii(r⃗) along r1 (0◦), 15◦, 30◦, 45◦, 60◦ and r2 (90◦) directions, respectively. The circular-

averaged value µ(r) is also plotted. Energy spectrum is assumed to be Eq. (16). The half-grid

number is N/2 = 64. Rii(⃗0) is used for normalization. Because of hexagonal symmetry, the results

of 30◦ and r2 (90◦) directions are the same, while the results of r1 (0◦) and 60◦ directions are the

same.
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(a) (b)

Figure 4. Standard deviation A(r) under different half-grid numbers N/2 = 16, 32, 64 and 128

respectively. The energy spectrum is Eq. (16). Rii(⃗0) is used for normalization. (a) Log-Linear

plot. (b) Log-Log plot.

scale differences, but the background anisotropy is a large-scale phenomenon in the order

of domain size. In Fig. 4 we compare the results of different resolutions and find that

the background anisotropy is almost the same at large scales. Differences exist at small

scales, which to our knowledge has not been discussed in literature. In the following part

we will show that it is a phenomenon related to high-wavenumber truncation, or say the

low-pass filter. In Fig. 4(a) it is observed that higher resolution generally reduces small-

scale anisotropy. Figure 4(b) clearly shows that the small- and large-scale anisotropy follows

different scalings, indicating the different underlying mechanisms. At very small scales where

r ≪ 2π/kmax, for all resolutions there is A(r) ∝ r1 scaling which corresponds to the result of

Taylor expansion of standard deviation. This can be explained since it is smaller than the

mesh resolution in physical space, which has not been discussed in Ref. [3]. By contrast,

at large scales there is another scaling of A(r) ∝ r6. We will show in Sec. III C that

this scaling is closely related to the type of spectral discretization of single wavenumber.

The region between these two scalings (approximately at r/L ∼ 0.1 where we have slight

fluctuations and different scalings ofA(r) under different half-grid numbers) should be due to

the discretization near the edge of low-pass filter. For illustration, we compare the standard

deviation of the present case with the non-filter one in Fig. 5. Clearly, although an isotropic



11

Figure 5. Standard deviation A(r) with or without filter in spectral space. Rii(⃗0) is used for

normalization. The energy spectrum is Eq. (16). The half-grid number is N/2 = 64.

low-pass filter reduces the number of effective wavevectors, the oscillation and the value of

A(r) is significantly reduced in the region that r/L ∼ 0.1. This result supports the use

of low-pass filter in practical applications. In the following parts we therefore will also use

the low-pass filter for all cases. In brief, we can say that both low-wavenumber and high-

wavenumber truncations affect the background anisotropy: the former one is dominant at

large scales while the latter one is dominant at small scales. The transition between them

is related to the filter type.

From Ref. [3] we know that the shape of the energy-containing scales should contribute

much at large scales, therefore we will introduce the peak location kp which corresponds to

the location of maximum energy, and write

E(k) =


0, if k >

√
3πN/(2L),

k2, if k ≤ kp(2π/L),

k−5/3, otherwise.

(17)

In particular, kp = 1 is the case corresponding to Eq. (16). Results of different values of kp

are shown in Fig. 6. The standard deviation, shown in Fig. 6(b), estimates quantitatively

the anisotropy at different scales. It is found in Fig. 6(b) that in general, larger kp leads

to less anisotropy at large scales, which is in agreement with Ref. [3] in tendency. It is
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(a) (b)

Figure 6. Comparison of different energy spectra. Energy spectra are Eq. (17) with kp = 1, 4, 6 and

8 respectively. Rii(⃗0) is used for normalization. The half-grid number is N/2 = 64. (a) Circular

average µ(r), (b) Standard deviation A(r).

also found that at small scales, kp = 1 yields less anisotropy than others. This is also in

agreement with Fig. 7(b) of Ref. [3].

To summarize, the background anisotropy by using hexagonal Fourier transform is similar

with the case of traditional cartesian mesh in tendency. The shape of energy-containing part

is a dominant reason for the background anisotropy, which can be quantitatively presented

by using the location of peak kp. It is then worth to compare the present results with

traditional cartesian mesh in order to illustrate that the present method can reduce the

background anisotropy.

