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Thin layer approximations in mechanical structures : the Dirichlet boundary
condition case

Frédérique Le Louër
Sorbonne Universités, Université de Technologie de Compiègne, LMAC EA2222 Laboratoire de Mathématiques Appliquées de

Compiègne - CS 60 319 - 60 203 Compiègne cedex, France

Abstract

We consider the solution of a transmission problem at a thin layer interface of thickness ε > 0 in a mechanical
structure. We build a multi-scale expansion for that solution as ε → 0 that enables to replace the thin layer
with an improved boundary condition and leads to optimal estimates for the remainders. This short note
presents new results when a Dirichlet condition is imposed on the internal boundary of the thin layer and is the
counterpart of [2] where the Neumann case was considered.

Keywords: Asymptotic analysis, Generalized impedance boundary conditions, Linear elasticity, Dirichlet
boundary condition

Résumé

Cette note concerne le problème de transmission dans une structure mécanique contenant une couche d’épaisseur
mince ε > 0. Nous construisons un développement asymptotique de la solution lorsque ε → 0 qui permet de
remplacer la couche mince par une condition aux limites approchées et nous en déduisons des estimations
d’erreurs optimales. Nous présentons de nouveaux résultats lorsqu’une condition de Dirichlet est imposée sur
la frontière interne de la couche mince tandis que le cas d’une condition de Neumann est étudié dans [2].

1. Introduction and problem settings

Let Ω be a Lipschitz bounded open set of Rd, where d ≥ 2 is an integer representing the dimension. We
assume that the solid Ω consists of an isotropic material with a linear behavior. The boundary of Ω is such
that ∂Ω =: ΓD ∪ ΓN where ΓD and ΓN are two non-empty open sets of ∂Ω and |ΓD| > 0. We consider a
nonempty inclusion ω ⊂⊂ Ω with analytic boundary ∂ω =: Γ. We denote by n the unit normal vector to ∂Ω
and Γ directed outward to Ω\ω.

Let ε > 0 be small enough. We consider that Γ has an interior thin layer with thickness ε bordering ω
defined by

ωεi := {x+ sn(x) | x ∈ Γ and 0 < s < ε}.

We recall that the normal vector n is directed inward the inclusion ω. We set ωε := ω\ωεi and we denote its
boundary by Γε. In the sequel, we use the lower index e for all quantities related to Ω\ω and the lower index i
for all quantities related to ωεi . These notations are illustrated in [2, Fig. 1].

We denote by Ae the Hooke’s law defined, for any symmetric matrix ξ, by

Ae ξ := 2µe ξ + λe Tr(ξ) Id,

where µe > 0 and λe > 0 are two positive constants which represent the Lamé coefficients in Ω\ω. The Hooke’s
law associated to ωεi is denoted Ai with Lamé coefficients µi > 0 and λi > 0. Moreover the stress vector relative

Email address: frederique.le-louer@utc.fr (Frédérique Le Louër)

Preprint submitted to Elsevier January 13, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1631073X1930127X
Manuscript_b0ecf6fe50693d70e6e45e8bee63c0d2

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1631073X1930127X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1631073X1930127X


to the material properties Ai on Γ is defined by

T i(u) := Aie(u)n, where e(u) :=
1

2

(
∇u + t∇u

)
,

and we define similarly T e the stress vector relative to the material properties Ae on either Γ or ΓN .
For a smooth bounded open set ω of Rd (d ≥ 2) with a boundary Γ, we denote by Hs(ω) and Hs(Γ) the

standard complex valued, Hilbert-Sobolev spaces of order s ∈ R defined on ω and Γ respectively (with the
convention H0 = L2). Spaces of vector functions will be denoted by boldface letters, thus Hs = (Hs)d. We
introduce the following Sobolev space

H1
ΓD

(Ω\ω) := {v ∈H1(Ω\ω) ; v = 0 on ΓD}.

The dual space of H1
ΓD

(Ω\ω) is denoted by H̃
−1

ΓD
(Ω\ω). Let f ∈ H̃

−1

ΓD
(Ω\ω) be some exterior forces and a load

g ∈H−1/2(ΓN ). We are concerned with the following transmission problem

−div (Aee(u
ε
e)) = f in Ω\ω

−div (Aie(u
ε
i )) = 0 in ωεi
uεe = 0 on ΓD

T e(u
ε
e) = g on ΓN

T i(u
ε
i ) = T e(u

ε
e) on Γ

uεi = uεe on Γ
uεi = 0 on Γε.

