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Abstract: The breakthrough in water electrolysis technology for the sustainable production of H2,
considered as a future fuel, is currently hampered by the development of tough electrocatalytic
materials. We report a new strategy of fabricating conducting polymer-derived nanostructured
materials to accelerate the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution
reaction (OER), and water splitting. Extended physical (XRD, scanning electron microscopy (SEM),
energy-dispersive X-ray spectroscopy (EDX)) and electrochemical (cyclic voltammetry (CV), linear
sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS)) methods were merged
to precisely characterize the as-synthesized iridium and ruthenium modified polyaniline (PANI)
materials and interrogate their efficiency. The presence of Ir(+III) cations during polymerization
leads to the formation of Ir metal nanoparticles, while Ru(+III) induces the formation of RuO2 oxide
nanoparticles by thermal treatment; they are therefore methods for the on-demand production of
oxide or metal nanostructured electrocatalysts. The findings from using 0.5 M H2SO4 highlight an
ultrafast electrochemical kinetic of the material PANI-Ir for HER (36 − 0 = 36 mV overpotential to
reach 10 mA cm−2 at 21 mV dec−1), and of PANI-Ru for OER (1.47 − 1.23 = 240 mV overpotential to
reach 10 mA cm−2 at 47 mV dec−1), resulting in an efficient water splitting exactly at its thermoneutral
cell voltage of 1.45 V, and satisfactory durability (96 h).

Keywords: conducting polymer; polyaniline; electrocatalysis; hydrogen evolution reaction; oxygen
evolution reaction; water splitting

1. Introduction

The designing principles of electrode materials for electrochemical or electrocatalytic
applications involve a host and guest approach between active sites (where the reac-
tion takes place) and the support (electrons conduction from or to substrate) linked by a
contact (mechanical strength and electronic transfer). Chung et al. [1] have shown that
an electrode’s electrical resistance (thus its conductivity) strongly affects the metrics of
electrochemical activity and this becomes a concern for high mass loadings (increased
thicknesses), before concluding that the electrical conductivity should be considered as one
of the essential criteria when designing active materials for real electrochemical energy stor-
age/conversion applications. The interest towards conducting polymer (nano)structures
is growing yearly in (bio)electrochemistry as either precursors of freestanding electrocat-
alysts [2,3] or a supports [4–6] for active sites based on enzyme/abiotic catalysts. For
both purposes, recent studies show that the combination of polyaniline (a conducting
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polymer) and metallic species (Ni, Co, Mo) produces nanostructured materials with high
performance regarding the electrocatalytic hydrogen evolution reaction (HER), oxygen
evolution reaction (OER), and water splitting [2,3,7,8].

In heterogeneous electrocatalysis of water splitting, however, metal oxides (MO2, M = Ir,
Ru) or oxy-hydroxides (MO(OH), M = Ni, Fe, Co, etc.) are the state-of-the-art for OERs [9–11],
while metals (Rh, Pt, Ir) are suitable for HERs [12,13] (also non-noble [2,14–16]), regulated
by the oxophilicity character of the surfaces [17,18]. Basically, those metal nanoparticles
are initially prepared before the used of carbon black to lower the metal content, which
does not enable the maximization of the electrocatalytic performance and minimization of
the loss of active sites during the long-term operation. Hence, chemical polymerization in
the presence of metallic cations combined with a proper thermal treatment seems to be an
elegant approach to develop high-performance electrocatalysts for the half-cell reactions
of water splitting (HER and OER), and previous results with polyaniline (PANI) testify
to this [3,19,20]. However, given that HER and OER require either metallic or oxidized
surfaces, the remaining major challenge is to find a unified method of synthesis that would
allow the obtention of either metallic or oxidic nanostructured materials by adjusting the
chemical content of the synthesis. To address this challenge, we report in this contribution
a strategy based on the polymerization of aniline in the presence of Ru(III) and Ir(III) to
synthesize PANI-derived RuO2 or Ir nanoparticles. This way, we were able to produce
on-demand oxide or metal nanostructured electrocatalysts to trigger the water splitting
exactly at its thermoneutral cell voltage of 1.45 V at 25 ◦C in 0.5 M H2SO4 with satisfactory
durability (96 h). In the half-cell, these electrode materials demonstrated outstanding
performance in 0.5 M H2SO4 towards HER (PANI-Ir-calcined, 36 mVRHE at 10 mA cm−2,
21 mV dec−1), and OER (PANI-Ru-calcined, 1.47 VRHE at 10 mA cm−2, 47 mV dec−1).