B. Comparisons with traditional cartesian mesh

Following Ref. [3], we calculate similarly the two-dimensional cases by using traditional

cartesian mesh in spectral space, and compare them to the present hexagonal Fourier trans-

form. Comparisons are performed under the same number of discrete wavevectors and the

same minimal distance ∆k in spectral space in each case with N/2 = 64.

For the cases that kp = 1, the values of A(r) are shown in Fig. 7(a). Clearly the hexag-

onal Fourier transform is less anisotropy than the traditional cartesian case at large scales.
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(a) (b)

Figure 7. Comparison on the standard deviation A(r) for hexagonal and cartesian cases. En-

ergy spectra are Eq. (16) with kp = 1. The half-grid number is N/2 = 64. Rii(⃗0)

is used for normalization. (a) Comparison of A(r). (b) Reduction of variance, defined as

(Acartesian(r)−Ahexagonal(r))/Acartesian(r).

Quantitative comparison can be performed by defining the relative difference (Acartesian(r)−

Ahexagonal(r))/Acartesian(r). In Fig. 7(b) it is shown that the reduction can be in maximum

more than 90% at medium scales. For large scales there is also more than 40% reduction.

Similar result can be found in Fig. 8 for the cases that kp = 4, 6 and 8 respectively. It is also

found that the hexagonal Fourier transform is in general less anisotropic than traditional

cartesian cases at large scales. At r ∼ L the hexagonal Fourier transform leads to more than

70% reduction of background anisotropy in these cases. There are several points at medium

and small scales where hexagonal Fourier transform yields greater anisotropy than cartesian

mesh, but in general the reduction of anisotropy is significant, in particular at large scales.

C. A simplified analytical model

It is very difficult to derive general formulas for the background anisotropy under hexag-

onal Fourier transform. Instead, we introduce a simple analytical model to quantitatively

show the effect of individual wavenumbers. Considering the case with only six wavenumbers

at the vertices of a hexagon. The module of these wavenumbers is denoted as mk where m
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(a) (b)

Figure 8. Comparison on the standard deviation A(r) for hexagonal and cartesian cases. Energy

spectra are Eq. (16) with kp = 4, 6 and 8 respectively. The half-grid number is N/2 = 64.

Rii(⃗0) is used for normalization. (a) Comparison of A(r). (b) Reduction of variance, defined as

(Acartesian(r)−Ahexagonal(r))/Acartesian(r).

is an integer multiplier. The scalar field then write

θ(r1, r2) = cos(
π

L
mr1 +

π
√
3

L
mr2) + cos(

2π

L
mr1) + cos(

π

L
mr1 −

π
√
3

L
mr2). (18)

Due to the condition of spatial homogeneity, it is possible to translate the ensemble

average operator to spatial average (similar ideas can be found in Refs. [3, 22]). We choose

an area which can represent one period of the scalar field and we are going to calculate

the correlation function based on the average of this area. The shape of this area is the

hexagonal form, denoted as D, with length of a side 2L/
√
3 , and one of its axis coinciding

with axis r2.

Three typical directions, i.e., r1 (0
◦), 15◦ and 30◦ directions, are selected to calculate the

correlation analytically. As was shown in Fig. 3, other typical directions are the same to

one of the three directions due to hexagonal symmetry. The corresponding values of Rθθ are
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denoted as R
(1)
θθ , R

(2)
θθ and R

(3)
θθ respectively. We finally obtain

R
(1)
θθ (r) =

1

SDRθθ (⃗0)

∫∫
D
θ(r1 + r, r2)θ(r1, r2)dr1dr2

=
2

3
cos(

mπr

L
) +

1

3
cos(

2mπr

L
),

R
(2)
θθ (r) =

1

SDRθθ (⃗0)

