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Pavement With Similar Permittivity
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Xiaofei Zhang , Xiaoting Xiao, Cyrille Fauchard, and Cédric Le Bastard

Abstract— Time-delay estimation (TDE) for thin top layers
of asphalt pavement is a challenging task due to the limited
resolution of ground penetrating radar (GPR) as well as small
permittivity difference between top layers. Echoes backscattered
from the interfaces of top layers with similar permittivity have
usually much smaller amplitudes compared with other echoes,
which can be called weak signals. The weak backscattered
echoes are usually too sensitive to the noise and other strong
echoes that current signal processing approaches (subspace-based
methods and compressed sensing based methods) might have
false estimation results even failures without proper processing of
them. Therefore, in this paper, an enhanced orthogonal matching
pursuit (OMP) method is proposed to deal with weak signals
resulting from similar permittivity of adjacent asphalt layers.
Based on the orthogonality between signal and noise subspaces,
we firstly apply the truncated singular value decomposition (SVD)
on the received signals, in order to reduce the noise impact.
Secondly, we build an orthogonal matrix to the mode matrix
of the pre-estimated strong backscattered echoes, and map it
to the overcomplete dictionary matrix, such that the influence
of the residual of the strong backscattered echoes can be
reduced. Finally, the time-delays of backscattered echoes and
layer thicknesses are estimated. Compared with conventional
approaches, the proposed method is more suitable for TDE in
thin asphalt pavement detection. The accuracy of the proposed
method is validated by both numerical and experimental data.

Index Terms— Pavement survey, time-delay estimation (TDE),
thickness measurement, permittivity, orthogonal matching
pursuit (OMP).
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I. INTRODUCTION

ASPHALT pavement survey is an important task for the
condition rating, quality management, and maintenance

of pavements in civil engineering [1]–[3]. Direct ways for the
structural health monitoring and state evaluation, like core
drilling, are usually destructive, time consuming and cost
intensive, and the evaluation is only conducted over limited
sample points. Non-destructive testing (NDT) methods are
promising by allowing analysis of the properties of a material
without destroying the serviceability of the original part.
As a typical geophysical NDT method, ground penetrating
radar (GPR) has become an established and routine approach
of road structure survey with a more extensive measurement
coverage in a rapider manner, compared with traditional coring
ones [4]–[10]. The vertical structure of pavements can be
deduced from radar profiles by means of echo detection and
amplitude estimation. Echo detection provides the time-delay
associated with each interface, while amplitude estimation is
used to retrieve the wave speed within each layer.

On the fundamental level, GPR instruments transmit radio
waves into pavement and detect the backscattered echoes
from changes within the pavement structure. The resolution
scale of GPR systems should be in good match for the
scale of assessment for the sake of accuracy. In case of thin
layers, where backscattered echoes are overlapped and indis-
tinguishable in terms of GPR wavelength, a proper design of
GPR instruments or high resolution techniques are in high
demand. In addition, a further issue concerns the interpretation
of GPR data. An effective pavement survey and diagnose
requires a massive amount of data, while for intelligent
transportation systems, the evaluation is preferred to operate
automatically or in real time. GPR data interpretation is highly
subjective to user experience and knowledge [11]. Therefore,
intelligent inspections or advanced signal processing tech-
niques are needed in pavement survey by providing both
correct and efficient information for either operators or end
users (clients or awarding authorities) to optimize the road
structure’s maintenance.

Over the years, a variety of intelligent signal processing
methods have been proposed to facilitate the interpretation
of GPR data, including subspace-based methods, compres-
sive sensing based methods, and intelligent learning methods
and so on [12]–[15]. In the work of [16]–[18], subspace
based methods, or high resolution methods, show their great
potential in dealing with overlapped backscattered echoes,
especially in the survey of thin layers. It should be noted

. 

https://orcid.org/0000-0002-4565-5399
https://orcid.org/0000-0001-7362-0778
https://orcid.org/0000-0002-1461-2003
https://orcid.org/0000-0003-1464-1987


ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

that subspace based methods require additional rank-restore
preprocessing procedures for the proper split of signal and
noise subspace, because of the coherency of backscattered
echoes. In [17], [19]–[21], the authors propose to use spatial
smoothing preprocessing techniques and their improved vari-
ants for decorrelation. In addition, compressive sensing based
methods, or sparse representation based methods, exploit
the sparsity of signals in the interpretation of GPR data.
In [22], [23], second order cone programming and orthogonal
matching pursuit (OMP) are applied in the thickness estima-
tion of pavement, and achieve good results in time-delay esti-
mation (TDE). Unlike subspace based methods, compressive
sensing based methods allow direct processing of coherent
signals without applying spatial smoothing.