2. Experimental
2.1. Materials and Chemicals

Ruthenium (III) chloride hydrate (RuCl3·xH2O, Premion®, 99.99%, Alfer Aesar, Haver-
hill, MA, USA), iridium (III) chloride hydrate (IrCl3·xH2O, 99.8%, Alfer Aesar, Haverhill,
MA, USA), aniline (ANI, 100%, Alfa Aesar, Haverhill, MA, USA), sulfuric acid (H2SO4, 98%,
Sigma Aldrich, St. Louis, MO, USA), hydrochloric acid (HCl, 37%, VWR, Radnor, PA, USA),
ammonium persulfate ((NH4)2S2O8, APS, 98%, Merck, New York, NO, USA), isopropanol
(iPrOH, 99.5%, Sigma Aldrich, St. Louis, MO, USA), and Nafion® suspension (5 wt%,
Sigma Aldrich, St. Louis, MO, USA) were used as-received. A carbon paper electrode
(AvCarb MGL190, 190 µm thickness) was obtained from Fuel Cell Earth LL (Stoneham,
MA, USA). Water was produced from a Milli-Q Millipore source (New York, NY, USA)
(18.2 MΩ cm at 20 ◦C).

2.2. Synthesis of Polyaniline-Based Ruthenium and Iridium Materials

The different materials were synthesized by modifying our initial method [2,3]. Typi-
cally, 25 mL solution made of 0.5 M HCl and 0.4 M ANI was first prepared and put into a
reactor at 5 ◦C. Then, another 25 mL solution containing 0.5 M HCl, 0.2 M APS and suitable
metal precursor was prepared. Control synthesis was achieved without any addition of
metallic species and is referred to as PANI. In total, 547 mg of RuCl3·xH2O was used for the
material PANI-Ru, and 415 mg of IrCl3·xH2O for PANI-Ir. After adding the second solution
to the first one at 5 mL min−1, the chemical polymerization proceeded for 13 h. Afterwards,
the solvent was eliminated by rotavap and the solid product was dried in an oven at
80 ◦C overnight. The materials without any calcination were referred to as PANI-Ru-nc
and PANI-Ir-nc. The calcination program under air was a heating at 2◦ C min−1 up to
250, 350, and 400 ◦C, 1 h dwell. The obtained materials are hereinafter termed PANI-Ir-c,
and PANI-Ru-c.
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2.3. Physicochemical Characterization

Power diffraction X-ray (XRD) analysis was performed on a PANalytical Xpert-PRO
diffractometer (Malvern Panalytical, Almelo, the Netherlands) (40 kV, 20 mA) equipped
with a copper anode at λ(CuKα) = 1.54 Å, and in Bragg-Brentano mode (with 2θ = 20–
80◦). Scanning electron microscopy (SEM) (Tokyo, Japan), and energy-dispersive X-ray
spectroscopy (EDX) (Oberkochen, Germany) analyses were carried out on Hitachi S-4800
FEG, and ZEISS EVOHD 15 microscopes, respectively.

2.4. Electrochemical and Electrocatalytic Measurements

For half-cell measurements in a three-electrode setup at 25 ◦C, the supporting substrate
was a rotating disc electrode (RDE, 5 mm) that was polished with the alumina slurry and
cleaned in a water ultrasonic bath. Then, a volume of 4 µL of the prepared catalytic
ink (ultrasonic mixing of 260 µL water, 100 µL iPrOH, 50 µL Nafion® suspension, and
4 mg material) was drop-casted, and dried at room temperature, resulting in a loading
of 0.2 mg cm−2. The counter electrode was a large surface area glassy carbon plate. The
reference electrode was Ag/AgCl/KCl (3 M) and was isolated from the 0.5 M H2SO4
electrolytic solution by a Haber–Luggin capillary tip. For standardization, a calibrating
curve obtained in H2-saturated electrolyte allowed converting the potentials vs. reversible
hydrogen electrode (RHE) by the relationship E(V vs. RHE) = E(V vs. Ag/AgCl/KCl
(3 M)) + 0.23. Potentiostatic electrochemical impedance spectroscopy (EIS) performed
at given potential (see below) and 10 mV amplitude permitted the iR-drop correction.
The solution resistance was 2.1–2.4 Ω. For full-cell experiments in a single compartment
cell at room temperature (18 ± 2 ◦C), the cut carbon paper electrode (4 cm high, 4 cm
wide, and 0.190 mm thick) was washed with iPrOH under shaking and was dried in an
oven. Next, a volume of the catalytic ink of either 41 or 82 µL was drop-casted onto each
face to reach 0.1 or 0.2 mg cm−2. The used potentiostat was SP-150 (Biologic Science
Instruments) (Seyssinet-Pariset, France). The accelerated ageing tests were performed by
chronopotentiometry at |j| = 10 mA cm−2 in the half cell and I = 100 mA in the full cell.

