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Abstract
Wepropose a semi-automatic segmentation pipeline designed for longitudinal studies considering
structures with large anatomical variability, where expert interactions are required for relevant
segmentations. Our pipeline builds on the regularized FastMarching (rFM) segmentation approach
byRisser et al (2018). It consists in transporting baselinemulti-label FM seeds on follow-up images,
selecting the relevant ones andfinally performing the rFM approach. It showed increased, robust and
faster results compared to clinicalmanual segmentation. Ourmethodwas evaluated on 3D synthetic
images and patients’whole-bodyMRI. It allowed a robust andflexible handling of organs longitudinal
deformations while considerably reducingmanual interventions.

1. Introduction

In the context of clinical trials, assessing the disease
burden at different therapy stages is essential to
evaluate the efficacy of a drug treatment. For each
patient, such evaluations may require the segmenta-
tion of a given set of structures from 3D images
acquired during serial medical examinations. Due to
the potentially high anatomical variability of these
structures between patients, their segmentation is not
straightforward to automatize. Another source of
complexity when dealing with longitudinal studies
comes from the strong evolution of a given structure
from an exam to the follow-up exams, e.g. when
dealing with tumour control and treatment response
(see figure 1). In addition, the boundaries of the
structures to segment may not always be clearly visible
in the acquisitions. Also, the number of exploitable
data can be limiting in the development of segmenta-
tion strategies because clinical trials are often retro-
spectively analyzed with heterogeneous images
acquisitions and/or because the study is performed at
a preliminary stage. As a result, machine-learning or
fully automatic strategies are not adapted as a con-
sistent ground-truth training dataset with such

non-standard structures with high variability is not
always available. Manual intervention by experts are
therefore often required to obtain clinically exploitable
segmentations, making such studies particularly time
consuming.

The goal of this paper is to present a new semi-auto-
matic and clinically relevant segmentation technique
for longitudinal images, aiming at reducing the time
dedicated to manual interventions. Precisely, this pipe-
line is intended to be generic to integrate manually-
dependent segmentation and extend it longitudinally
alleviating the necessary manual intervention as much
as possible.

The proposed generic segmentation pipeline was
developed in the context of a clinical trial evaluating
Chronic Lymphocytic Leukemia (CLL), which is the
most common leukemia among adults (Noone et al
2016), for patients under Ibrutinib treatment. From a
cohort of 10 patients with several follow-up time
points (at baseline (M0), after one month (M1) and
twelve months of treatment (M12)), we extracted sev-
eral in-vivo and non-invasive clinical imaging bio-
markers and followed their evolution along treatment.
All biomarkers were associated to specific organs and
extracted from whole-body MR images. Organs
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manual delineation was especially tedious for CLL as it
is a diffuse disease affecting numerous organs all over
the body, with a great variability (figure 1) among
patients and among the image acquisitions to con-
sider; adding significant inter-operator variability to
the process. Therefore, the development of a specific
algorithm to handle whole-body segmentation and
adapted to follow-up examswas identified as very ben-
eficial for time, accuracy and robustness gain.

Longitudinal segmentation has been widely
explored in the different medical imaging modalities.
In this article, we focus on the segmentation of follow-
upMR images representing lymph nodes and different
organs. Tracking tumorous livers and lymph nodes
was however only addressed by a few approaches,
mainly in CT images (Moltz et al 2009, Vivanti et al
2018). In MRI, longitudinal studies strongly focused
on brain segmentation, where the anatomy is well
known (Gordon et al 2018), or on MS lesion segmen-
tation (Schmidt et al 2019). To the best of our knowl-
edge, the issue of longitudinal segmentation for the
follow-up of multiple organs in whole-body MRI has
never been studied.

A classical strategy for longitudinal studies is to
register baseline exam on follow-up exam and report
the registered baseline segmentation mask. We pro-
pose instead to use a segmentation pipeline that con-
sists of manipulating the inputs of the baseline
segmentation (e.g experts priors, segmentation initi-
alization, etc.) of multiple organs to propagate them
longitudinally to perform longitudinal segmentation.
Hence, a new segmentation is performed instead of
directly propagating segmentation mask on follow-up
exams.