There is also an increasing demand in using intelligent
machine learning methods in GPR application, owning to the
remarkable performance in data analysis. A classical learning
process is followed by preprocessing (noise elimination, data
representation), feature extraction, detection/recognition and
so on [12], [24]–[26]. The learning is usually conducted
by establishing a high nonlinear mapping between the fea-
tures and the recognition results. In [12], a support vector
machines (SVM) based method is proposed for TDE in the
pavement survey, which offers excellent performance for GPR
data interpretation in the scenario of small number of snap-
shots or even a single snapshot. Artificial neural networks have
also been extensively applied to improve the interpretation
of GPR signals or images, especially with the explosion of
deep learning and big data. The authors in [25] propose
a deep learning based pavement defect detection method;
the proposed method detects the pavement distresses accu-
rately, which is be affected by GPR transmitting frequencies.
Nevertheless, intelligent learning based methods are highly
dependent on the training data for the desired model [27].

Apart from the thin layer problem, another factor limiting
the accuracy of the thickness estimation is the permittiv-
ity of the pavement materials [28]. In asphalt pavements,
the materials in the sub-layers are similar that there is no
significant permittivity difference between adjacent asphalt
layers [29], [30]. Therefore, the backscattered echoes at the
interfaces of sub-layers have much smaller amplitude than that
of the surface layers, which can be called weak signal. The
detection of weak signals is easily affected by noise or strong
backscattered echoes, which is therefore suffering from perfor-
mance degradation even failures in scenarios of overlapping
signals and low signal to noise ratio (SNR). The detection
errors of weak signal will lead to a significant decrease in the
accuracy of TDE as well as thickness estimation. However,
few has been done in the literature for TDE in the presence
of small permittivity difference between two adjacent layers.
The authors in [31] propose a weak signal detection method
by using Hilbert transform. Nevertheless, this method can only
work in scenarios of non-overlapped echoes. TDE for asphalt
layers remains to be a challenging task considering the time
resolution and weak reflection.

Motivated by the aforementioned thin layer and weak
signal detection problems, we propose an enhanced OMP
method for TDE in an efficient and automatic manner to
evaluate the thin asphalt pavement with similar permittivity
for intelligent transportation systems. The proposed method
consists of three steps. Firstly, the truncated singular value

decomposition (SVD) is applied to reduce the noise impact to
the backscattered echoes, especially to weak signals. Secondly,
an orthogonal matrix to the mode matrix of the pre-estimated
strong backscattered echoes is constructed to eliminate the
influence of strong echoes to weak ones. The pre-estimation
is performed by using OMP procedures. Finally, the enhanced
OMP is used to estimate the times of arrival of weak sig-
nals. The main contributions of this paper are: 1) reducing
the noise impact by applying the truncated SVD on the
received signal; 2) eliminating the influence of the residual
of the strong backscattered echoes by constructing a matrix
that is orthogonal to the mode matrix of the pre-estimated
strong backscattered echoes. The proposed method estimates
the time-delay and thickness of thin asphalt pavement from
different points of roadway in real time, which is efficient
and accurate for GPR data interpretation in pavement survey
and meets the needs of intelligent transportation systems.
The estimated time-delay and thickness provide important
information for human or automated decision making for
intelligent transportation systems. The performance of the
proposed method is tested on both numerical and experimental
data. The testing results show the efficiency and accuracy of
the proposed method in thin asphalt pavement evaluation.

The rest of the paper is organized as follows: Section II
presents the methodology of this paper, where the signal
model, the proposed enhanced OMP method for TDE in
presence of weak signals are introduced. The numerical and
experimental results of the proposed enhanced OMP method
are provided in Sections III and IV, respectively. Conclusions
are drawn in section V.