(1.1)

The solution of such a problem exists, is unique and belongs to H1
ΓD∪Γε(Ω\ωε) thanks to the Lax-Milgram

theorem and Korn’s inequality (see, e.g., [3, Theorem 6.3-4]).
To avoid instabilities in the numerical treatment of the transmission problem (1.1) we approximate the

solution uεe ∈H1
ΓD

(Ω\ω) by the solution vε[N ] to some boundary value problems of the form
−div

(
Aee(v

ε
[N ])

)
= f in Ω\ω

vε[N ] = 0 on ΓD
T e(v

ε
[N ]) = g on ΓN

Bε
N

(
ε,vε[N ],T e(v

ε
[N ])

)
= 0 on Γ,

(1.2)

where ||uεe − vε[N ]||H1(Ω\ω) = O(εN+1), for any N ∈ N, and the last equation of (1.2) is a so-called Generalized
Impedance Boundary Condition (GIBC). This approximate condition is obtained by expanding the Navier
equation in ωεi in terms of ε and surface derivatives on Γ. The transmission problems is then split into a
sequences of coupled boundary value problems in ωεi (rescaled through a nondimensional variable) and in Ω\ω
(that will constitute the GIBCs). Both the exterior and interior solutions are expanded as power series of the
thickness ε whose coefficients functions are obtained iteratively. The GIBC of order N ∈ N is deduced from
the boundary condition satisfied by the truncated series of the exterior field up to the index N . The method
originates from [10] for d = 2 and leads to optimal error estimates. The results are now established for the
Laplace, Helmholtz and Maxwell equations and more recently for the Lamé system when a Neumann condition
is imposed on Γε (see [2] and references therein for a bibliographical overview). It is the purpose of this short
note to address the case when a Dirichlet condition is considered on Γε. The coefficient functions and the
GIBCs, for N = 0, 1, 2, are given in proposition 2.1 and its proof. The expected optimal error estimates are
stated in Theorem 3.1 and its proof for both the interior and exterior solutions.

Mechanical engineering applications of the proposed results include the modeling of delaminated elastic area
with thin opening by Dirichlet and Neumann crack jumps [1, 4] in layered media followed by the mathematical
analysis of the associated inverse problem of delimination detection [1, 8, 9] for both the static and dynamic
framework.
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2. Generalized impedance boundary conditions

The operator Bε
N is composed of curvature operators and/or surface differential operators and depends on

the interior Lamé parameters. Thus we use the classical surface differential operators: the tangential gradient
∇Γ defined in [7, pages 68-75] and the surface divergence divΓ defined as the trace of ∇Γ applied to vector
functions. Moreover, R and H represent the curvature operator of Γ and its trace, respectively.

To determine the approximate boundary condition, we follow the procedure described in [5]. For any x ∈ Γ
and s ≥ 0, we set u(x+ sn(x)) =: ū(x, s) and we use the change of variables y = x+ sn(x) = x+ εSn(x) with
S ∈ [0 , 1]. We set ū(x, s) = ū(x, εS) =: Uε(x, S). Firstly we obtain the following asymptotic expansion when
ε→ 0 :

div(Aie(u)) (x+ εSn(x)) =
1

ε2

Λ0∂
2
S +

∑
n≥1

εnΛn

Uε(x, S), (2.1)

where
Λ0 := (λi + 2µi)n⊗ n + µi

(
Id − n⊗ n

)
, (2.2)

and
Λ1U

ε := Λ1,1∂SU
ε, with Λ1,1U

ε := µiHUε + (λi + µi)
(
n divΓ Uε + ∇Γ(Uε · n)

)
. (2.3)

Moreover the traction trace operator is defined on Γ, i.e. for S = 0, by

T iU
ε :=

1

ε
Λ0∂SU

ε + λindivΓ Uε + µi[∇ΓU
ε]n =

1

ε
Λ0∂SU

ε + B0
tU

ε.

Secondly we set uεe :=
∑
n≥0

εnune in Ω\ω and uεi (x, s) := Uε
i (x, S) =

∑
n≥0

εnUn
i (x, S) in Γ × [0, 1], with the

convention U`
i = u`e = 0 for any integer ` < 0. In the case of a Dirichlet interior boundary condition, the

original transmission problem (1.1) can then be rewritten as a couple of two boundary value problem for every
coefficient functions (U`

i ,u
`
e):

∂2
SΛ0U

`
i = −

∑̀
k=1

ΛkU
`−k
i in Γ× (0, 1)

∂SΛ0U
`
i = T e(u

`−1
e )− B0

tU
`−1
i on Γ× {0}

Λ0U
`
i = 0 on Γ× {1},

and 
div
(
Aee(u

`
e)
)

= δ0
`f in Ω\ω

u`e = 0 on ΓD
T e(u

`
e) = δ0

`g on ΓN
Λ0u

`
e = Λ0U

`
i( · , 0) on Γ .