∫∫
D
θ(r1 +

√
2

2
r, r2 +

√
2

2
r)θ(r1, r2)dr1dr2

=
1

3
[cos(

√
2mπr

L
) + cos(

(−1 +
√
3)mπr√

2L
) + cos(

(1 +
√
3)mπr√
2L

)],

R
(3)
θθ (r) =

1

SDRθθ (⃗0)

∫∫
D
θ(r1 +

√
3

2
r, r2 +

1

2
r)θ(r1, r2)dr1dr2

=
1

3
[1 + 2 cos(

√
3mπr

L
)],

(19)

where

Rθθ (⃗0) =
1

SD

∫∫
D
θ(r1, r2)

2dr1dr2 (20)

is employed for normalization and SD is the surface of the D. We select two different values

of m respectively and show the correlation function at these three typical directions in Fig.

9. Clearly small scales overlap and large scales separate, corresponding to the fact of large-

scale background anisotropy. This indicates that one single wavelength can already lead to

background anisotropy. In fact, we will show that this extremely simple model can correctly

represent the scaling of large-scale background anisotropy.

To investigate the anisotropy, an extreme simplification is to use R
(1)
θθ (r), R

(2)
θθ (r) and

R
(3)
θθ (r) as three samples with fixed r and calculate their standard deviation σhexagonal ana-

lytically. The analytical form of this standard deviation σhexagonal(r) is complicated, but its

Taylor expansion at r/L simply leads to

σhexagonal =
π6

360

(mr

L

)6

+
π8

2520

(mr

L

)8

+
π10

40320

(mr

L

)10

+O

((mr

L

)12
)
, (21)

indicating that the dominant order should be r6. This standard deviation σhexagonal(r) is a

statistical result over three samples on a circle, but it might be qualitatively analogous to

A(r) which is defined when the number of samples tends to infinity. In fact, in Fig. 10(a) we

show that this scaling is in nice agreement with the real spectrum result presented in Sec.

IIIA. Note that here the scaling r6 cannot be applied at the very small scales, since it is the

subgrid effect which dominate while this model implies extremely fine mesh. This indicates
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(a) (b)

Figure 9. Illustration of the simple analytical model of correlation function normalized in three

typical directions. Rθθ (⃗0) is used for normalization. a) m = 1, b) m = 3.

σ

(a)Hexagonal case

σ

(b)Cartesian case

Figure 10. Comparison of standard deviation A(r) with real energy spectrum (16) to the three-

sample standard deviation σhexagonal and σcartesian in the single-wavenumber analytical model with

m = 1. Rii(⃗0) is used for normalization. The half-grid number is N/2 = 64. (a) Hexagonal case,

(b) Cartesian case.

that the discretization of single wavenumber is the dominant contribution for large-scale

background anisotropy.

For comparison, we can also write the case with cartesian discrete points in spectral

space. Similarly, three typical directions are also selected as the r1 (0◦), 22.5◦, and 45◦
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directions. The corresponding correlation functions Rθcθc(r⃗) for the traditional cartesian

case are then respectively

R
(1)
θcθc

(r) =
1

4L2Rθcθc (⃗0)

∫ L

−L

∫ L

−L

θc(r1 + r, r2)θc(r1, r2)dr1dr2

=
1

2
+

1

2
cos(

2mπr

L
),

R
(2)
θcθc

(r) =
1

4L2Rθcθc (⃗0)

∫ L

−L

∫ L

−L

θc(r1 +

√
2 +

√
2

2
r, r2 +

√
2−

√
2

2
r)θc(r1, r2)dr1dr2

=
1

2
cos(

√
2 +

√
2mπr

L
) +

1

2
cos(

√
2−

√
2mπr

L
),

R
(3)
θcθc

(r) =
1

4L2Rθcθc (⃗0)

∫ L

−L

∫ L

−L

θc(r1 +

√
2

2
r, r2 +

√
2

2
r)θc(r1, r2)dr1dr2

=cos(

√
2mπr

L
),

(22)

where

Rθcθc (⃗0) =
1

4L2

∫∫
D
θc(r1, r2)

2dr1dr2, (23)

and θc(r1, r2) is the scalar field corresponding to the cartesian case where the spectrum is

assumed to be discretized only on two axis directions

θc(r1, r2) = cos(
2π

L
mr1) + cos(

2π

L
mr2). (24)

