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This paper is the conclusion of work done in our previous papers [A.A. Doinikov et al., Phys. Rev. E
100, 033104, 033105 (2019)]. The overall aim of the study is to develop a theory for modeling the
velocity field of acoustic microstreaming produced by nonspherical oscillations of a gas bubble. In
our previous papers, general equations have been derived to describe the velocity field of acoustic
microstreaming produced by modes m and n of bubble oscillations. Particular cases of mode inter-
action have been derived, such as the 0-n, 1-1, 1-m and n-n interaction. Here, the general case of
interaction between modes n and m, n > m, is solved analytically. Solutions are expressed in terms
of complex mode amplitudes, meaning that the mode amplitudes are assumed to be known and
serve as input data for the calculation of the velocity field of microstreaming. No restrictions are
imposed on the ratio of the bubble radius to the viscous penetration depth. The n-m interaction re-
sults in specific streaming patterns: at large distance from the bubble interface the pattern exhibits
2|n — m| lobes while 2min(m,n) lobes exist in the bubble vicinity. The spatial organization of the
recirculation zones is unique for the interaction of two distinct nonspherical modes and therefore

appears as a signature of the n-m interaction.

I. INTRODUCTION

Microstreaming is a mean flow induced by an oscillat-
ing body submerged in a fluid. In the case of an oscil-
lating bubble [1], the flow is driven by streaming inside
the oscillatory boundary layer around the bubble inter-
face, the so-called Stokes layer. Nonlinear second-order
effects are responsible for the extension of the stream-
ing patterns much further than the Stokes layer. The
flow pattern is directly related to the bubble oscillation
modes. When a bubble oscillates purely spherically, the
spherosymmetry of the first-order acoustic velocity field
prevents the generation of vorticity [2]. In order to de-
scribe bubble-induced streaming flows, it is thus neces-
sary to consider supplementary oscillation modes, includ-
ing the translational one, and the surface modes. The
interaction between the radial oscillations and the trans-
lational motion of the bubble was first considered by Wu
and Du [3] and Longuet-Higgins [4]. The physical in-
terest in such an interaction lies in the understanding
of bubbles oscillating in the vicinity of a wall, where re-
flected waves naturally induce the translational motion
of the bubble center at the same frequency as the radial
oscillations. It is worth noting that theoretical studies
on acoustic streaming produced by a bubble on a wall [5]
are restricted to the case of interaction induced by the
monopole and dipole modes. The main theoretical chal-
lenge is the derivation of bubble-induced shear stress ex-
erted on an elastic wall for medical applications such as
the permeabilization of biological cells [21]. Recently, ex-
perimental observations have highlighted a wide variety
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of microstreaming patterns induced specifically by shape
modes [7, 8], with particular interest for targeted and
localized drug delivery. The physical mechanisms under-
lying the nonspherical instability of the bubble interface
is the parametric excitation, meaning that the predomi-
nant surface modes oscillate at half the driving frequency
w [9]. As so, if a parametrically-triggered surface mode
oscillates at w/2 in combination with the monopole oscil-
lation (at frequency w), then the only contribution to mi-
crostreaming comes from the self-interaction of the non-
spherical mode, specifically discussed by Maksimov [10]
and later Spelman and Lauga [11]. Moreover, a nonspher-
ical mode would interact with the monopole oscillation
only if it oscillates at the frequency w and is therefore
excited on its second parametric resonance, as experi-
mentally described by Cleve et al. [7]. As a consequence,
in order to generate any kind of mode interactions, a sec-
ondary nonspherical mode is required in addition to the
parametrically-excited one. Such triggering is possible at
sufficient acoustic pressures due to the nonlinear energy
coupling between modes. Such coupling has been theo-
retically investigated by Doinikov [12] and Shaw [13] and
experimentally evidenced by Guedra et al. [9]. When a
mode n is parametrically excited, secondary translational
m = 1 and nonspherical modes m # n are expected. Par-
ticularly, even modes can only excite other even modes
through the nonlinear coupling while odd modes can ex-
cite all other modes [13]. This property may lead to the
generation of a broad spectrum of nonspherical modes.
For the generation of the second-order mean flow, these
modes will interact only if they oscillate at the same
frequency. The case of interactions between modes n
and m is thus of peculiar importance in order to capture
the whole picture of single bubble-induced microstream-