3. Results and Discussion
3.1. Physicochemical Characterization of the Materials
3.1.1. XRD Analysis

The pristine polymer-based materials were synthesized via the chemical oxidative
polymerization of aniline into polyaniline (PANI) in hydrochloric acid by ammonium
persulfate. We previously showed that using ammonium persulfate as the oxidizing
agent produces an emeraldine form of PANI (with polaron/bipolaron amount of 43%
and base amount of 54% [21]) by using a set of physicochemical and electrochemical
screenings [2,3,21]. So, the present work focuses on the polymer modified by iridium and
ruthenium (Figure 1a) in an attempt to produce hybrid nanostructured materials with
high-performance regarding HER and OER after a calcination step.
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prepared materials.
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In Figure 1b, the numerous diffraction peaks in the XRD patterns of the uncalcined
materials (PANI-Ir-nc, PANI-Ru-nc) originate from the polymer itself and the crystallized
Ir(+III) and Ru(+III) salts. It is important to clarify that a calcination step was introduced
to consolidate the material before its use in electrochemistry, during which metal cations
might be lost from the surface of the electrode. For PANI-Ru-c, the broad peaks at 27.9◦,
35.1◦, 39.8◦, and 54.2◦ correspond to the hexagonal structure of the RuO2 oxide phase
(JCPDS 21-1172) for (110), (101), (200), and (211), respectively. For PANI-Ir-c, the broad
peaks at 40.6◦, 47.4◦, and 69.1◦ correspond to the cubic structure of metal phase Ir (JCPDS
87-0715) for (111), (200), and (220), respectively. Interestingly, the calcination program
under air of 2 ◦C min−1 up to the different dwells (250, 350, and 400 ◦C) for 1 h was
thought to produce RuO2 and IrO2 materials from chloride salts [22,23]. Our XRD results
corroborate well in the case of ruthenium, but invalidate the case of iridium. Indeed, peaks
of IrO2 were expected to be at 28.0◦, 34.7◦, 40.0◦, and 54.0◦ (JCPDS 15-870) for (110), (101),
(200), and (211), respectively. However, an earlier report of Mamaca et al. [24] on the
thermal decomposition of polymeric precursors (the so-called Pechini–Adams method)
showed that ruthenium leads to RuO2 while iridium produces a mixture of IrO2 and Ir, yet
they used a pure oxygen atmosphere with a calcination program of 1 ◦C min−1 increasing
from room temperature to 250 ◦C, then 10 ◦C min−1 to 350 ◦C, and 30 ◦C min−1 to 400 ◦C
(1 h dwell) [24]. It should be pointed out that a high yield of Ir nanoparticles is routinely
obtained without any thermal treatment under air (or oxygen) at 250–400 ◦C [11], and this
applies to the synthesis of metal particles in general. While the nobleness discrepancy (Ir
being nobler than Ru) could be a plausible explanation [25]—the facts that air produces
IrO2 [22] while oxygen produces IrO2+Ir [24] stipulate that the availability of oxygen in
the calcination oven could not be the determining parameter. Hence, the presence of the
polyaniline in the starting material might play an important role in this selective thermal
treatment by providing a mixture of oxidative and reductive environments. In-depth
investigations are ongoing to elucidate this outcome. Indeed, the XRD of the material
PANI-Ir-nc suggests that metallic species of iridium already formed after polymerization,
but the fact that these particles do not oxidize at the above-mentioned temperatures calls
for extensive studies beyond the scope of the present study. A protection by a superficial
layer that would prevent oxygen from entering deeply can be postulated. Furthermore, the
average crystallite size calculated by the Scherrer’s law is 9.3 nm for PANI-Ir-c (and thus
Ir), and 5.6 nm for PANI-Ru-c (and thus RuO2).

3.1.2. SEM Analysis

We next utilized electron microscopy for an overview analysis. We specifically com-
bined normal SEM (Figure 2a,c,e,g), and backscattered SEM (Figure 2b,d,f,h) for a better
visualization. Images of PANI-Ir-nc (Figure 2b) highlighting the presence of metal particles
(white spots) agree with its previous XRD. After calcination, the morphologies of the
materials change drastically with a net discrepancy between the metals and nonmetals, as
expected because the metals dominate.