Taylor expansion of the standard deviation of R
(1)
θcθc

(r), R
(2)
θcθc

(r) and R
(3)
θcθc

(r) is

σcartesian =

√
6π4

36

(mr

L

)4

−
√
6π6

180

(mr

L

)6

+

√
6π8

2160

(mr

L

)8

+O

((mr

L

)10
)
, (25)

indicating that the dominant order is r4. It is also in nice agreement with real spectrum

result in Fig. 10(b), which supports the present simplified analytical model. In addition, by

comparing between the hexagonal and cartesian cases, we can conclude that the reduction

of background anisotropy by using hexagonal Fourier transform is due to the vanish of

low-order terms in the single-wavenumber discretization.

IV. CONCLUDING REMARKS

In the present study we introduce the hexagonal Fourier transform, which means that

the discrete wavenumbers in two-dimensional spectral space are selected in hexagonal forms.



18

Forward and inverse transforms are derived to support the calculations. Fast algorithms

based on FFT are introduced. According to the relation between correlation function and

discrete energy spectrum, the background anisotropy can be related to energy spectrum.

We then show that under different energy spectra, the hexagonal Fourier transform yields

significantly less anisotropy than traditional cartesian mesh. This result then allows to

use greater ratio between integral scale L and the period of computational domain R in

two-dimensional turbulent flows if we use the hexagonal Fourier transform in the pseudo-

spectral simulations. In addition, we discuss the small-scale background anisotropy which

was not visited in literature, and show that it is closely related to the type of low-pass filter.

Under hexagonal Fourier transform, the scaling of background anisotropy (quantified by the

standard deviation A(r)) is r1 at small scales and r6 at large scales. The former scaling is a

result of Taylor expansion at subgrid scales and the latter scaling can be explained by using

a simplified single-wavenumber analytical model.

Another perspective of the hexagonal Fourier transform is to provide an alternative

spectral decomposition for two-dimensional field. In fact, comparing to traditional cartesian

meshes, the hexagonal mesh in spectral space are spiritually more close to the idea of shell

models[10, 23–25], and will perhaps inspire new researches on the energy transfer among

scales. For instance, a simple approach of the large-eddy simulation might be defined on the

hexagonal mesh in spectral space. Specifically, we can select the grid-scale (GS) part with

only six wavenumbers, located at the vertices of hexagon with the same wavelength. The

other wavenumbers are analogous to subgrid-scale (SGS) part. This would enable energy

transfers of both GS-GS and GS-SGS interactions, in which the former is a simplification of

the non-linear term of filtered NS equation corresponding to local triad interactions, while the

latter corresponds to the subgrid stress tensor. We have already obtained some preliminary

analytical models under this hexagon framework. By contrast, traditional cartesian mesh

cannot easily produce the GS non-linear interactions.

Finally we remark that the hexagonal Fourier transform is restricted in two dimensions.

The reason is that regular triangle can fill a two-dimensional space, but regular tetrahedrons

cannot fill a three-dimensional space. However, this does not mean that the hexagonal

Fourier transform is restricted in two-dimensional turbulence. In fact, there are other types

of turbulent flows which also depends on only two spatial coordinates. As an example,

Refs. [26, 27] show a general type of these quasi-three-dimensional flows. From the present
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contribution we can also imagine an artificial method to generate other types of quasi-

two-dimensional flows, by keeping all the modes in a spectral plane and clearing all other

modes. In brief, for all these two-dimensional or quasi-three-dimensional turbulent flows, the

hexagonal Fourier transform is suggested as an efficient tool to reduce large-scale background

anisotropy.
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Appendix A: Fast algorithms of hexagonal Fourier transform

In this section, we will introduce fast algorithms on the transform between hexagonal

discrete points in Fourier space and cartesian discrete points in physical space by using FFT

and inverse FFT (IFFT) algorithms.