ing. At this point, it is necessary to indicate that all
previous theoretical investigations on bubble-induced mi-
crostreaming assumed that the bubble radius Ry is much
greater than the viscous penetration depth 6. This hy-
pothesis results in an approximate solution for the fluid
velocity field only up to leading terms with respect to
the ratio 6/Rp. It makes these theories invalid when this
ratio is not small compared to unity, as it is the case
with high-viscosity liquids and/or micron-sized bubbles.
In our previous studies [2, 14, 15], we have developed a
general theory for modeling the velocity field of acous-
tic microstreaming produced by axisymmetric nonspher-
ical oscillations of an acoustically-driven gas bubble. The
first study [2] was dedicated to the case that acoustic mi-
crostreaming is generated by the interaction of the radial
mode (mode 0) with a mode of arbitrary order m > 1.
In the second study [14], the contribution of the transla-
tional mode was investigated through the self-interacting
mode 1-1, and the interaction of translation with any ar-
bitrary nonspherical mode m > 1. In the third study [15],
we investigated the self-interating contribution of a non-
spherical mode n.

In the present study, we derive an exact analytical so-
lution for the Lagrangian streaming velocity induced by
the interactions of two modes n and m # n, without any
restrictions on the ratio of the bubble radius to the vis-
cous penetration depth. In Sec. II, the solution for the
Lagrangian streaming velocity is derived. In Sec. III, nu-
merical examples of the microstreaming induced by the
interaction of two modes n and m are provided and com-
pared to previous theories available in the literature.

II. THEORY

We consider a gas bubble undergoing axisymmetric os-
cillations, which include the radial pulsation (mode 0),
translation (mode 1), and shape modes of order m > 1.
The liquid motion produced by the bubble oscillations is
described in the spherical coordinates r and 6 whose ori-
gin is at the equilibrium center of the bubble, and the axis
z is the axis of symmetry. The geometry of the problem
is depicted in Fig. 1.

Our derivation assumes that the amplitudes of the bub-
ble oscillation modes are small compared to the equi-
librium bubble radius. This assumption allows us to
linearize the equations of liquid motion (Navier-Stokes
equations) and to find their solutions, assuming that
the amplitudes of the bubble oscillation modes are given
quantities. These solutions give us the linear velocity
field produced by the bubble in the liquid. This calcu-
lation is performed in Sec. IT A and leads to expressions
for the linear radial and tangential velocity components
given by in Egs. (2) and (3). To calculate the first-order
liquid velocity, boundary conditions at the bubble surface
are applied. Firstly, the normal component of the bub-
ble surface velocity is set equal to the normal component
of the fluid particle velocity at the interface. Secondly,
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FIG. 1. Geometry of the system under study. (a) Three-
dimensional representation of the bubble interface, where z is
the axis of axial symmetry. Two axisymmetric modes n = 5
and m = 4, with equal amplitudes, are depicted. (b) Axial
symmetry allows using polar coordinates (r, 6) to parametrize
the bubble interface rs.

the tangential stress is supposed to vanish on the bubble
surface when considering a non-contaminated interface.
In the next step, the equations of liquid motion are writ-
ten with accuracy up to terms of the second order of
smallness with respect to the linear solutions and aver-
aged over time. This operation leads to Eq. (10) which
describes the time-independent velocity field of acoustic
microstreaming produced by the bubble oscillations. The
solution of Eq. (10) is derived in Sec. II B. To derive the
velocity field of acoustic streaming, the boundary condi-
tions of vanishing normal velocity and tangential stress
of the Lagrangian streaming are applied at the mean po-
sition of the interface. The use of these boundary condi-
tions is described in the Appendix.

A. Linear solutions

The bubble oscillation is decomposed over N axisym-
metric surface modes, corresponding to the basis of Leg-
endre polynomials [16]. The oscillation frequencies of the
modes may differ due to the parametric behavior of non-
spherical bubble dynamics. The bubble surface is hence
represented by

N
re = Ry + Z spe Py, (1), (1)

n=0

where Ry is the bubble radius at rest, s,, is the complex
amplitude of the nth mode, w,, is the angular frequency of
the nth mode, u = cos, and P, is the Legendre polyno-
mial of order n. It is assumed that |s,|/Ry < 1. The val-
ues of s,, and w,, are considered as known quantities, pos-
sibly experimentally measured, and serve as input data
in the proposed model.