3.1.3. EDX Analysis

In order to extract quantitative data from Figure 2, we further utilized EDX.
Figure 3a–d display the results obtained for the as-synthesized PANI-based Ir materi-
als before and after calcination. The intensity of the black spots dominant in Figure 3a
nearly disappears in Figure 3c, which is in agreement with the EDX spectra (Figure 3b
vs. Figure 3d). Figure 3b shows that within the polymerized material PANI-Ir-nc there is
unreacted ammonium persulfate ((NH4)2S2O8) because of the distribution of 6 at% S and
26 at% O. The amount of 55 at% C and 12 at% N (the extra amount about 1 at% comes from
the ammonium persulfate) confirms the expected proportion of 1 atom of N for 6 atoms of
C as observed in a previous study on the absence [21] or presence of metallic cations [3],
and where the structure of emeraldine form of PANI was established. The low amount
of remaining nitrogen suggests that the NH4

+ species was eliminated during the rotavap
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step, and clearly rule out any complexation of Ir(+III) by NH3 ligand. Even though the
Cl− initially introduced as HCl was expected to be eliminated during the rotavap step
(total molar ratio of Cl/S = 2.9 but experimentally equals to 0.2/5.7 = 0.035), it is worth
mentioning that the remaining composition of 0.6 at% Ir and 0.2 at % Cl matches well with
the precursor formula. This could indicate that the observed particles are those of IrCl3
and/or Ir (in this scenario, Cl comes from emeraldine salt of PANI (polaron/bipolaron
amount up to 43% and base [21])). For the calcined material PANI-Ir-c, Cl disappears,
indicating that the particles in Figure 3a do not have the same composition as those of
Figure 3c. The calcination (Figure 3d) step increases the Ir amount from 7 to 91 wt%.
Interestingly, the atomic ratio O/Ir goes from 47.9% to 0.5%, which clearly indicates that
IrO2 (O/Ir = 2) is not the dominant phase, thus quantitatively substantiating the previous
XRD results. The presence of carbon (5 wt%), and oxygen (4 wt%) would suggest that
either a carbon and/or iridium-oxide shell surrounds the iridium metal nanoparticles to
avoid their deeper nonoxidation at 250–400 ◦C under air.
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Furthermore, the EDX analysis of the ruthenium-based materials (Figure 4a–d) points
out radical changes before and after calcination. While the previous results demonstrated
that the initially introduced nitrogen in the form of NH4

+ (from the oxidizing agent
(NH4)2S2O8) can be readily eliminated by the rotavap step to produce PANI-Ru-nc, EDX
results in Figure 4b clearly show a high amount of nitrogen as compared to carbon. Sup-
posing that N of the aniline is engaged in the polymerization to produce polyaniline,
then 47 at% C would correspond to 8 at% N (1 N for 6 atoms of C). Then, the remaining
15−8 = 7 at% N would suggest that half of 2 at% Ru and 7 at% Cl is used to produce the
structure [Ru(NH3)6]Cl3 which is well-known in (bio)electrochemistry as the redox probe
[Ru(NH3)6]3/2+ [26,27]. This is true because the distribution of 6 at% S and 24 at% O fits
well with that of the unreacted ammonium persulfate ((NH4)2S2O8)), which is rational
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because of the use of an acidic medium that excludes the formation of hydroxides. This
complexation could potentially explain the previous difference in the XRDs of PANI-Ir-nc
and PANI-Ru-nc (Figure 2b).
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After the calcination (Figure 4d), the amount of S decreases from 6 to 3 at% while
N disappears completely in the PANI-Ru-c material (at least to a level too low to be
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detected by EDX). The relatively high amount of carbon (15 wt%) as compared to the case
of PANI-Ir-c (5 wt%) could be assigned to the difference in the molecular weight between
Ru (102.9 g mol−1) and Ir (192.2 g mol−1) because the atomic percentage is nearly the same
(33–35 at%). For PANI-Ru-c, the oxygen amount is significantly higher (49 ± 7 at%), which
leads to an atomic ratio O/Ru = 2.9 ± 0.5. Hence, a chemical composition of RuO2 can be
postulated owing to the findings from XRD. The extra amount of oxygen could come from
the presence of carbon and sulfur that form some oxidized species in air.

3.1.4. EDX Mapping

We next sought to carefully localize and track the positions of the main elements (C, O,
S, Ir, Ru) before and after the calcination. To this end, we used EDX mapping and the results
are displayed in Figure 5a–d. The first confirmation is that the position of the white spots
in the backscattered SEM image of the PANI-Ir-nc material (Figure 5a) matches well with
the map of Ir. In addition, the O and Ru signals that do not overlap in the material PANI-
Ru-nc (Figure 5b) do so in PANI-Ru-c (Figure 5d), which supports the aforementioned
RuO2 nanostructure. Conclusively, this set of physicochemical analyses demonstrated our
ability to develop a unified method of synthesis that allows the obtention of either metallic
or oxidic nanostructured materials by fine-tuning the chemical content of the synthesis.
In the next sections, these synthesized PANI-derived RuO2 or Ir nanoparticles will be
electrochemically characterized before interrogating their electrocatalytic activities towards
HER, OER, and water splitting in an acidic medium.