II. METHODOLOGY

A. Signal Model

In this work, we consider the top layers of asphalt pavement,
which can be regarded as low-loss media [32]. As described
in [33], the dispersivity of the low-loss media is negligible.
Therefore, the received radar signal can be approximately
expressed as the time-shifted and attenuated copies of the
transmitted signal [19]–[21], [34]:

r( f ) =
X∑

x=1

e( f )sx exp(− j2π f tx )

+
Y∑

y=1

e( f )sy exp(− j2π f ty) + n( f )

=
K∑

k=1

e( f )sk exp(− j2π f tk) + n( f ), (1)

where
• X is the number of strong backscattered echoes; Y repre-

sents the number of echoes backscattered from interfaces
of asphalt layers with similar permittivity (weak signals);
K = X + Y is the total number of backscattered echoes,
which is assumed to be known;

• e( f ) is the radar pulse in frequency domain;
• sx and sy represent the amplitudes of the x th strong

backscattered echo and yth weak signal, respectively. For
low-loss media, the amplitude of the backscattered echo
is dependent on the reflection coefficient of the media,
which can be assumed to be real;

. 
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Fig. 1. The ratio between the amplitudes of S1 and S2 versus |εr2 − εr1|
under noiseless circumstance.

• n( f ) is an additive white Gaussian noise with zero mean
and variance σ 2.

Applying the frequency-domain sampling ( fi = f1 + (i −
1)� f and i = 1, 2 . . . N) to (1) with the number of used
frequencies N , the lowest frequency f1 and the frequency
step � f , the radar data model can be reformulated in the
following vector form:

rv = �AX sX + �AY sY + n = �As + n, (2)

where
• rv = [r( f1) r( f2) · · · r( fN )]T is the (N × 1) received

signal vector representing the measured GPR sig-
nal in frequency domain or the measurements by a
step-frequency GPR; superscript T denotes the transpose
operation;

• � = diag {e( f1), e( f2), . . . , e( fN )} is a (N×N) diagonal
matrix containing the frequency information of the radar
pulse;

• A = [AX , AY ] = [a(t1) a(t2) · · · a(tK )] is the mode
matrix;

• a(tk) = [e−2 jπ f1tk e−2 jπ f2tk . . . e−2 jπ f N tk ]T is the mode
vector of the kth backscattered echo;

• s = [sX , sY ]T = [s1 s2 · · · sK ]T is the (K × 1) vector
of the amplitudes of backscattered echoes;

• n = [n( f1) n( f2) · · · n( fN )]T is the (N × 1) noise
vector.

According to the rules of Fresnel reflection, the amplitude of
the backscattered echo is dependent on the permittivity of adja-
cent layers that are separated by the corresponding interface.
The greater the difference between adjacent layers is, the larger
the amplitude of the backscattered echo at the interface is.
In the scenario of asphalt pavement, the permittivities of the
surface layer and its adjacent layers are similar; thus, the echo
backscattered from the interface of the first two layers has
much smaller amplitude compared to the other backscattered
echoes.

Under noiseless circumstance, a simulation example about
the ratio between the amplitudes of two backscattered echoes
versus the permittivity difference of the first two layer of an
asphalt pavement is presented. S1 and S2 represent echoes
backscattered from surface layer (permittivity εr1) and its
adjacent layer (permittivity εr2), respectively. Permittivity εr1
is fixed at 4.5, εr2 = εr1 + �ε, �ε ∈ [0.05, 1]. As shown
in Fig. 1, the ratio between the amplitudes of S1 and S2 is
continuously decreasing with the increasing of the permittivity
difference of the adjacent layers. When the |εr2 − εr1| ≤ 0.4,
the ratio is greater than 20. In this situation, S2 can be
considered as a weak signal. It is very difficult to detect the
echo backscattered from the interface of layers with similar

permittivity (weak signal), especially for thin asphalt layers,
due to the influence of the noise and strong backscattered
echoes.

To solve the problem caused by the tiny permittivity dif-
ference between adjacent asphalt layers, in the following,
an enhanced OMP method is proposed for TDE in presence
of weak signals.

B. SVD for Denoising Procedure

To begin with, the truncated SVD is applied on the received
signal model (2) with number of snapshots Nx :

R = [r1, r2, . . . , rNx ] = U�VH , (3)

where ri is the i th snapshot of the received signal, � is
a (N × N) diagonal matrix whose diagonal elements are
non-zero singular values of R; the (N × N) dimensional
matrix U and (Nx × N) dimensional matrix V are the left and
right singular vector matrices of R, respectively. Matrix R can
be divided into the following two parts:

R = Rs + Rn

= [Us, Un]
[
�s 0
0 �n

] [
VH

s
VH

n

]
= Us�sVH

s + Un�nVH
n , (4)

where Rs and Rn are associated with the signal and noise,
respectively. �s and �n are the diagonal matrix with the
K largest and N − K smaller non-zero singular values of R,
respectively. (Us , Vs ) and (Un , Vn) are the singular vector
matrices corresponding to the K dominant singular values and
N − K smaller singular values, respectively. In GPR mea-
surements, the backscattered echoes are coherent, therefore,
�s is a scaler; Us and Vs are (N × 1) and (Nx × 1) vectors,
respectively. Therefore, Rs can be reformulated as

Rs = φsusvH
s . (5)

By using the orthogonality between the signal and noise
subspaces, the received signal is enhanced by Rs such that
the impact of the additive noise can be reduced. The enhanced
signal model can then be expressed as

Ren = RsRH
s R = RsRH

s (Rs + Rn)

= φusvH
s . (6)

In the following, the radar pulse (matrix) � should be
removed before the application of the proposed method. There-
fore, the whitening procedure is used. The received signal
model can then be expressed as ren = �−1r, where the ele-
ments of r correspond to the mean values of each row of Ren .

C. Enhanced Orthogonal Matching Pursuit Method

With the enhanced signal model, the overcomplete dic-
tionary matrix At is built. The entire time domain of GPR
working time window is sampled at T = [τ1 τ2 . . . τNt ], with
Nt � K . Accordingly, the (N × Nt )-dimensional dictionary
matrix can be expressed as At = [a(τ1), a(τ2), . . . , a(τNt )].
Similar to the conventional OMP method, the enhanced OMP
estimates the times of arrival of the backscattered echoes
through two steps. The first step is to select the best fitting
atom from the dictionary matrix At ; the second step is to
calculate the amplitude of echoes and signal residual for the

. 
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following iteration. It should be emphasized that the number
of iterations is equal to the number of backscattered echoes.

The best fitting atom is the one that most strongly correlates
with the signal residual which provides the estimated time of
arrival at each iteration. For the conventional OMP, in the
kth iteration, the correlation between the signal residual rk−1

en
(the initial signal residual is set to be ren) and atoms of
dictionary matrix At is defined as

μk(i) = |aH (τi )rk−1
en |. (7)

In the signal residual of the kth iteration, the first k−1 strong
backscattered echoes are deleted theoretically, but in practice,
the residual of these echoes will still have influence on echo
detection in the following iterations, especially for the weak
signals. Therefore, in the kth iteration, to minimize or suppress
the influence of the residual of the k − 1 strong backscattered
echoes to the weak signals, the following approach is pro-
posed. In the first k − 1 iterations, the mode matrix of the
k −1 strong backscattered echoes Ak−1 = [a(t̂1), . . . , a(t̂k−1)]
is obtained. Then, its orthogonal projection matrix Ak−1 can
be constructed as

Ak−1 = I − Ak−1(AH
k−1Ak−1)

−1AH
k−1, (8)

with I the N × N identity matrix. Multiplying Ak−1 by the
signal residual rk−1

en of the kth iteration, the influence of strong
backscattered echoes can then be eliminated.

Therefore, in the kth iteration, the proposed enhanced
OMP calculates the correlation between the signal
residual rk−1

en and dictionary matrix At as follows:
μk(i) = |aH (τi )Ak−1rk−1

en |. (9)

The best-fitting atom corresponds to the atom with the highest
correlation μk(i). Because echoes are backscattered from
low-loss media, their amplitudes can be assumed to be real.
Likewise, when τi = tk , aH (τi )Ak−1rk−1

en represents the
estimated amplitude of the kth backscattered echo after elimi-
nating the k − 1 backscattered echoes, should be theoretically
real. Accordingly, only real part of μk(i) is required in the
best fitting atom selection, and (9) can be reformulated as

μk(i) = |real{aH (τi )Ak−1rk−1
en }|,

the time of arrival t̂k can then be estimated by finding the best
fitting atom.

In the second step, with the selected best fitting atom in the
kth iteration, the amplitude of the kth backscattered echo is
estimated by the following LS solution:

ŝk = a+(t̂k)rk−1
en , (10)

where operator + denotes the Moore-Penrose transpose. After-
wards, the signal residual for the (k + 1)th iteration is calcu-
lated as

rk
en = rk−1

en − a(t̂k)ŝk . (11)

The detail of the proposed enhanced OMP method is sum-
marized in Table I. By using the proposed method, the weak
signal can be detected; consequently, the times of arrival of
both strong and weak backscattered echoes are estimated.