Countless techniques have been proposed in the
literature for the automatic segmentation of medical
images (McInerney and Terzopoulos 1996, Pham and
Prince 2000, Sharma and Aggarwal 2010), most of
them being dedicated to the segmentation of specific
organs such as the brain or the heart. It is noticeable
that their originality, compared with broad segmenta-
tion techniques, often deals with a prior knowledge
about the anatomy of the structures to segment or
their representation in the acquired images. Techni-
ques that deal with a simultaneous segmentation of
multiple organs onMRI can be subdivided into 3main

Figure 1. Longitudinal whole-bodyMR images of a CLL patient withM0,M1 andM12 time of follow-up. Coronal views (top) present
the segmentation results for the regions of interest wide spread all over the body; highlighted in color are the cervical, axillary,
mediastinal, retroperitoneal, iliac lymphnodes and liver. Focus on variability of axillary lymph nodes (right and left, contoured in light
green and green, respectively) is given along the different acquisition times on the axial views (bottom). Notice the important volumes
of the axillary nodes at baseline before Ibrutinib treatment ; their significant shrinkage atM1 follow-up and then the slight volume
increase atM12 follow-up. These illustrations are from (Ysebaert et al 2017).

2

Biomed. Phys. Eng. Express 7 (2021) 015014 EGrossiord et al



categories: (1) Atlas-based methods have been pro-
posed, such as patch-based multi-atlas label fusion
(Bai et al 2013) for cardiac segmentation, keypoints
transfer segmentation (Wachinger et al 2018) and label
transfer segmentation (Lavdas et al 2017) for abdom-
inal and thoracic organs. These approaches require the
definition of multiple atlases and can also involve a
computationally expensive registration process of
each new image on reference database. (2) A second
category is model-based approaches. Among them,
(Chen and Bagci 2011) combines the multi-object
recognition with an iterative trained graph-cuts with
active shape model for abdominal organs in CT and
bones inMR. In (Lay et al 2013), the authors proposed
a shape model combining global and local context for
the simultaneous segmentation of abdominal regions.
Finally, statistical shape models were proposed in
(Cerrolaza et al 2016) for brain segmentation on
MR images and abdominal organs on CT images.
(3) Recent methods based on deep learning have been
developed with Convolutional Neural Networks
(CNN) for the 3D segmentation of liver and spleen on
multi-contrast MR data of the body trunk (Küstner
et al 2018), or with two-stage weighted-Fully Convolu-
tional Neural Network (FCN) using multi-atlas spatial
priors and auto-context for small organs segmentation
(Valindria et al 2018). Another study proposed to con-
sider dual pathway CNN to process multiple levels of
resolution simultaneously for abdominal organs seg-
mentation (Lavdas et al 2017). Although deep learning
approaches are competitive, such techniques require
an adequate training database or multiple atlases/
models (for each organ), which are not always avail-
able in clinical applications. In our context, the poten-
tial organ variability in terms of anatomy, shape, and
locations all over the body alsomakes such approaches
inappropriate.

So, in this paper, we focus on segmentation meth-
ods where manual interventions by experts are
required due to this strong anatomical variability of
the segmented structures from one image to the other.
In clinical practice, it is first common to achieve this by
manually segmenting regularly-sampled 2D slices out
of the 3D images and then interpolating the segmenta-
tions over the remaining slices. This straightforward
method is however particularly time-consuming.
Hence, we consider interactive segmentation approa-
ches for the proposed pipeline.

In this context, an important and pioneering
family of algorithms performing interactive segmenta-
tion algorithms are those based on graph-cuts (Boykov
and Jolly 2001). These methods quickly minimize bin-
ary Markov Random Fields (MRF) to segment the
images (Kolmogorov and Zabin 2004). They provide
excellent results and have linear complexity. However,
despite accelerations (Li et al 2004, Lermé et al 2010),
they still require toomuch resources in terms ofmem-
ory for applications in 3D medical imaging (Lermé
et al 2010). Letʼs notice that methods based on MRF

have also been tackled using Belief Propagation (Wang
and Cohen 2005). Random walk algorithms
(Grady 2006) propose another way for propagating the
seeds information. It is however relatively demanding
in terms of computations, although it shows a very
good capability to limit the contamination of the seed
information to neighboring regions connected to the
seed by narrow bridges. Finally, a third type of very fast
algorithms is the Fast Marching (FM) (Sethian 1996).
The FM quickly computes the distance between any
voxel and the nearest seed point and relies on the
notion of distance between neighboring voxels (Falcão
et al 2004, Bai and Sapiro 2009). The latter can be
mostly freely designed. The FM algorithm has already
been used for segmentation tasks in CT, combined
with contours refinement strategies (such as shape
model fitting (Losnegård et al 2010), geodesic voting
(Zuluaga et al 2014)) and for tumour growthmodeling
in brain MRI to estimate tumour density (Unkelbach
et al 2014).