3.2. Electrochemical Performance
3.2.1. Electrochemical Characterization

Having demonstrated our ability to manipulate chemical polymerization in the pres-
ence of metallic cations to produce on-demand oxide or metal nanostructured materials,
we next utilized the method of cyclic voltammetry to electrochemically probe their surfaces.
The results are presented in Figure 6. The overlay in Figure 6a clearly reveals that each
material responds, in different ways, electrochemically. A deep analysis of the metal-free
conducting polymer PANI (Figure 6b) at different scan rates shows the presence of four
domains, A to D, corresponding to the characteristic redox processes associated with the
well-described oxidation states of PANI [28–30]. Specifically, the pair of redox peaks A/C
(0.58/0.40 VRHE, iR-drop uncorrected) belongs to the transition from leucoemeraldine (fully
reduced, oxidation in A) to emeraldine salt (partially oxidized, reduction in C), whereas
those of B/D are assigned to the transition from emeraldine salt (reduced, oxidation in
B) to pernigraniline (fully oxidized, reduction in D). It was observed that the profile of
cyclic voltammetry (CV) of PANI-based materials (no calcination) changes with the number
of the cycles, which is well-documented and attributed to an irreversible morphological
change of the polymer coupled with the polymer chain restructuring and the mobility of
the anions [31,32]. The slopes of 0.71–0.98 in Figure 6c indicate that the adsorption is the
limiting process in these electrochemical reactions because a limitation by the diffusion
would render a slope of 0.5 [33].

The CVs of the calcined materials were recorded at different scan rates in order to
account the impact on both faradaic and capacitive currents. The CV profile of PANI-Ru-c
(Figure 6d) without any obvious hydrogen region is characteristic of an electrode made
of RuO2 material, similar to the behavior of likewise calcination methods [10,22,24]. For
PANI-Ir-c (Figure 6e), the behavior is that of Ir metal, similar to other noble metals such
as Pt [11,13,34,35]. The low potential region is characterized by the reversible proton
adsorption and desorption processes at the metallic surface (IrHads/IrHdes) between 0.05
and 0.40 VRHE. These species will play an important role in the electrocatalytic hydrogen
evolution reaction. Then, the double layer region overlaps with the Ir(0) to Ir(III) transition
up to 0.8 VRHE before the complex phenomena of Ir(IV)/Ir(III) and Ir(V)/Ir(IV) [11,36]. The
electrochemically active surface area determined by using the hydrogen desorption region
(after background current correction and using a monolayer charge of 218 µC cm−2 [13,34])
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was 7 cm2 (roughness factor of 35 or specific value of 20 m2 g−1). The plots of current
vs. scan rate at 0.4 VRHE in Figure 6f show that both materials have the same value
of capacitance, 9–10 mF. From the average specific capacitance of 35 µF cm−2 [37], the
determined active surface area is 257–285 cm2, which is significantly larger than the value
from the previous method. The raison is that the two methods do not probe the same active
sites and there is no standard value of the specific capacitance that can range from 11 to
130 µF cm−2 [37].
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Figure 6. Electrochemical characterization. (a) Cyclic voltammetries (CVs) at 20 mV s−1 for different electrodes. (b) CVs
at different scan rates for the PANI material. (c) Peak current vs. the scan rate from panel (b). (d) CVs of PANI-Ru-c at
different scan rates. (e) CVs of PANI-Ir-c at different scan rates. (f) Current vs. scan rate at 0.4 VRHE. The support was a
rotating disc electrode (RDE) (blank) at 0 rpm, the electrolyte was 0.5 M H2SO4, the temperature was 25 ◦C, and the CVs
were iR-drop uncorrected.

3.2.2. Half-Cell Performance Regarding Hydrogen Evolution Reaction and Oxygen
Evolution Reaction

Having electrochemically characterized the as-synthesized materials, we next sought
to evaluate their electrocatalytic activity for both hydrogen evolution reaction (HER), and
oxygen evolution reaction (OER) by using linear sweep voltammetry (LSV), and chronoam-
perometry. The obtained results are shown in Figure 7a–f. Basically, the theoretical value
is 0 VRHE for HER (H+/H2 couple), and 1.23 VRHE for OER (O2/H2O couple), provided
that each species of the couple is present (Nernst’s thermodynamics). For HER, the LSV of
Figure 7a clearly evidences the best activity of PANI-Ir-c over other materials tested herein
or reported with metals [16,38–41] or without [14–16,41,42]. Specifically, the potentials
needed to achieve the metric current densities of |j| = 10 mA cm−2 for PANI-Ir-c and PANI-
Ru-c are −0.036, and −0.196 VRHE, respectively. Relative to the literature [14–16,38–42],
an overpotential of 36 mV is a record value with a loading of only 0.2 mg cm−2 while
up to 26 mg cm−2 is needed for 98 mV [43]. Unlike PANI-Ir-nc, it was observed that
PANI-Ru-nc becomes increasingly more active during the cycling, as shown in Figure 7b.
These results confirm the previous findings and definitely underpin the conclusion that
within the polymerized materials, the metallic cations are present as [Ru(NH3)6]Cl3, and
IrCl3. Hence, [Ru(NH3)6]3− is gradually and electrochemically reduced to Ru(0) that next
catalyzes HER while a crystallized IrCl3 particle cannot be transformed into Ir(0) to catalyze
HER. Tafel plots were also created (Figure 7c) to account for the reaction mechanism, as
explained below by Equations (1)–(3). It can be concluded that HER (2H+ + 2e− → H2) is
limited by the hydrogen adsorption for PANI-Ru-c (α = 0.78 leading to b = 76 mV dec−1)
while both hydrogen adsorption and desorption determined the efficiency of PANI-Ir-c
(b = 21 mV dec−1).
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Volmer step : H+
(aq) + e− → H(ads), b =