The linearized equations of an incompressible viscous
liquid allow us to determine the radial, vy, and tangen-



tial, v19, components of the first-order liquid velocity [2]:
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where z,, = k,r, ky, = (1 +1)/0n, 6p = /2V/wy, v is
the kinematic liquid viscosity, z, = k,Ro, h%l) is the
spherical Hankel function of the first kind of order n,
hg)/(mn) = dh%l)(xn)/dxn and P! is the associated Leg-
endre polynomial of the first order and of degree n, as
defined in [17]. The terms a,, and b,, are linear scatter-
ing coefficients of, respectively, the potential and vortical
parts of the scattered wave from the bubble. They are
deduced from the boundary conditions at the bubble in-
terface:
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where 7 is the dynamic liquid viscosity. Their expression
is given by [2]
ag = 1Rowgso (6)
1Rown s [T2RY (Z) — (0% +n — 2)R5Y (7))
(n+ D[22 (Z,) + (n2 + 3n+ 2B (2,)]
for n>1, (7)
21Ro(n + 2)wn Sn
(n+ 1)[E2hL" (Z,) + (0% + 3n + 2)hY) (z,)]
for n>1, (8)

by, =

and the coefficient b,, is undefined for n = 0.

B. Acoustic microstreaming produced by modes m
and n

The derivation of the equations of acoustic stream-
ing relies on taking the nonlinear incompressible Navier-
Stokes equations up to second-order terms with respect
to the first-order fluid velocity, and averaging them over
time. Time averaging leads to the result that nonzero
contributions to acoustic streaming can come either from
pairs of different modes that oscillate at the same fre-
quency or from the interaction of a mode with itself. We
have already provided exact analytical solutions for the
cases of microstreaming induced by the interaction of the

radial mode [2] or the translation mode n = 1 [14] with
any arbitrary surface mode n, as well as the case of the
self-interaction of a surface mode [15]. Here, the general
case of interacting modes m and n is considered. Ac-
cording to the theory developed in Part I [2], for the case
of interacting modes m and n, the Eulerian streaming
velocity is represented by

(v3™) =V x [(p3™ (r,0))ec], 9)

where () denotes the time average, e. is the unit az-
imuthal vector, and (5™ (r,0)) is the amplitude of the
vector potential of the streaming velocity that is calcu-
lated from Eq. (32) of Part I:
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where D is the linear operator given by
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and the functions G 2 3(x,) are defined by

*

R n+1
Gi(zn) = khanby, (7"0> [(n + AR (@n) = zhy) (0)
— kbbb () B ()

+ 2y (@) B ()] (12)

Ry

m—+1 *
Go(xn) = khamb;, () [(m + 1)aV (z,) — :vnhg)’(gcn)}
T

~—

— mkZbby, [enh (Y () BV ()

+ @ (@)hD ()] (13)

(RO ) n+1
Ap | —
r

= b [ @) + b ()]

. (RO)erl
r

— bm [hgrlz)(xn) +'rnh'5’71L)/('T7l):|:| > (14)

Gs(wn) = b:nk'r%hgrlz)* ()

+ br k2

R (@)

where the asterisk denotes the complex conjugate. In
order to find an exact solution for the equation ruling



the vector potential 4™, one may simplify the angu-
lar dependency in Eq. (10), which is decomposed over
three terms involving Legendre polynomials and associ-
ated Legendre polynomials. Such a decomposition is per-
formed along the orthogonal basis of the P} (u) functions
by using the properties of overlapping integrals of three
associated Legendre polynomials [18]:

1
I(ll7mla 1277’712, 137m3) = / I_)l:nl (m)PZZ12 (l‘)Png (l’)dl‘,
1

(15)
whose exact analytical expression exists in the special
case ms = mi + mao:

ms | 14+ m1)(la 4+ m2)!(ls 4+ m3)!
=2 \/Eﬁ - miiyﬁzi - mZ§!§z§ = mz;!

Iy 1o 13 Lh Iy
(0 0 0 mi Mmoo —mMs ’ (16)
where we have introduced the Wigner 3-j symbols. The

decomposition of the first two angular terms in Eq. (10)
is straightforward and leads to

n+m
Pn(N)PﬁL(:u) = Z O‘knmpkl(p“)v (17)
k=n—m
n+m
Pn(m)Pr() = Y rmnPi (1), (18)

k=n—m

assuming n > m in the investigated case and by intro-
ducing the coeflicient

<(uo) ) (19

It is worth noting that the limits of summation n —m <
k < n+m in the Egs. (17,18) come from the existence
property of the Wigner 3-j symbols. Based on the same
mathematical framework and by using common identities
of associated Legendre functions [17], the third angular
term appearing in Eq. (10) is decomposed as

n+m

Z ’Yknmpkl (ﬂ)a (20)

k=n—m

1— 2 [Py (1) Py, (1)

where the coefficient yi,y, is defined by
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In the projection of the third angular term on the P (p)
basis, the condition n > m > 2 is imposed by the exis-
tence property of Wigner 3-j symbols. By noticing that
the particular cases (m = 0, any n), (m = 1, any n)
and (m, n = m) have been previously derived [2, 14, 15],
then all interacting cases will be considered. Substituting
Egs. (17,18,20) into Eq. (10), one obtains

n+m
D% 5”">=Re{ > Hk(wn)Pzi(u)}7 (23)

k=n—m
n+1 m+1
Hk:(xn) - Wakanl(xn) + WakmnGZ(xn)
1
5,72 Venm G3(2n) (24)