(2.4)

where δji is kronecker delta. For ` = 0, 1, 2, we solve iteratively the new systems to compute first U`
i and then

recover the boundary condition satisfied by u`e. The truncated fields are denoted by uεe[N ] :=
N∑
k=0

εkuke and

Uε
i,[N ] :=

N∑
k=0

εkUk
i . From these results we deduce the GIBC satisfied by vε[N ], which is an approximation of

uεe,[N ] up to O(εN+1). The results are stated in the following proposition.

Proposition 2.1. The GIBC, defined on Γ, modeling thin layer effects for N = 0, corresponds to the homoge-
neous Dirichlet condition. For N = 1, 2 it can be written in the form

εT ev
ε
[N ] + Cε

N (vε[N ]) = 0,

with
Cε

1(w) := Λ0w|Γ,

Cε
2(w) := Λ0w|Γ + 1

2ε (µiH+ (λi + µi)R+ (λi − µi)M)w|Γ.
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whereM represents the tangential Gunter derivative defined by [6, Chapter V, §1]Mw = [∇Γw]n−ndivΓ w.

Proof. First, we obtain
Λ0U

0
i = 0 , Λ0U

1
i ( · , S) = (S − 1)T eu

0
e .

Using U1
i ( · , 0) = −Λ−1

0 T eu
0
e = u1

e|Γ, we rewrite U1
e ( · , S) = −(S − 1)u1

e|Γ and we get

Λ0U
2
i ( · , S) = S2−1

2 Λ1,1u
1
e|Γ + (S − 1)

(
T eu

1
e − B0

tu
1
e|Γ

)
.

When S = 0, we simplifies Λ0u
2
e|Γ = Λ0U

2
i ( · , 0) = −T eu

1
e − 1

2Λ1,1u
1
e|Γ + B0

tu
1
e|Γ and

1
2Λ1,1 − B0

t = 1
2

(
µiH+ (λi + µi)R+ (λi − µi) ([∇Γ · ]n− ndivΓ)

)
.

Then, substituing these results in (2.4), we get the following boundary conditions for uεe[N ] on Γ.

Λ0u
ε
e[0] = Λ0u

0
e = 0

Λ0u
ε
e[1] = Λ0(u0

e + εu1
e) = −εT eu

0
e = −εT eu

ε
e[1] + ε2Λ0u

1
e

Λ0u
ε
e[2] = Λ0(u0

e + εu1
e + ε2u2

e)

= − εT e(u
0
e + εu1

e)− 1
2ε

2
(
µiH+ (λi + µi)R+ (λi − µi)M

)
u1
e

= − εT eu
ε
e[2] − 1

2ε
2
(
µiH+ (λi + µi)R+ (λi − µi)M

)
uεe[2]

+ ε3T eu
2
e + 1

2ε
3
(
µiH+ (λi + µi)R+ (λi − µi)M

)
u2
e.

We observe that the truncated series up to the index N satisfy εT eu
ε
e[N ] + Cε

N (uεe[N ]) = O(εN+1). Then we
choose to approach the total exterior field uεe by a new field vε[N ] that satisfies εT ev

ε
[N ] + Cε

N (vε[N ]) = 0 . �

Remark 2.2. Even if we provide the formula for N = 0, 1, 2 only, we guess that, for any N ∈ N∗, the impedance
operator Cε

N is a surface differential operator of order (N − 1) for the three components of the state. Although,
it differs a bit from the Laplace equation case, the procedure to prove optimal error estimates in H1-norm
presented in [10, Chapter 1], extends to the elastic case at any order N ∈ N and is sketched in Section 3 for the
sake of completeness.

For N = 1, 2, the associated weak variational formulations of the GIBC problems (1.2) with non vanishing right
hand side T ev + Cε

N (v) = h when h ∈H−
1
2 (Γ) read : Find v ∈H1

ΓD
(Ω\ω) satisfying

aεN (v,w) = `(w), ∀w ∈H1
ΓD

(Ω\ω) (2.5)

where
aε1(v,w) := λe

∫
Ω\ω

(div v) (divw) + 2µe

∫
Ω\ω

e(v) : e(w) + ε−1

∫
Γ

Λ0v ·w,

aε2(v,w) := aε1(v,w) +
1

2

∫
Γ

(µiH+ (λi + µi)R+ (λi − µi)M)v ·w,

and
`(w) :=

∫
Ω\ω

f ·w +

∫
ΓN

g ·w + ε−1

∫
Γ

h ·w.