2.3RT
αF

, b = 118.2 mV dec−1 at 25 ◦C (1)

Heyrovsky step : H(ads) + H+
(aq) + e− → H2(g), b =

2.3RT
(1 + α)F

, b = 39.4 mV dec−1 at 25 ◦C (2)

Tafel step : H(ads) + H(ads) → H2(g), b =
2.3RT

2F
, b = 29.5 mV dec−1 at 25 ◦C (3)

where b is the Tafel slope (mV dec−1), α is the symmetry coefficient (typically, α = 0.5),
F is the Faraday constant (96,485 C mol−1), R is the ideal gas constant (8.314 J K−1 mol−1),
and T is the absolute temperature (273.15 + ◦C).
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voltammetry (LSV) of HER at 5 mV s−1 for different electrodes. (b) iR-drop uncorrected LSV of HER at 5 mV s−1 for the
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(e) Tafel plots of OER of from panel (d). (f) Chronopotentiometry curves (iR-drop uncorrected) of HER and OER at an
applied current density metric of |j| = 10 mA cm−2. The support was RDE (blank) at 1600 rpm, the electrolyte was 0.5 M
H2SO4, and the temperature was 25 ◦C.

Furthermore, the LSV of OER (Figure 7d) shows that for current densities below
50 mA cm−2, PANI-Ru-c is the best performing electrode material. Quantitatively, the
potential needed to achieve the metric current density of |j| = 10 mA cm−2 for PANI-Ir-c,
and PANI-Ru-c is 1.525, and 1.472 VRHE, respectively. It was expected that the two materials
would meet at high current densities as the oxide form MO2 (M = Ru, Ir) is the most active
for OER. In fact, the metallic iridium in PANI-Ir-c will evolve into oxide (+IV) at high
potentials [11,35,36]. For the mechanism, the Tafel slope of 45–47 mV dec−1 (Figure 7e)
means that the limiting step is the deprotonation of the adsorbed hydroxyl species (from
the first step of water splitting) [10,35,44]. Finally, the chronoamperometry tests in Figure 7f
conclusively demonstrate that the best pair of materials for the water splitting is PANI-Ru-c
as an anode and PANI-Ir-c as a cathode. In such configurations, only a cell voltage of
1.52 V (iR-drop uncorrected) would be needed to achieve the metric current density of
10 mA cm−2. For comparison with existing literature, the obtained value of 1.47 VRHE with
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PANI-Ru-c outperformed other reported Ru/Ir-based electrocatalysts with 1.50–1.65 VRHE
in acidic media [10,11,13,23].

3.2.3. Overall Water Splitting

Before entering into discussions, it is important to outline that water electrolysis
(splitting) can never start at 1.23 V (at 25 ◦C), unlike certain misunderstandings based
solely on the standard potentials of the two couples H+/H2 (E◦ = 0 VRHE) and O2/H2O
(E◦ = 1.23 VRHE). In fact, 1.44–1.48 V is the thermoneutral voltage required to take into
account the entropy increase (2H2O(l) → 2H2(g) + O2(g)) [24,45,46].