Solving Eq. (23) requires cumbersome calculations that
are provided in the Appendix. As a result, the solution
of Eq. (23) is found to be

n+m
{ > Ful(aa) P )} (25)

k=n—m

(3" (z, 1))

where the functions Fy(z,) are defined by Eq. (A6).
Equation (25) leads to the following expressions for the
components of the Eulerian streaming velocity:

n+m
<vs;”>:—iRe{ > k<k+1>Fk<xn>Pk<u>}, (26)

k=n—m

nm 1 ~ / 1
(8") =~ Re {k_nzm [Fi(en) + 20 F 2] P} (u)} ,
(27)
where the functions Fj (x,) are defined by Eq. (A15).
In the process of calculating Egs. (26) and (27), we
have also obtained the following expressions for the com-
ponents of the Stokes drift velocity [4] (see the Ap-
pendix):

n+m
Ve = Re{ > Tk(:cn)Pk(u)} ; (28)
k

=n—m

n+m
v%":Re{ 3 Uk<xn>P,3<u>}, (29)

k=n—m

where the functions Ty (z,) and Ug(x,) are defined by
Egs. (A36) and (A40), respectively. The sum of the Eu-
lerian streaming velocity and the Stokes drift velocity
provides the Lagrangian streaming velocity,

vp™ = (v3™) +vg", (30)

for which the radial and tangential components can be
calculated using Eqgs. (26)-(29). It has been verified that
the Lagrangian streaming velocity given by Eq. (30) cor-
responds to the one derived in our previous work [15] for
the particular case n = m, m > 2. A MATLAB code for
the calculation of the Lagrangian velocity is provided as
Supplementary Material [19].
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FIG. 2. Numerical examples of streamline patterns produced by the interaction of modes n and m in cases: (a) (n = 3, m = 2),
(b) (n=4,m=2),(c)(n=4,m=3),(d) (n=5,m=2), (e) (n=>5,m=3), (f) (n=>5, m =4). Inserts show the streaming
close to the bubble interface in the near-bubble region limited by the dashed line.

IIT. NUMERICAL EXAMPLES
A. Streamlines given by the present model

Numerical simulations were performed at the fol-
lowing values of physical parameters: liquid den-
sity p = 1000kg/m?, dynamic liquid viscosity
7 = 0.001 Pa - s, driving frequency f = 50kHz, and equi-
librium radius Ry = 50pm. Figure 2 exemplifies La-
grangian streamline patterns produced by the interaction
of two modes n € {3,4,5} and m € {2, 3,4} with the con-
ditions n # m, n > m > 2. As one can see, the main vor-
tices form a two-scale pattern. In the vicinity of the bub-
ble surface, the vortices have a form of lobes. According
to the presented examples, the number of lobes is equal
to 2min(m,n) for the n-m interaction. For instance, the
patterns resulting from the n-2 interactions always reveal
a 4-lobes picture in the bubble vicinity, clearly visible in
Fig. 2(a,b) and noticeable in Fig. 2(d). In the latter fig-
ure, each lobe is decomposed into two counter-rotating
vortices. Far from the bubble, the vortices have a lobe
shape in which the number of lobes equals 2|n — m/|. In
the present analysis, a specific pattern is revealed and
appears as a signature of the case of the interaction be-
tween modes n and m. We recall that, when considering