A potential issue with the FM is that it tends to
propagate the segmentation to neighboring regions
connected to the seed with similar intensities, in part-
icular by narrow paths (contrary to randomwalk algo-
rithms). This leaking issue led us to propose in (Risser
et al 2018) a semi-automatic multi-label Fast March-
ing (FM) segmentation method optimized with a reg-
ularization term that penalized the crossing of narrow
bridges. We have shown in (Risser et al 2018) a benefit
of this regularized Fast Marching (rFM), in terms of
processing time, when segmenting whole body MR
images of patients withCLL.

In this article, we propose to build our pipeline
extending (Risser et al 2018) to fully consider long-
itudinal segmentation. The proposed workflow corre-
sponds to using the rFM segmentation for the baseline
image, and then to benefit from the pre-defined seeds
by automatically transporting and selecting the rele-
vant ones for follow-up images. Note that the concept
of the proposed pipeline is generic enough to be
applicable with any of the pre-mentioned interactive
segmentation method. In addition to the proposed
workflow, the main contributions of this paper are
then to describe how the FM seed points are trans-
ported and selected in the longitudinal regularized
Fast Marching (LrFM) pipeline. Further evaluation
tests and discussions are also given. We also slightly
updated the baseline algorithm of (Risser et al 2018) to
compute simultaneously the distances of all seeds
labels, as explained in (Falcão et al 2004).

The article is organized as follows. Section 2 of this
paper focuses on the description of the regularized
multi-label FM segmentation methodology (rFM).
Section 3 describes the proposed longitudinal pipeline
(LrFM) with the seeds transformation and selection
workflow for the follow-up segmentations. Both the
proposed semi-automatic rFM segmentation and
LrFMpipeline are validated on 3D synthetic data and a
clinical dataset composed of 3D whole-body MR
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images in section 4. Finally, we discuss the results in
section 5, and conclude in section 6.

2. Regularizedmulti-label fastmarching
segmentation

2.1. Introduction
The goal of the previously proposed regularized multi-
label Fast Marching (rFM) strategy (Risser et al 2018) is
to define L regions in an image I, each region corresp-
onding to an organ of interest identified with a label Rl,
l=1,K, L. As in standard fast-marching (FM), it
consists in propagating a list of seeds until a maximum
distance to the seeds is reached. For each considered
regionRl, wedenote bySl the list of these point seeds.

The key idea of rFM was to incorporate local
intensity changes into this distance.

Therefore, an additional regularization term tak-
ing into account region-wise intensity changes is also
integrated in rFM.

The multi-label propagation algorithm is descri-
bed in SubSection 2.2 and the regularization term,
which is the cornerstone of this paper, is developed in
section 2.3. We also present in section 2.4 the use of
rFM to segment a single medical image in a clinical
context. Extension to the segmentation of follow-up
images is developed in section 3.

2.2.Multi-label fastmarching

Algorithm 1. Simultaneous Multi-label Fast-
Marching

Require: Image I and the seeds Sl,∀l=0,K, L

Ensure: Segmentation P and globalmin distancemap d

Initialize P≡0 and d≡+∞
Initialize regularizing termR used in the cost c

For l=1→L do
Initializemaskl
Initialize d(p)=0 andP(p)=l,∀päSl InitializeQ=Q∪{Sl}
end for
while ¹ ÆQ do

Take Î Îp d qarg minq Q ( )
l=P(p)
forq∼pwith Îq Q do

ifqämaskl then
dist=d(p)+c(p,q)
if (dist�d(q)) and (d(q)≠+∞)then
Q.remove(q)
end if
if (dist�d(q)) and (dist�thresh)then
d(q)=dist
P(q)=P(p)
Q=Q∪{q}
end if
end if
end for
endwhile

In order to define the multi-label FM segmentation,
we assume that any pair of neighboring voxels p∼q in
the image I is endowed with a non-negative cost c
(p,q). This cost is the most important modeling
element of the proposed segmentation algorithm.