The bilinear forms aεN are symmetric and continuous on H1
ΓD

(Ω\ω) ×H1
ΓD

(Ω\ω) (see [6, Chapter V, §1] for
the properties ofM). The coercivity of aε1 is obvious since Λ0 is a positive definite matrix.
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3. Convergence analysis

Assuming the existence and uniqueness of the solution vε[N ] to GIBC problems at any order N ∈ N, one can
establish optimal error estimates between uεe and its approximate field vε[N ] as done below.

Theorem 3.1. Let N ∈ N and f ∈ C∞(Ω\ω). Then there exists a constant CΩ\ω independent of ε such that

||vε[N ] − uεe||H1(Ω\ω) ≤ CΩ\ω ε
N+1.

Proof. For any N ∈ N, the assumption f ∈ C∞(Ω\ω) allows us to ensure higher order local regularity for
u`e, with ` = 0, . . . , N − 1 in the neighborhood of Γ so that the right hand side to problems (2.4) belong to
H

1
2 (Γ) and the solution satisfies uNe ∈H1

ΓD
(Ω\ω).

• We decompose the remainder as vε[N ] − uεe := (vε[N ] − uεe,[N ]) + (uεe,[N ] − uεe).

• Firstly, we set rε[N ] := uε −
N∑
n=0

εnun and we denote by rεe,[N ] and rεi,[N ] the restriction of rε[N ] respectively to

Ω\ω and to ωεi . The remainders (rεe,[N ],R
ε
i,[N ]) solve the thin layer transmission problem with right-hand sides

up to O(εN−1). Using a judicious rewritting of (rεe,[N ],R
ε
i,[N ]) (see [2, subsection 2.2] or [10, Subsection 1.3.5])

and change of variable formula for s = εS to evaluate H1-norms, we get the estimates

‖rεe,[N ]‖H1(Ω\ω) ≤ C εN+1 and
√
ε‖rεi,[N ]‖H1(ωε

i ) ≤ C εN+1, (3.1)

with C depending on N but independent of ε (thanks to the uniform coercivity of the bilinear form associated
to the transmission problem).
• Secondly, we focus on d[N ] := uεe,[N ] − vε[N ]. For N = 0, we have uεe,[0] = u0

e = vε[0], i.e. d[0] = 0. Then the
estimate is deduced from the previous result. To get optimal results, for N ≥ 1, the trick is different than in
the Neumann case [2, subsection 2.2] and is well explained in [10, page 36]. Indeed, using the bounds provided
by the Lax-Milgram theorem applied to the variational formulations (2.5) do not lead to optimal estimates due
to the factor ε−1 in the right hand side. Instead, we use an asymptotic expansion of the solution vε[N ] to the
GIBC problems (1.2). We write vε[N ] =

∑̀
≥0

εnv`N , where the coefficient functions v`N are defined iteratively as

the solution to the following mixed boundary value problems with Dirichlet type condition on Γ. For example,
when N = 1, 2 we have 

div
(
Aee(v

`
1)
)

= δ0
`f in Ω\ω

v`1 = 0 on ΓD
T e(v

`
1) = δ0

`g on ΓN
v`1 = −Λ−1

0 T ev
`−1
1 on Γ .

(3.2)

and 
div
(
Aee(v

`
2)
)

= δ0
`f in Ω\ω

v`2 = 0 on ΓD
T e(v

`
1) = δ0

`g on ΓN

v`2 = −Λ−1
0

(
T ev

`−1
2 + 1

2

(
µiH+ (λi + µi)R+ (λi − µi)M

)
v`−1

2

)
on Γ .

(3.3)

We observe that
∀ ` = 0, . . . , N, v`N = u`e.

Higher order coefficient function v`N , with ` ≥ N + 1, surely differs from u`e. Thus, by applying Lax-Milgram
theorem to the mixed boundary value problem with a Dirichlet-type boundary condition on Γ, we get the
estimates

‖vε[1] − uεe,[1]‖H1(Ω\ω) = ‖vε[1] − v0
1 − εv1

1‖H1(Ω\ω) ≤ C1ε
2,

and
‖vε[2] − uεe,[2]‖H1(Ω\ω) = ‖vε[2] − v0

2 − εv1
2 − ε2v2

2‖H1(Ω\ω) ≤ C2ε
3.
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And so on, we get for any N ∈ N, ‖vε[N ] − uεe,[N ]‖H1(Ω\ω) ≤ CNε
N+1, with CN independant of ε. Using the

triangular inequality and (3.1), we get the announced estimates. �

Remark 3.2. The convergence estimates at any order N ∈ N are obtained assuming analyticity of the boundary
Γ and smoothness of the data around the thin layer. However, a boundary Γ of class C 1,1 and f ∈ L2

ΓD (Ω\ω)
are sufficient to get the previous estimates for N = 1.
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