the interaction 0 - n between the radial mode and a non-
spherical mode [2], the streamline patterns looked like
lobes whose number equals 2n. When considering the
interaction between the translational mode and any non-
spherical mode n [14], streamlines form lobes whose num-
ber is equal to 2(n—1). When considering self-interacting
case n-n, streamlines exhibit 4n lobes in the bubble vicin-
ity with a cross-like shape far from the bubble [15]. It
is worth noting that the presence of the vortices close
to the bubble interface may be difficult to be observed
experimentally. Thus the observable streaming pattern
will look as that far from the bubble interface, consisting
of 2(n — m) lobes. These patterns will look similar to
the ones obtained through the interaction between the
radial mode and any nonspherical mode n, whose lobe
number equals 2n. For instance, the pattern induced by
the interaction 5 - 2 will be similar to the one induced by
the interaction 0 - 3. This highlights the importance of
assessing experimentally the bubble interface dynamics
when discussing the induced streaming flows. Fig. 3(a,b)
shows the radial and tangential components of the La-
grangian streaming velocity as a function of the distance
from the bubble surface /Ry for various values of the
phase shift A¢ between modes n = 3 and m = 2, calcu-
lated at the angle § = 7/4. The velocity components are
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FIG. 3. Dependency of the Lagrangian streaming velocity components on the distance from the bubble interface, for the 3 -
2 interaction: (a, b) at various values of the phase shift A¢ between modes, and (c, d) at various dynamic viscosity 1 for the
surrounding medium. The velocity components are normalized by the factor wy,|sn||$m|/Ro-

normalized by the factor wy,|$,||$m|/Ro. For both veloc-
ity components, the amplitude of the streaming velocity
increases considerably as the phase shift varies from 0
to /2. Another observation is that the velocity ampli-
tude decays within a short distance from the bubble sur-
face. As the present model captures the microstreaming
flow whatever the bubble size or the viscous penetration
depth, Fig. 3(c,d) represents the dependence of the radial
and tangential components of the Lagrangian streaming
velocity for increasing values of the liquid viscosity and
hence increasing ratio of the viscous penetration depth to
the bubble radius. Numerical simulations are performed
for the in-phase (A¢ = 0) 3 - 2 interaction, at the angu-
lar position § = 7/4. Results evidence that two orders
of magnitude of values of liquid viscosity are required
in order to significantly modify the Lagrangian stream-
ing velocity. The full knowledge of the streaming pat-
tern induced by a nonspherically-oscillating microbubble
is of particular interest for applications such as acous-
tic cleaning [20], biological cell permeabilization leading
to the sonoporation process [21], or any bubble-induced
drug delivery technique. For instance, in therapeutic ap-
plications, it has been evidenced that bubble-induced mi-

crostreaming is responsible for cell deformability [22] or
acts as a transport mechanism for the release of lipids or
nanoparticles from microbubbles [23]. Characterizing the
velocity field of the fluid flow, particularly in the vicinity
of the bubble interface, matters when close bubble-cell in-
teractions occur, such as in the case of capillary-confined
microbubbles or in sonoporation experiments involving
a large number of biological cells and a dense bubble
cloud. Here partitioning of the streaming pattern is ob-
served between confined lobes in the near field of the
bubble interface that possess higher velocities relatively
to the far-field lobes. The near-field high-velocity lobes
act as recirculation vortices which could enhance the de-
formation of biological particles, as well as exerting shear
stress on them, possibly until their rupture. Potential ap-
plications of near-interface high-speed vortices concern
ultrasound-induced thrombolysis [24], where one must
guarantee both destruction of blood clots and limited
size of the clot fragments in order to avoid secondary ves-
sel occlusion further downstream the area of the treated
vessel. By trapping the fragments into near-bubble re-
circulation vortices, continuous size reduction of these
fragments may occur if they are subjected to sufficiently
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FIG. 4. Comparison of the present model to the theory of Spelman and Lauga [11] for the interaction of modes n = 3 and
m = 2. Upper line: Streamline pattern according to (a) the theory of Spelman and Lauga and (b) the present model. Evolution
of the normalized (c) radial and (d) tangential components of the Lagrangian streaming velocity given by both theories and
calculated for the angle § = 7/4, as a function of the normalized distance r/Ro. The velocity components are normalized by

the factor wy|sn||sm|/Ro.

intense shear stresses. In addition, a strong mixing ef-
ficiency of stably-oscillating bubbles has been shown to
hasten enzymatic fibrinolysis, increasing the delivery of
plasminogens into blood clots [25]. We therefore expect
that the present model will help in designing customized
microbubbles or ultrasound-emission sequences in order
to enhance specific streaming flows amongst the large va-
riety of obtained patterns.