The efficiency of water electrolysis was evaluated in a simple and single two-electrode
cell containing 35 mL of 0.5 M H2SO4 (the support (blank) was carbon paper electrode of
4 cm high, 4 cm wide, and 0.190 mm thick—i.e., 8 cm2 for both external surfaces). The results
shown in Figure 8a–d were obtained with PANI-Ru-c as the anode and PANI-Ir-c as the
cathode, based on the previous data of Figure 7. Here, we first applied the stepped voltage
method to obtain the final polarization curve. Figure 7a shows that the used symmetric
approach of ±0.05 V steps (left Y-axis) between 1.2 and 2 V (iR-drop uncorrected) leads to
a symmetric profile of the current (right Y-axis) that quickly stabilizes, as can be observed
in Figure 7b for three different trials, thus validating the method. The extracted curves
before and after iR-drop correction (Figure 8c) show that the water electrolysis starts at the
theoretical thermoneutral voltage of about 1.45 V. The complex-plane Nyquist impedance
plots at 1.55 V (Figure 8d) indicate that the deposited electrocatalytic materials do not add
any significant ohmic resistance to the electrode. As can be seen in Figure 8c,d, the high
ohmic resistance of about 2.3 Ω from the liquid electrolyte and carbon paper electrode are
the main cause of the increase in cell voltage. These data obtained in a proof-of-concept test
imply a promising result when implemented in practical polymer electrolyte membrane
(PEM) water electrolyzers.

We next utilized the method of LSV to determine whether or not the used method
influences the recorded data. Figure 9a shows the successive polarization curves recorded
at low scan rate of 0.005 V s−1 before and after iR-drop correction for the configuration
(−)Ir||Ru(+)—i.e., PANI-Ir-c as the cathode and PANI-Ru-c as the anode. The three polar-
ization curves emphasize no meaningful drop in performance during cycling. Additionally,
the water electrolysis starts at a cell voltage and achieves a current of 80 mA (roughly
10 mA cm−2) at the same respective values as found earlier. Additionally, it can be seen
that the control experiment with carbon paper only (Blank) enables us to rule out any
significant contribution of the carbon oxidation within this potential window. We next in-
terrogated the nature of the anode or cathode on the performance by running two different
combinations, (−)Ir||Ru(+), and (−)Ru||Ir(+). The results in terms of the polarization
curves are reported in Figure 7b, while the electrochemical impedance spectroscopy data
are depicted in Figure 7c for complex-plane Nyquist impedance plots and Figure 7d for the
Bode diagrams. Bode diagrams show the presence of one time constant “RC”, meaning
that the raw data can be modeled by the representative equivalent electrical circuit of RΩ +
QCPE//Rct (embedded in Figure 7c) in which RΩ represents the uncompensated ohmic re-
sistance, QCPE is the constant phase element, and Rct is the charge transfer resistance [47,48].
The results show that the configuration (−)Ir||Ru(+) exhibits the best performance with
a 0.17 V decrease in cell voltage. This is substantiated by the reduced charge transfer
resistance (inversely proportional to the rate constant k◦, thus to the exchange current
density j◦) even at 1.55 V for (−)Ir||Ru(+); 1.60 V was used for (−)Ru||Ir(+). Note that if
the cell voltage increases, Rct will corollary decrease.
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Figure 8. Water splitting realized at room temperature (18± 3 ◦C). (a) Illustration of the step-potential
method from 1.2 to 2 V and from 2 V to 1.2 V (step of 0.05 V). (b) Successive step-potential polarization
curves recorded at step of 0.05 V from 1.2 to 2 V. (c) Voltage current before and after iR-drop correction
(error bars represent one standard deviation, n ≥ 3). (d) Complex-plane Nyquist impedance plots
at 1.55 V. The support (blank) was carbon paper electrode (4 cm high, 4 cm wide, and 0.190 mm
thick, i.e., 8 cm2 for both external surface), electrolyte was 0.5 M H2SO4, and cell volume was 35 mL
(not stirred).

For implementation in real electrolyzers, the electrode materials must provide good
stability in terms of withstanding a given current to provide hydrogen. To probe this, we
performed a durability test at an applied current of I = 100 mA and recorded the polarization
curves for dwell times of 0, 24, and 96 h (3.2 mL of water consumed). The recorded LSV
at 0.005 V s−1 at different stages of the durability test is shown in Figure 9e and the corre-
sponding voltage vs. time trend is reported in Figure 9f. The results highlight satisfactory
durability with only +1.13 mV h−1 voltage increase during the first 24 h to stabilize at the
iR-free voltage of 1.6 V. Considering that the electrocatalyst loading was only 0.2 mg cm−2,
this is an outstanding longevity when compared to a loading of 2.5 mg cm−2 (i.e., 12.5 times
higher than herein) needed to maintain about 10 mA cm−2 at 1.6 V [38]. Considering that
the corrosion of the used carbon support can be very important at this current, the future
deployment of these electrocatalysts in conditions of PEM electrolyzers [9,11,22,45,46]
holds promise.
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curves recorded at 0.005 V s−1 before and after iR-drop correction for the configuration 
(−)Ir||Ru(+). (b) Polarization curves recorded at 0.005 V s−1 before and after iR-drop correction for 
two configurations. (c) Complex-plane Nyquist impedance plots at 1.55 V for (−)Ir||Ru(+) and 1.60 
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(e) Comparison of the polarization curves recorded at 0.005 V s−1 at different stages of the durabil-
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Figure 9. Water splitting realized at room temperature (18± 3 ◦C). (a) Successive polarization curves recorded at 0.005 V s−1