Considering the cost function, we define the
length of any path l(p=p1−p2−K−pK=q)
between voxels p and q as the sum of the cost of each
neighboring pair pk−pk+1 from this path:

å- -¼- =
=

-

+l p p p c p p, 1K
k

K

k k1 2
1

1

1( ) ( ) ( )

The geodesic distance dist(p,q) between any pair of
voxels p and q is then defined as the length of the
shortest path going from p to q. The simultaneous
multi-label FM, based on the IFT algorithm (Falcão
et al 2004), computes in a single distance map the
geodesic distance from each voxel to the closest seed,
considering simultaneously seeds from all labels. We
denote by d this global distance map to the union of all
seeds:

È
= "

Î
d p dist p q pmin , , 2

q Sl

( ) ( ) ( )

Given these notations and definitions, a Voronoi
diagram is such that all voxels that are associated with
the same closest label l define the Voronoi cell Rl. We
also denote by P the image describing the partition
defined by the regionsRl

È
= "

Î
P p l dist p q parg min , , 3

q Sl

( ) ( ( )) ( )

where l(q) is the function giving the label of seed q,
l=1...L. Thus, we set P(p)=l⇔päRl. For each
label l, we restrict the computation of d(p) to voxels in
a large rectangular regions maskl surrounding Sl
extended from a geodesic distance thresh, which limits
the computational burden. We also impose d
(p)=+∞ at any voxel p further away than thresh
from the seed Sl. The simultaneous multi-label Fast-
Marching algorithm is described in algorithm1.

2.3. Regularizing cost
The fast marching method is particularly sensitive to
narrow bridges between two organs with similar
intensities. Without any regularization, the seeds
belonging to different organs or the background must
be equidistant from the expected boundary to avoid
one region to spread on the other side of the bridge.
This makes the segmentation result very sensitive to
seed placement.

In order to avoid using the equidistance constraint
for narrow bridges, we introduce the regularizing cost:

g= - +c p q I p I q R p, , 42 2( ) ( ( ) ( )) ( ) ( )

where the regularizationmapR penalizes bridge cross-
ing, and γ is its weight. Given a structuring element
 , the costR is defined by
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= + - + "
Î Î 

R p I p q I p q pmax min , 5
q q

( ) ( ) ( ) ( )

Bridges that are thinner than  are then penalized by
R. It is interesting to remark that +Î I p qmaxq ( )
and +Î I p qminq ( ) are a dilation and an erosion of
I with structuring element  , respectively. Hence, γ
weights the distance allowed between local extremas in
the neighborhood  of the voxel. For algorithmic
reasons, we recommend to model  with a cuboidal
structuring element (s.e.) of size rx×ry×rz. This
indeed makes it possible to split the 3D dilations/
erosions into a sequence of 1D dilations/erosions with
first a rx×1×1 s.e., then a 1×ry×1 s.e., and
finally a 1×1×rz s.e., for exactly the same result.
For each voxel of I, the algorithmic cost of a dilation or
erosion is then 2(rx+ry+rz)+3 instead of
(2rx+1)×(2ry+1)×(2rz+1).

2.4. Application of rFM in a clinical context
As mentioned in introduction, the motivation of this
work is to make the semi-interactive segmentation of
complex 3D structures as efficient as possible in a
clinical context. To segment a single image, the rFM-
based segmentation procedure is then as follows. For
each considered region Rl, the users (clinician, expert,
K) first define a list of point seeds Sl. The rFM
propagation algorithm is then run to segment I based
on these seeds. The resulting segmentation is displayed
to the user. Based on their expertise they can improve
the segmentation by adding, removing or moving
seeds and then re-running the propagation algorithm.
This iterative process can be repeated multiple times
until a satisfactory visual segmentation is reached
according to the expert.

This pipeline opens a first practical remark, the
fact that there are bridges between different regions to
segment motivated the regularization strategy of
section 2.3. Theremay be also bridges between a struc-
ture to segment and another one which has not to be
segmented. To address this case, we consider an addi-
tional background region denoted R0 and use a list of
seeds S0 when running the rFM propagation. This set
gathers the background seeds associated to all

considered regions. The resulting segmentation of
regionR0 is obviously not displayed to the users.