B. Comparison with previous theories

The present model is compared to the theory of
Spelman and Lauga [11], which considers axisymmetric
modes of arbitrary orders, oscillating at the same fre-
quency. To the best of our knowledge, this model was
the only one describing the microstreaming induced by
arbitrary nonspherical modes. We emphasize the fact
that, contrary to the Spelman model [11], we do not as-
sume the viscous penetration length scale being small in
comparison to the bubble radius. This means that, while
their solutions are derived approximatively, in powers of

the small parameter € = §/ Ry, our solution is available
whatetever the liquid viscosity and the bubble size. The
Spelman model provides the following expression for the
external leading order Lagrangian streaming:

<’¢'L(r7 /’L)> = Z (Tkr_k + Skr_(k_Q) - Z Z Yknm
k=1 n=0m=1

1
X r’(’”m*‘?’)) X </ Pk(@dm) , (31)
I
where the coefficients Ty, Sk, and Yi,., result from the
matching at the viscous boundary layer between the inner
and outer solution of the Eulerian streaming. In partic-
ular, their calculation depends on the investigated mode
pair contribution and the phase shift between modes. It
is shown that, if the modal amplitudes (s, s,,) are in-
phase or m out-of-phase with each other, then the con-
tribution of these mode pairs to the steady streaming is
identical to zero at the first order of the expansion over
d/Ryp. Tt is thus necessary to derive expressions to upper
order in the expansion, up to the third order of the ratio
d/ Ry in their analysis. For the sake of simplicity, we here



compare the streamline patterns obtained by the present
model and the Spelman model in the case of in-phase in-
teracting modes n and m. We emphasize that no exam-
ples of n —m interacting cases are presented in Ref. [11].
Fig. 4 compares the streamline patterns and Lagrangian
streaming velocities given by the theory of Spelman and
Lauga and the present model, in case of the 3 - 2 inter-
action. The velocity components are normalized by the
factor wy|sn||Sm|/Ro. The parameters are as in Fig. 2.
The streamline patterns show a good qualitative agree-
ment, except the lack of vortices in the Spelman model in
the vicinity of the bubble interface. This trend has been
noticed for other n - m interaction cases. Concerning
the radial and tangential components of the Lagrangian
velocity (Fig. 4(c, d)), both models show a quantitative
agreement far from the bubble interface.

IV. CONCLUSIONS

In the present paper, the general theory developed
in the previous study [2] has been applied to the case
that acoustic microstreaming results from the interac-
tion between two axisymmetric modes n and m such that
n > m > 2. Analytical solutions are derived in terms of
complex amplitudes of oscillation modes, which means
that the mode amplitudes are assumed to be known and
serve as input data when the velocity field of acoustic mi-
crostreaming is calculated. No restrictions are imposed

J

on the ratio of the bubble radius to the viscous pene-
tration depth. The n - m interaction results in a spe-
cific streamline pattern. This pattern exhibits a 2|n —m|
lobes-like shape far from the bubble in addition to small
recirculation zones in the vicinity of the bubble inter-
face. The number of lobes in the bubble vicinity equals
2min(m,n). In summary, this series of theoretical stud-
ies has evidenced the signature of each case of interact-
ing modes. The interaction of the radial oscillation and a
nonspherical mode n results in a flower-type pattern with
2n lobes. The 1 - n interaction generates a 2(n — 1) lobes
pattern, while the self-interacting case n - n produces
a cross-like shape with 4n lobes in the bubble vicinity.
Finally, the n - m (n > m > 2) interaction produces a
2|n —m| lobes-like shape with 2min(m, n) vortices in the
bubble vicinity. These features highlight the importance
of determining the interface dynamics and the modal con-
tent when analyzing microstreaming flows.
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Appendix A: Solution of Eq. (23)

The right-hand side of Eq. (23) suggests that a solution can be sought in the following form:

(3" (2, 1)) = Re {

n+m

> Fk(w)Pkl(u)} : (A1)

k=n—m

where z = x,, = k,,r is introduced for the sake of simplicity, and Fj(z) is a function to be found. The action of the

operator D? on the proposed solution (A1) results in

n+m

D™ (x, ) = Re{

k=n—m

+ k(k+1)[k(k+1)— 2] Fyp(2)} P(p)} -

4
3 % {o*F") (@) + 4 B (@) — 2K(k + 1) F ()

(A2)

After substituting Eq. (A2) into Eq. (23), the identification for each term over the functions P} that forms a set of
linearly independent functions provides the following equation for the Fy(z) functions:

d*F, 4 d3F, 2k(k+1) d*F

k(k + 1) [k(k+ 1) — 2]

_ L

dx?t x dx3 x2 dx?

u Fi(z) Hy(z), (A3)

T L4
x k2

where the function Hy(x) is defined by Eq. (24). Equation (A3) can be solved by the method of variation of parameters,
also known as the Lagrange method [26]. According to this method, we first need to find solutions to a homogeneous
equation that corresponds to the left-hand side of Eq. (A3). The solutions are sought in the form z*. Substitution of
2 into the homogeneous form of Eq. (A3) leads to a polynomial of fourth order in A,