before and after iR-drop correction for the configuration (−)Ir||Ru(+). (b) Polarization curves recorded at 0.005 V s−1

before and after iR-drop correction for two configurations. (c) Complex-plane Nyquist impedance plots at 1.55 V for
(−)Ir||Ru(+) and 1.60 V for (−)Ru||Ir(+): in inset is the the corresponding equivalent electrical circuit. (d) Bode diagrams.
(e) Comparison of the polarization curves recorded at 0.005 V s−1 at different stages of the durability test at an applied
current of I = 100 mA for 0, 24, and 96 h. (f) Corresponding voltage vs. time trend at an applied current of I = 100 mA. “Ir”
referred to as “PANI-Ir-c” and “Ru” referred to as “PANI-Ru-c”. The support (blank) was a carbon paper electrode (4 cm
high, 4 cm wide, and 0.190 mm thick—i.e., 8 cm2 for both external surface), electrolyte was 0.5 M H2SO4, and cell volume
was 35 mL (not stirred).

Although the membrane electrode assembly (MEA) of real electrolyzers will utilize a
relatively high loading of electrocatalysts (1–2.5 mg cm−2 [9,11,23]), we finally questioned
herein whether the loading could affect or not significantly affect the performance in the
present proof-of-concept setup. The optimized configuration (−)Ir||Ru(+) was used with
two loadings of 0.1 and 0.2 mg cm−2. Given that in preliminary tests 0.1 mg cm−2 seemed
appropriate, we further ran control experiments with single electrocatalyst systems (i.e.,
(−)Ir||Ir(+) and (−)Ru||Ru(+)) for a better assessment. The findings are summarized
in Figure 10a–c. While there is only a difference of ∆E = 0.035 V between the single
electrocatalyst systems (Figure 10a), there is about 0.1 V decrease when they are judiciously
chosen to assemble a hybrid cell. Deep analysis by EIS in Figure 10b,c shows ohmic
resistance decreases of about 0.1 Ω when the loading is doubly diminished. The same profile
of complex-plane Nyquist impedance is found and is similar to previous reports [9,45].
With the Bode diagrams that show one time constant, “RC”, the raw data can be modeled
by the representative equivalent electrical circuit of RΩ + QCPE//Rct. The increase in the
charge transfer resistance at 1.55 V (Figure 10b) directly impacts the value of the current in
Figure 10a, about 80 mA for 0.1 mg cm−2, and 115 mA for 0.2 mg cm−2. Overall, the
developed materials from this polyaniline-based strategy are promising.
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Figure 10. Water splitting realized at room temperature (18 ± 3 ◦C). (a) Polarization curves recorded
at 0.005 V s−1 before and after iR-drop correction different nature of the electrode material at the anode
and cathode. (b) Complex-plane Nyquist impedance plots at 1.55 V and in inset the corresponding
equivalent electrical circuit is shown. (c) Bode diagrams. “Ir” referred to as “PANI-Ir-c”, and “Ru”
referred to as “PANI-Ru-c”. The support (blank) was a carbon paper electrode (4 cm high, 4 cm wide,
and 0.190 mm thick—i.e., 8 cm2 for both external surface), electrolyte was 0.5 M H2SO4, and cell
volume was 35 mL (was not stirred).

4. Conclusions

In this contribution, we report a polymer-based methodology to engineer high-
performance nanostructured electrocatalysts for the hydrogen evolution reaction (HER)
and oxygen evolution reaction (OER) in an acidic medium. The chemical polymerization
of aniline into polyaniline (PANI) in the presence of metallic cations M(+III) (M = Ir, Ru)
and the thermal treatment under air atmosphere were both mastered to produce Ir and
RuO2 nanoparticles with crystallite sizes of 9.3 nm (Ir) and 5.6 nm (RuO2) as determined by
power diffraction X-ray (XRD). These structures were unambiguously confirmed by com-
plementary methods of scanning electron microscopy (SEM) coupled to energy-dispersive
X-ray spectroscopy (EDX), and cyclic voltammetry (CV). Half-cell characterization in 0.5 M
H2SO4 showed that the PANI-Ir material is suitable for HER (36 mVRHE at 10 mA cm−2,
21 mV dec−1), while PANI-Ru is suitable for OER (1.47 VRHE at 10 mA cm−2, 47 mV dec−1).
This straightforward method allows the production of on-demand oxide or metal nanos-
tructured electrocatalysts to trigger the water splitting exactly at their thermoneutral cell
voltage (1.45 V) with satisfactory durability (96 h), thus contributing to advancements in
the field of sustainable H2 production.
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