TABLE I

PROCEDURE OF THE ENHANCED OMP METHOD

III. NUMERICAL RESULTS

In this section, the performance of the proposed enhanced
OMP method is tested by 3 simulations with the numerical
data obtained from (1). It can be seen from Fig. 2 that the
studied pavement is made up of three homogeneous layers.
The first layer is an ultra-thin asphalt surfacing (UTAS) with
relative permittivity εr1 = 4.5; the second layer is also made
of asphalt, whose relative permittivity is very close to that of
the first layer. The third layer is a base layer. H1, H2 and
H3 correspond to the thicknesses of Layer 1, Layer 2, and
Layer 3, respectively. Therefore, the echo backscattered from
the second interface has much smaller amplitude compared
to the first and third echoes. In the following, the used
frequency band is B ∈ [0.5, 2.5] GHz, with 21 frequency
samples (0.1 GHz frequency step). The number of independent
snapshots is 500. SNR is defined as the ratio between the
powers of the echo backscattered from Layer 1 and the noise
variance.

. 
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Fig. 2. Pavement configuration.

Fig. 3. Case 1: TDE with SNR = 10 dB, the red dashed lines represent the
true times of arrival, two overlapped echoes.

A. Performance Under Different Pavement Parameters

In the first simulation, the performance of the proposed
enhanced OMP method is tested and compared with that of the
conventional OPM and MUSIC (modified spatial smoothing is
used for the decorrelation procedure with 10 subbands) in a
single run of the algorithms. SNR is fixed at 10 dB for the
different pavements. Pavements with different layers, permit-
tivities and thicknesses are considered for both overlapped and
non-overlapped echoes:

• Case 1. Two backscattered echoes; H1 = 25 mm and
H2 = H3 = ∞; εr2 = εr3 = 4.7; the corresponding times
of arrival (t1, t2) are 1.00 ns and 1.35 ns, respectively.
The two echoes are overlapped.

• Case 2. Three backscattered echoes; H1 = 40 mm,
H2 = 45 mm and H3 = ∞; εr2 = 4.7, εr3 = 7; the
corresponding times of arrival (t1, t2, t3) are 1.00 ns,
1.57 ns and 2.22 ns, respectively. The three echoes are
non-overlapped.

• Case 3. Three backscattered echoes; H1 = 25 mm,
H2 = 20 mm and H3 = ∞; εr2 = 4.7, εr3 = 7; the
corresponding times of arrival (t1, t2, t3) are 1.00 ns,
1.35 ns and 1.64 ns, respectively. The three echoes are
overlapped.

As shown in Figs. 3-5, the times of arrival of the backscat-
tered echoes from 3 different pavements can be well esti-
mated by the enhanced OMP method for both overlapped
and non-overlapped echoes. The estimated times of arrival
and amplitudes of the backscattered echoes corresponding to
the abscissas and ordinates of the peaks, respectively, are
clearly detected. The echo backscattered from the interface of
two layers with similar permittivity is a weak signal, whose
amplitude is small. Therefore, the peak corresponding to the

Fig. 4. Case 2: TDE with SNR = 10 dB, the red dashed lines represent the
true times of arrival, three non-overlapped echoes.

Fig. 5. Case 3: TDE with SNR = 10 dB, the red dashed lines represent the
true times of arrival, three overlapped echoes.

TABLE II

SIMULATION PARAMETERS APPLIED IN CASE 4 (4 ECHOES

BACKSCATTERED FROM 4 INTERFACES)

weak signal is with low height, see Figs. 3-5. However, due to
the limited resolution, MUSIC algorithm fails in the detection
of the weak signal (backscattered from the interface of two
layers with similar permittivity), while the conventional OMP
estimates the time of arrival of the weak signal with bias.

The proposed enhanced OMP can also be used to detect
more than one weak signal, as mentioned in the following
case (Case 4). In Case 4, 4 echoes backscattered from a
pavement made up of 4 interfaces (4 layers) are considered.
The pavement parameters are shown in Table II. Echoes
backscattered from the second and fourth interfaces can be
regarded as weak signals. Fig. 6 plots the estimated times
of arrival of the 4 backscattered echoes. It can be seen that
both the conventional OMP and MUSIC fail to detect the
weak signals (the second and fourth echoes). Nevertheless,
the proposed method still works in this scenario. The estimated
times of arrival of the weak signals by the proposed method are
very close to the true values, which means that the enhanced
OMP can resolve more than one weak signal.