AN = DA =2)(A+1) — 2k(k + DAN = 1) + k(k + 1) (k(k + 1) — 2) = 0. (A4)



The roots of this polynomial are —(k— 1), —(k+ 1), k, k + 2. Therefore, the general solution of the homogeneous form
of Eq. (A3) is written as

Chs Cha
g

Fk(,’E) = Ck1$k+2 + Ckg.%'k + (A5)

where Cj; are constants. According to the Lagrange method, the solution of the inhomogeneous equation (A3) is
obtained by setting the coefficients C}; to be functions of z, such as

Ck C
Fi(w) = Cpa(2)2" 2 + Cpa(a)a® + ;;fff) ;;J(rf)v

(A6)

where the Cj; functions should obey the following system of equations:

Cray1 + Croyz + Crys + Cryya = 0
Cllcly/l + Cl/czylz + Cl/csyi/’) + Cllc4y£l =0
Crayy + Crays + Clays + Crayy =0 (AT)

" "

Cratl" + Crays’ + Crayy’ + Crayy’ = Hi(x) /K,
Here the prime denotes the derivative with respect to z and the functions y; are given by

k+2 k — (k1)

Y11=z Yo =2 Y3 yg = = FHD, (A8)

Equations (A7) are a system of algebraic equations with the unknowns Cj,. Solving this system and integrating the
solutions over x, one obtains

1 x Sl—k

Cra () = Crao + 2(2k + 1)(2k + 3) /%0 ki k(s)ds, (A9)
1 x 83—k

Cral@) = Chao = 5o =555 1) /zno gi Hr(s)ds, (A10)
x 2+k

Ckg,(.%‘) = Chl3o + 5 Hk(s)ds, (All)

@ ).
@k— )2k +1) Jy, K

Cra(@) = Crag — ! /x S (s)d (A12)
L) = R0 T o T ) 2k 1 3) R4,

n0

where the constants Ci;9, i =1,2,3,4, have to be determined according to the boundary conditions. To apply the
boundary conditions, we first calculate the components of the Eulerian streaming velocity by using Eq. (A1):

(w5r) = - 2 L gy T (A13)

- 5
1 n+m
_ _rRe{ > k(k+ 1)Fk(x)Pk(u)} )

k=n—m

12 et A
n+m

— —iRe{ > [Frlx) + aF(x)] Pkl(u)},
k=n—m

where the first derivative of the F}, function is written as

Fl(z) = (k+ 2)Ck1(x)xk+1 + k:Ckg(m)xk_l — (k- 1)Ck3($).%'_k —(k+ 1)Ck4(gc)x_k_2. (A15)



10

The condition of zero streaming velocity at infinity requires that Fy(x)/r — 0 for r — oo, which leads to

1 o] Slfk
Chio 2(2k + 1)(2k + 3) /mno K k(s)ds, (A16)
1 [ee] 53716
o — H . Al
Cro = S D@k 1) /zn ra k(s)ds (A17)

In order to calculate the coefficients Ck3p and Cl4g, boundary conditions at the bubble surface have to be applied.
Equations (A13) and (A14) give the components of the Eulerian streaming velocity. To apply the boundary conditions
at the bubble surface, we need to know the Lagrangian streaming velocity, which is defined by

vy, = (v2) + vg, (A18)

where vg is the Stokes drift velocity given by [4]

= ((Jorv)e) | )

where v, is the first-order liquid velocity. For the case of the interaction between modes n and m, Eq. (A19) reduces
to

1
vg™" = gRe {t(vin + Vim - V) (V1in + v1m)"}, (A20)

where wvy; is the first-order liquid velocity produced by the mode i. As a result, the components of the Stokes drift
velocity associated to the m-n interaction are given by

nm 1 O(Vnr + Vmr)* 2 O(Vnr + Vimy)*
Vs = TRG {Z(Unr + Umr)% + ;(Une + Um@)(aa)} ) (A21)
1 (9 n m * 8 n m -
vl = 5 —Re {z(vm 1 ) 200 o) 9;” o) | (v + tmo) {vm, Tty - 20n0 T 0mo) 9649» - 9)] } . (A22)

The components of the first-order liquid velocity induced by the oscillation of any arbitrary axisymmetric mode n
have already been determined in our previous study [2]:

1 / R n+2 R
Vipr = —R—(n + e ™"t |a, (0) + nbn—ohg)(x)
T

0

Po(p), (A23)

r

Ving = —e Pl(p). (A24)

n+2
an <RO> - bn& [hg)(x) + xhg)’(x).]
T

Ry r

Substituting Eqs. (A23) and (A24) into Eqs. (A21) and (A22) leads to the calculation of the Stokes drift velocity
components:

W =~ o (PP () = nl + )P, () Po(4)] Re {Sus ()
— o [PLGOPL(0) = mlm + 1)Pa (1) P (0)] Re {S12(2))
vRo
+ 5o PAGDPAGRe {Sia(a)} (A25)
o = SV P (P (Re (5210} + S P ) P Re {S2n(0))
b T2 [P0 PY() — PA(0)PY ()] Re (S ()} (A26)

2I/R0
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where we introduce the functions

1 7\ n+m+3 7
Su@) = ="ana, (2) T mlm 1) () babi D @) b (2)
L [T\ m+1, Loy ]
1 7\ n+m-+3 -
Sia(x) = —%amafl (E) +n(n+1) (%) bmb;hg,ll)’(a:)hf})*(x)
Z\"t2 n+1 1 *
« (T W (g L0y
S z * 7 (1) (1) * z 2 (1) 1
13(2) = <5babihD (@B (@) [n(n + 1) = m(m + D] + anbly (2) B @)= [m(m +1) = n(n +1)]
AN 1
« (T (W) () L _
+ amb’ (m) AD* (@)= [n(n +1) = m(m + 1) (A29)
7 7\ N1 7\ M+ *
Sy (z) = % [an (g) + nbnhg})(x)] [(m + 3)am (E) + by {th,lg - xzh%)"(x)}} (A30)
Sa2(z) = S21(%)[nesm (A31)
T T n+1 T m+1 *
Suae) = 2 |on (2)7 = 00 {00 4 @] fen (5)" =0 {00+ an@}]| . (as2)

Now the boundary conditions at the bubble surface can be applied. It is known that, for arbitrary surface periodic

deformations, both normal velocity component and tangential stress of the Lagrangian streaming must vanish at the
mean position of the interface. These two conditions are written in the following form:

v = (vpt) +vgr =0 at 7= Ry, (A33)

Lovyy  Ovpy iy 0

r 00 or r

In order to apply the first boundary condition (Eq. (A33)), it is required to expand the radial component of the Stokes
drift velocity over the same set of orthogonal Py (1) functions as the radial component of the Eulerian velocity. This
is performed using the properties of double and triple overlapping integrals of Legendre polynomials, leading to

n+m
oy Re{ > Tk<z>Pk<u>}, (A35)

k=n—m

at r=Ry. (A34)

where the function Ty (z) is defined by
1 1

1
To(z) = ———— - 1 - - 1 — A
k(l') 21/R() [aknm TL(’I’L + )bknm} Sll(x) 21/R0 [aknm m(m + )bknm] Sl2(£) + 2VRO aknm‘s’l?;(x)a ( 36)
and the following coeflicients are introduced
et = =+ )V/G Dt o (§ 00 (677 ). (A37)
kEnom\’
bknm = (2k + 1) 00 0 . (A38)

In order to apply the second boundary condition (Eq. (A34)), it is required to expand the tangential component of
the Stokes drift velocity over the same set of orthogonal P} () functions as the tangential component of the Eulerian
velocity. This is performed using the properties of double and triple overlapping integrals of Legendre polynomials,
leading to

k=n—m

n+m
o =Re{ 3 Uk<x>P,3<u>}, (A39)

where the function Uy (z) is defined by

n+1 m—+1 1
Up(z) = maknm521($)+makmn522($)+QVRO

+1 +1 1 1
SZS(Z) |:TrL(Tn)akmn - Maknm - iﬂknm + 2Bkmni| .

2 2
(A40)
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Substituting Eqs. (A13), (A14), (A35) and (A39) into the conditions (A33) and (A34), after a cumbersome but
straightforward calculation, one obtains the coefficients

_ Ry . [kE+3
Chrao = —Craor2h ™t + eI 1)93530 ! { o 1Tk(xn0) + Up(po) — xnoU,’c(xno)} , (A41)
Crao = —Chrioxht — o gkt ko 2Tk($no) + Uk (2no) — ZnoUp,(2n0) | - (A42)
n0 2(2k +1)""° k

To sum up, we have shown that the solution of Eq. (23) is given by Eq. (A1), which in turns leads to the calculation
of the components of the Eulerian streaming velocity given by Eqgs. (A13) and (Al4). We have calculated all the
quantities that appear in the above equations. In the course of this calculation, we have also calculated the Stokes
drift velocity, which, when being added to the Eulerian streaming velocity, gives the Lagrangian streaming velocity.
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