Let us start from traditional two-dimensional DFT under cartesian meshes. Considering

a finite-extent sequence in physical space x(n1, n2) over a region of support n1 = 0...N1 −

1, n2 = 0...N2−1, the FFT algorithm calculates its discrete spectrum obtained by DFT in the

form of a finite-extent sequence XF (k1, k2) over the region of support k1 = 0...N1 − 1, k2 =

0...N2−1 in Fourier space[13]. Since in both physical and spectral spaces the discrete points

are distributed at regular cartesian meshes, the minimal distances of these points will be

used as an additional parameter of normalisation.

By using these notations, traditional DFT and inverse DFT (IDFT) write

XF (k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)W
n1k1
N1

W n2k2
N2

, (A1)

x(n1, n2) =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

XF (k1, k2)W
−n1k1
N1

W−n2k2
N2

, (A2)

with W nk
N = e−2πink

N .

We then turn to the case of hexagonal Fourier transform. Supposing that there is a set

of data sampled on a regular lattice of points in the physical space showed in Fig. 11(a) and
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(a) (b)

Figure 11. Sketch of the discrete points of two-dimensional hexagonal Fourier transform. (a)

Sampling in physical space. (b) Discrete points in Fourier spectral space. In both spaces, the set

of points are divided into four parts, which are treated separately in calculations.

its spectral value are located at the vertice of regular triangles in Fourier spectral space, as

shown in Fig. 11(b). We classify the sample points in both physical and spectral spaces

into four groups individually, denoted as the different symbols in Fig. 11. In fact, we can

consider that in spectral space groups 3 and 4 are horizontally shifted from a cartesian mesh,

and then extend the defining range of XF (k1, k2). We will use notation XF (k1 +
1
2
, k2) to

present the shifted points. For the aim of isotropy, in the present contribution we choose

N1 = N2 = N . For the ease of FFT algorithm, the value of N can be set as an positive

integer power of 2. Using the idea of decimation in frequency, we can rewrite formula (A1)

as

XF (k1, k2) =

N
2
−1∑

n1=0

N
2
−1∑

n2=0

[x(n1, n2)W
n1k1
N W n2k2

N

+x(n1 +
N

2
, n2)(−1)k1W n1k1

N W n2k2
N

+x(n1, n2 +
N

2
)(−1)k2W n1k1

N W n2k2
N

+x(n1 +
N

2
, n2 +

N

2
)(−1)k1+k2W n1k1

N W n2k2
N ].

(A3)

in which the four terms of right hand side corresponds to the four groups of Fig. 11(a)
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respectively. Replacing the index of wavenumber k1 and k2 in Fourier space by introducing

two new integer variables p and q, where p, q = 0...N
2
− 1, formula A2 is rewritten to four

cases, corresponding to the four groups in Fig. 11(b):

XF (2p, 2q) =

N
2
−1∑

n1=0

N
2
−1∑

n2=0

[x(n1, n2) + x(n1 +
N

2
, n2) + x(n1, n2 +

N

2
)

+ x(n1 +
N

2
, n2 +

N

2
)]W n1p

N
2

W n2q
N
2

,

XF (2p+ 1, 2q) =

N
2
−1∑

n1=0

N
2
−1∑

n2=0

[(x(n1, n2)− x(n1 +
N

2
, n2) + x(n1, n2 +

N

2
)

− x(n1 +
N

2
, n2 +

N

2
))W n1

N ]W n1p
N
2

W n2q
N
2

,

XF (2p+
1

2
, 2q + 1) =

N
2
−1∑

n1=0

N
2
−1∑

n2=0

[(x(n1, n2) + x(n1 +
N

2
, n2)W

N
4

N − x(n1, n2 +
N

2
)

− x(n1 +
N

2
, n2 +

N

2
)W

N
4

N )W n2
N W

n1
2

N ]W n1p
N
2

W n2q
N
2

,

XF (2p+
3

2
, 2q + 1) =

N
2
−1∑

n1=0

N
2
−1∑

n2=0

[(x(n1, n2)− x(n1 +
N

2
, n2)W

N
4

N − x(n1, n2 +
N

2
)

+ x(n1 +
N

2
, n2 +

N

2
)W

N
4

N )W n2
N W

3n1
2

N ]W n1p
N
2

W n2q
N
2

.