B. Performance Versus Permittivity Difference Between
Adjacent Layers

In the second simulation, the ability of the enhance OMP
for weak signal detection is studied. The performance of the
proposed method versus the permittivity difference between
adjacent layers |εr2−εr1| (Layers 1 and 2) for both overlapped
and non-overlapped echoes is evaluated with 200 independent

. 
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Fig. 6. Case 4: TDE with SNR = 10 dB, the red dashed lines represent the
true times of arrival, four echoes.

Fig. 7. RRMSE on the estimated time of arrival t̂2 of weak signal S2 versus
|εr2−εr1| with 200 Monte-Carlo processes. H1 = 40 mm and H2 = H3 = ∞,
non-overlapped echoes.

Fig. 8. RRMSE on the estimated time of arrival t̂2 of weak signal S2 versus
|εr2−εr1| with 200 Monte-Carlo processes. H1 = 25 mm and H2 = H3 = ∞,
overlapped echoes.

runs of the method. The permittivity of Layer 1 εr1 is fixed
at 4.5, while the permittivity of Layer 2 is set as εr2 = εr1 +
�ε, �ε ∈ [0.05, 1]. SNR is fixed at 10 dB. The relative
root-mean-squared error (RRMSE) on the estimated time of
arrival t̂2 of weak signal S2 is calculated.

Figs. 7-8 show the RRMSEs on the estimated t̂2 of weak
signal S2 by using the enhanced OMP, conventional OMP
and MUSIC. As can be seen from Fig. 7, for non-overlapped
echoes, RRMSEs on t̂2 is decreasing when |εr2−εr1| increases
for the compared three methods. The proposed method has
better accuracy than the conventional OMP and MUSIC. For
overlapped echoes, as illustrated by Fig. 8, both the conven-
tional OMP and MUSIC fail to detect the weak signal S2.
Nevertheless, the proposed method remains robust for TDE.

C. Performance Versus SNR

In order to test the ability of the proposed enhanced
OMP method with respect to noise, in the third simulation,
the statistics performance of the proposed method versus SNR
is evaluated with 200 Monte-Carlo processes. The RRMSE
on the estimated parameter t2 is calculated. Cases 2 and 3

Fig. 9. Case 2, RRMSE on the estimated time of arrival t̂2 of weak signal S2
versus SNR with 200 Monte-Carlo processes, non-overlapped echoes.

Fig. 10. Case 3, RRMSE on the estimated time of arrival t̂2 of weak signal S2
versus SNR with 200 Monte-Carlo processes, overlapped echoes.

are considered. SNR varies from 0 to 20 dB. According to
simulation results, MUSIC algorithm fails to detect the echo
backscattered from interface of similar layers. Consequently,
only the results of conventional OMP are recorded as compar-
ison in the following.

Figs. 9-10 plot the RRMSEs on the estimated time of
arrival (t̂2) of weak signal S2 by the enhanced OMP and con-
ventional OMP for Cases 2 and 3, respectively. As expected,
for the proposed method, the RRMSEs continuously decrease
with the increasing of SNR for both the overlapped and
non-overlapped echoes. The proposed method has much
smaller RRMSE than that of the conventional OMP at each
SNR. Moreover, as shown in Fig. 10, the conventional OMP
is with much higher RRMSEs in the scenario of overlapped
echoes. To conclude, the proposed method outperforms the
conventional OMP.

IV. EXPERIMENT

In this section, the performance of the proposed enhanced
OMP method is evaluated by the experimental data.
An UWB step-frequency GPR made up of a vector
network analyzer (VNA) and a bistatic antenna device
(ETSA A5 antennas) is applied in the experiment. The distance
between transmitter (Tx) and receiver (Rx) is approximately
20 cm (Fig. 12). The GPR is about 16.5 cm above the
tested pavement. The radar frequency bandwidth ranges from
1.4 GHz to 15.0 GHz, with 0.017 GHz frequency step
(801 frequency samples).

In the experiment, a two-layer asphalt pavement is studied
as in Fig. 11. Its vertical structure and the experimental
observation system is shown in Fig. 12. The studied pavement
structure (pavement thickness is about 11 cm) is made of an
asphalt layer �A overlying another asphalt layer �B , which
is set on a metallic plane �C . The thickness of the first layer
is approximately 4 cm and the second layer is about 7 cm.

. 
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Fig. 11. Studied pavement.