Another remark deals with the estimation of the
regularization map R in equation (5). This map
depends on the image I and the structuring element
 but not on the seeds. It can therefore be computed
once for all before the first seeds propagation and re-
used later, with an algorithmic cost of M times
2(Dx+Dy+Dz)+3, where M is the number of
voxels of I, and (Dx,Dy,Dz) the dimensions of I. Once
computed, the computational cost of the seeds propa-
gation is then almost the same with or without reg-
ularization, which is clearly a plus from a user
experience point of view. The computational com-
plexity of algorithm 1 is then 2*N log NL L( ), with
NL=∑lNl and Nl the number of voxels in maskl of
organ l. Indeed, the complexity is N log NL L( ) for the
heap data structure construction (points storage) plus
N log NL L( ) for FM propagation in the worst case.
Finally, global minimum distance and associated label
are obtained inM times o(1).

3. Longitudinal segmentation pipeline

3.1. Segmentation pipeline
We have presented in section 2 the regularized FM
segmentation (rFM)method and its application to the
segmentation of a single image in a clinical context.
We now propose to extend the rFM method to the
longitudinal case (LrFM), where several follow-up
images of the same patient are segmented. In what
follows, M0 refers to the first acquired image and Mi
refers to the ith follow-up image, with i�1. The
segmentation of image M0 follows the procedure of
section 2 and we denote Sl

0 themanually defined seeds
used to segment region l in imageM0. The methodo-
logical contribution of this section then deals with how
taking advantage of the information in imageM0 and
the seeds of the Sl

0 to segment a follow-up image Mi
with as littlemanual interactions as possible.

The segmentation pipeline is summarized in
figure 2. After segmenting M0 with the procedure of
section 2, the seeds of the list Sl

0 are first transported

Figure 2. Longitudinal segmentation pipeline for images acquired during the firstmedical screening (M0) and follow-up screenings
(Mi). The pipeline forM0 is described in section 2 and the one forMi in section 3. Arrows in red and orange allowmanual
interventions by experts (clinician, radiologist,K) to segment complex anduncommon structures, based on their knowledge.
Importantly, they require no specific technical expertise in AppliedMathematics, Signal Processing orComputer Science. Arrows in
blue represent fully automatic procedures.
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using a displacement field obtained by registering M0
onMi, as developed in section 3.2. A subset of the trans-
ported seeds is then selected using the procedure of
section 3.3. The user finally iteratively refines the seeds
as in section 2.4 and re-runs segmentation. The benefit
of this procedure is therefore to alleviate the need for
manual interventions with an automatic definition of
initial seeds.

3.2. Longitudinal Seeds propagation
As illustrated in figure 2, the seeds are propagated
based on a displacement field TM0→Mi which is
computed by registering M0 on Mi. Various registra-
tion techniques could be applied depending on the
application. In our context, i.e. the segmentation of
several organs with a potentially high anatomical
variability across follow-up images, we use a two-steps
registration technique.

3.2.1. Global alignment
Aglobal alignment of the two volumeswithin the same
coordinate system is first performed to coarsely align
the body envelopes. To do so, an affine deformation
model was used. In our application, wemaximized the
Mattes Mutual information (MMI) (Mattes et al 2003)
betweenM0 and the deformation ofMiwith TM Mi

g
0 .

3.2.2. Region-wise registration
Finer registration is then performed for each of the L
segmented regions Rl. This task is particularly challen-
ging as the environment of the segmented organs is
heterogeneously deformed in space due to respiratory
movements, patients positioning, and the strong
variability of the anatomical regions and of their
deformation. It therefore appears as reasonable to
solve this registration problem using a strongly
constrained deformation model. As developed in
A.2.2, we first tested BSpline and affine registration in
this context, which led to equivalent segmentation
results. As affine registration was faster, we later used it
to specifically register each organ of interest. For organ
l, the deformation TM Mi

l
0 is then computed as

follows. The segmentation computed in first place for
organ l atM0 is dilated. This dilated segmentation will
mask the region-wise registration in the M0 image
domain, which enables us to focus on the region of
interest and its local neighborhood only. The affine
registration is then performed by initiating TM Mi

l
0 as

equal to TM Mi
g

0 . In our application, the circular
structuring element for the dilation has a radius of
10 mm and the normalized cross-correlation metric
(NCC) (Avants et al 2008) was maximized during the
registration. We adopted at each step of the registra-
tion process the metrics with the best segmentation
performances among the three tested (SSD,
MMI,NCC).

3.2.3. Region-wise seeds propagation
We recall that the seeds used to segment region l in
M0 are contained in a list Sl

0. The initial list of seeds Sl
i

to segment region l in Mi is then T SM Mi
l

l0
0( ). Note

that a list of background seeds S0
0 in M0 also exists, as

mentioned in section 2.4.When propagating the seeds
Sl

0 on Mi, we also propagate the subset of seeds in S0
0

for which the nearest non-background seed is in Sl
0.