(A4)

For the last two equations where we calculate the spectral value of the positions that are not

the vertice of rectangular, we performed a cyclic translation which is a property of Fourier

transformation. Note that by reconstructing these four new sequences of data with N
2
∗ N

2

points in physical field, we can use the FFT algorithm on each of them to calculate different

parts of the discrete Fourier transform in the form of hexagonal. For example, in order

to calculate the first part in Fourier space, the new sequence x1 to be used is defined as

x1(n1, n2) = x(n1, n2) + x(n1 +
N
2
, n2) + x(n1, n2 +

N
2
) + x(n1 +

N
2
, n2 +

N
2
) where the ranges

of two integers are n1, n2 = 0...N
2
− 1, thus we have

XF (2p, 2q) = XF
1 (p, q), XF

1 = FFT(x1). (A5)

The other parts of the discrete Fourier transform XF
2 , X

F
3 , X

F
4 can be calculated similarly.

As a result, we can obtain the hexagonal spectrum by performing four times the FFT

algorithms to the arranged sequences of data in physical field.

The inverse operation uses a similar idea. For a given hexagonal discrete spectrum XF

in Fourier space, we also have to abstract four parts. We do IFFT and obtain four groups
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of points. Then we reconstruct the physical sampling for the lattice of points by resolving

a system of equations. In details, for example, we have for the first sequence obtained by

the inverse fast Fourier transform with XF
1 (p, q) = XF (2p, 2q) for p, q = 0...N

2
− 1 and for

n1, n2 = 0...N
2
− 1

IFFT(XF
1 ) = x1, (A6)

where

x1(n1, n2) = x(n1, n2) + x(n1 +
N

2
, n2) + x(n1, n2 +

N

2
) + x(n1 +

N

2
, n2 +

N

2
). (A7)

After having the four sequences x1, x2, x3, x4, we can restitute the sequence of values x

at the initial positions which means at the vertices of rectangular. For n1, n2 = 0...N
2
− 1

x(n1, n2) =
1

4
[x1(n1, n2) +W−n1

N x2(n1, n2)

+W
−n1

2
N W−n2

N x3(n1, n2) +W
−n3

2
N W−n2

N x4(n1, n2)]

x(n1, n2 +
N

2
) =

1

4
[x1(n1, n2) +W−n1

N x2(n1, n2)

−W
−n1

2
N W−n2

N x3(n1, n2)−W
−n3

2
N W−n2

N x4(n1, n2)]

x(n1 +
N

2
, n2) =

1

4
[x1(n1, n2)−W−n1

N x2(n1, n2)

+W
−n1

2
N W−n2

N W
−N

4
N x3(n1, n2)−W

−n3
2

N W−n2
N W

−N
4

N x4(n1, n2)]

x(n1 +
N

2
, n2 +

N

2
) =

1

4
[x1(n1, n2)−W−n1

N x2(n1, n2)

−W
−n1

2
N W−n2

N W
−N

4
N x3(n1, n2) +W

−n3
2

N W−n2
N W

−N
4

N x4(n1, n2)]

(A8)

Then we obtain the values of the physical field for a sequence of data on a lattice of points.

Using four times FFT/IFFT algorithm can reduce efficiently the cost of computation

compared with constructing the circulations in the algorithm. We usually use only the

multiple of the step length in both two space in the formulas because the period value can

be eliminated by choosing properly the position of spectrum to be calculated.

For a finite field of discrete spectrum, the inverse operation for the purpose of reconstruct-

ing a whole field or a larger physical field has the coincidence with the inverse operation

of Fourier transformation continuous in which we also have a summation to be calculated

The only difference is the occurrence of a constant multiplier associated with the number of

sample points chosen during the calculation of the discrete spectrum.
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In brief, for the hexagonal Fourier transform, we can take advantage of the modified

FFT and IFFT algorithms, including their parallelized versions, to save the programming

and computational costs in the pseudo-spectral methods of turbulence simulations.
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