Fig. 12. Experimental device.

The length of the tested surface is about 80 cm with a sample
step 4 mm (200 sample points). At each sample point, 10
snapshots are collected by using the observation system. The
permittivities of the medium 	2 and 	3 are calculated from
data [34], with εr1 = 4.93 and εr2 = 5.16. The incident wave
with incidence angle θi = 31.2◦, then the refraction angles can
be calculated with θr1 = 13.5◦ and θr2 = 13.2◦, respectively
(
√

ε1 sin θ1 = √
ε2 sin θ2).

A. Data Set

In real measurements, GPR moves slowly at different sam-
ple points of the pavement to generate independent spatial
observations. Figs. 13a and 13b display the raw experi-
mental data for both A-scan and B-scan, respectively. The
black dashed lines represent the envelope of the received
signals after the Hilbert transformation. It can be seen from
Figs. 13a and 13b that the raw data contains the multiple
waves and air wave, which can be removed by using a time
filter. The estimated echoes in Figs. 13a and 13b correspond
to the first three backscattered echoes from three interfaces.
The permittivities of medium 	2 and 	3 are very similar.
Therefore, the echo from the second interface is very weak,
whose amplitude is much smaller than that of the first and the
third echoes. It is obvious that the first and third backscattered
echoes are clearly visible in the figures, while the second echo
is not clear and should be detected with some signal processing
methods.

Fig. 13. Preprocessing of the backscattered echoes from the studied
pavement.

B. Pre-Processing of the Data

The proposed enhanced OMP method cannot be applied
without following preprocessing techniques: time filtering and
data whitening.

1) Time Filtering. The aim of the time filtering preprocess-
ing is to cut off the signals outside the GPR work-
ing time window (interested region) or to remove the
residual of detected echoes. For example, as shown
in Fig. 13c, by applying time filtering, the multiple
echoes and air wave can then be eliminated.

2) Data Whitening. The goal of data whitening is to remove
the influence of radar pulse, which can be measured as
the echo backscattered from a metallic plane.

Combined with the 2 preprocessing techniques, the proposed
method can then be performed to detect the weak signal.

C. Time-Delay and Thickness Estimation

In the experiment, the enhanced OMP method is tested
within the frequency bandwidth B = [1.4, 3.1] GHz (101
samples) in the scenario of overlapped echoes. The conven-
tional OMP and MUSIC is taken as comparison. As illus-
trated in Fig. 14, three peaks corresponding to the first
three backscattered echoes from three interfaces are clearly

. 
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Fig. 14. Experiment results: estimated times of arrival of the backscattered
echoes.

TABLE III

ESTIMATED TIME-DELAYS AND THICKNESSES BY THE ENHANCED

OMP METHOD, �̂τ k REPRESENTING THE ESTIMATED TIME

DELAY AND Ĥk REPRESENTING THE ESTIMATED THICKNESS

observed by the proposed method, especially in the estimation
of the second echo (weak signal). Afterwards, the times
of arrival of three echoes can then be estimated. However,
the conventional OMP and MUSIC fail to detect the weak
signal.

Table III presents the estimated time-delays of the three
echoes (�̂τ1 is the time-delay between the first and second
echoes and �̂τ 2 is the time-delay between the second and
third echoes). Consequently, the layer thickness can be calcu-
lated by following equation:

Ĥk = ĉ�τk cos θrk

2
√

εrk

where Ĥk is the estimated thickness of the kth layer with
k = 1, 2, c is the speed of light in vacuum, θrk is the
refraction angle and εrk is the permittivity of the kth layer.
The estimated layer thicknesses are also shown in the Table III.
The proposed method provides an enhanced performance on
thickness estimation as the estimated thicknesses are close to
the real values.

V. CONCLUSION

This paper presents an enhanced OMP for automatic TDE
and thickness estimation in the presence of thin thickness
asphalt pavement, whose top layers have similar permittivity.
The conventional methods cannot successful detect the weak
signal backscattered from the interface of the top asphalt layers
due to the small amplitude compared with the noise and other
backscattered echoes. In contrast, the proposed method is able
to handle the case of weak signals detection in the scenario
of thin asphalt layers by suppressing the effect of noise and
strong backscattered echoes. Consequently, the time-delays of
backscattered echoes as well as layer thicknesses can be cal-
culated. The proposed method is tested on both numerical and

experimental data with an enhanced performance in TDE and
thickness estimation compared with the conventional methods.
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