3.3. Seeds selection
It is important to emphasize that the seeds of Sl

i used to
segment region l inMiwere propagated using an affine
deformation model. The propagation technique
described in section 3.2 is likely to propagate some
seeds of Sl

i outside the region to segment in Mi.
Although these undesired seeds can be simply erased
by the user (see section 2.4), we then propose to
minimize this burden with an automatic seeds selec-
tion procedure.

We denote μ and σ the mean and the standard
deviation of the intensities at the location of the seeds
Sl
i in Mi. We make the hypothesis that organ l has
homogeneous intensities and most seeds of Sl

i are
properly transported in its spatial domain. The seeds
with intensities at Mi outside of the interval [μ
−1.25*σ, μ +1.25*σ] are then considered as outliers
and discarded from Sl

i. Therefore, the seeds which are
obviously propagated outside of organ l do not have to
be manually erased. As for background seeds, they are
considered into subgroups defined from their nearest
organ.

3.4. Implementation details
The segmentation and registration procedures are
performed using 3D Slicer. In particular, our rFM
segmentation algorithm is integrated to 3D Slicer
(Fedorov et al 2012) as a C++ loadable module. The
registration is based on Slicer BRAINS registration
module (Johnson et al 2007). The fiducial editor of 3D
Slicer is used for the seeds definition. The seeds
transformation is processed with the SimpleITK
toolkit4.

4. Experiments and results

We now evaluate the LrFM pipeline on both 3D
synthetic (section 4.1) and clinical data (section 4.2).

4.1. Results on 3D synthetic data
4.1.1.Methodology
We validate hereafter the LrFM segmentation pipeline
on 3D synthetic data by evaluating its robustness
towards both the seeds location and the variability of
structures deformation. To do so, we first defined a 3D
synthetic image composed of four spherical regions,
denoted A, B, C and D, modelling tumorous regions

4
www.simpleitk.org/
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which present a lot of variability along follow-up, as
illustrated between figure 3-(a) and -(b). This image
represents the information at timeM0 and is designed
as follows. Region A is surrounded by both regions B
and C, linked by a large bridge and a narrow bridge
respectively. Region D is not connected to any other
regions. The 3D binary synthetic image was slightly
deteriorated with a Gaussian noise, to simulate a blur
e.g. due to breathing motion. In order to later assess
the stability of our method, 10 seed sets were defined
on this M0 image. One seed was randomly placed in
each region B, C and D, whereas a random amount of
one to four seeds were randomly placed in region A.
Note that the evaluation of the rFM strategy on 3D
synthetic images at M0 is given in appendix A.1 and
leads to very similar results as those obtained with 2D
synthetic images in (Risser et al 2018).

We then transformed these regions to model their
evolution from M0 to M1. In order to evaluate LrFM
pipeline robustness to different levels of deformation,
we applied a specific transform to each region, using
distinct zoom and shear parameters. In this trans-
formed image (see figure 3(b)), regions A and B are no
longer connected while regions A and D are now
linked with a narrow bridge, and A and C by a large
bridge. The transformed synthetic image was also
slightly deterioratedwith aGaussian noise.

We then assessed the LrFM segmentation pipeline
without manual correction of the seeds on this 3D
synthetic image, following the subsequent steps. We
first registeredM0 image onM1 image, using our two-
steps registration procedure described in section 3.2.
For these synthetic data, the Mean Square Error was
used as the registrationmetric, since the regions inten-
sity were comparable between M0 and M1 images.
This step defined a distinct local transform TM M

l
0 1

for each region. The 10 distinct sets of seeds, defined
on the M0 image, were then transported on the M1
image, using TM M

l
0 1 accordingly. Automatic seeds

selectionwas finally performed.
Figure 3 illustrates an example of the LrFM seg-

mentation pipeline on the 3D synthetic data atM1 fol-
low-up. It displays the different segmentations
obtained after each step of the pipeline. We compared
the result obtained with the LrFM segmentation

pipeline with the discrete sphere volume of each trans-
formed region, using the local Dice coefficient (DSC).
The DSC quantifies the overlap agreement between
two segmentations; it varies from 0 (i.e. no overlap) to
1 (i.e. complete overlap). This computation is per-
formed locally, i.e. for each region specifically. The
local DSC, obtained for each region with LrFM seg-
mentation atM1 with and without regularization, are
summarized in the boxplots in figure 4. The boxplots
were computed after seeds selection, no manual cor-
rection was performed to replace inaccurate seeds or
addmissing ones.

4.1.2. Results
On average, only 13.8% of the seeds fell outside the
regions of interest after the registration and the LrFM
pipeline segmented of the different regionswith a good
accuracy. The performances of the FM-based segmen-
tation pipeline are related to the presence of bridges of
similar intensity and the position of seeds around
them. Our pipeline demonstrated a better robustness
towards these factors with the regularization. Mean
local DSC reached 0.95±0.06 and 0.92±0.11 over
all four regions with and without regularization,
respectively. Median local DSC increased from 0.94
without regularization to 0.98 with regularization. In
addition, the meanminimum local DSC was 0.80 over
the four regions with regularization versus 0.66 with-
out regularization.

The regularization therefore leads to more stable
and accurate segmentation results with a smaller
variability for regions that are connected by a narrow
bridge, such as regions A and D here. Indeed, the pro-
posed regularization enables to limit region leaking
across the bridge, improving local dice coefficients.
Since region A is the largest region transformed with
the smoothest deformation, possibly one to four seeds
fell inside this region, and thus, if one seed (ormore) is
eliminated during the selection, there are potentially
other remaining seeds to conduct a correct segmenta-
tion. Hence, mean local dice of A increases from
0.96±0.04 without regularization to 0.98±0.03
with regularization. Compared toA, regionD presents
a lower variability. Indeed, the propagation ofD intoA
is not equally widespread due to the potential larger

Figure 3. Illustration of the LrFM segmentation assessment on 3D synthetic images (section 4.1). (a) Slice out of theM0 image.
(b)Corresponding slice at follow-upM1. ComparedwithM0, regionsA andB are not connectedwhileA andD are linked by a narrow
bridge. (c)Example of LrFM segmentationwithout automatic seeds selection and nomanual intervention. Themisplacement of seed
D leads to the region spreading in the background. (d)Corresponding segmentation after automatic seeds selection but nomanual
intervention tomoveD. The seedDwas automatically eliminated and the regionwas therefore not segmented. (e)Corresponding
segmentationwith automatic seeds selection andmanual intervention, leading to a satisfactory segmentation. Note that only one seed
wasmanually added, which is fast comparedwith a seed displacement in a 3Ddomain.
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number of seeds remaining in A. Mean local DSC ofD
increases as well from 0.93±0.20 to 0.99±0.02with
the regularization.

The regularization also allows to slightly improve
segmentation results within regions that are con-
nected by a larger bridge, such as regions A and C. The
FM algorithm requires the presence of equidistant
seeds from the expected border to limit the propaga-
tion in either region. Since this condition is not always
respected, the level of spreading of region C into
region A depends on the position of seeds in A around
the border, and the regularization contributes to
slightly constrain this propagation, mean DSC of C
increases from0.78±0.18 to 0.84±0.18.

Region B is always well segmented in this trans-
formed image with amedian dice of 1.0 with andwith-
out regularization. Only an outlier Dice of 0.9 was
observed (see Boxplot 4).

Importantly, we finally emphasize that we
obtained similar segmentation accuracies by using
directlymanually placed seeds (as for the rFM segmen-
tation at M0) or by re-using and transporting the
already-defined seeds for a new follow-up image (as
for the LrFM pipeline). This shows the relevance of
our pipeline to reduce user-interactions in long-
itudinal studies.

4.2. Results on clinical data
In (Risser et al 2018), we have shown that the rFM
segmentationof clinical datawasmore robust andmore
accurate with the proposed FM regularization, com-
pared to the completemanual delineation of regions. In
this article, we demonstrate that, when considering
longitudinal segmentation, the propagation of seeds is
very relevant to reduce user-interaction and limit the
time dedicated to the segmentation task, compared to
directly applying the rFM procedure on follow-up
exams. We also show that the transformation of seeds

appearsmore robust and accurate than the transforma-
tion of pre-defined baseline segmentation masks,
especially with the regularization which is very tractable
to handle regions deformation.

4.2.1. Dataset
The LrFM segmentation technique was validated on a
clinical dataset of 10 consecutiveMR images of patients
with CLL using M0/M1 data. Axial Volumetric Inter-
polated Breath-hold Examination (VIBE) MR images
usingDixon fat-water separationwere acquired on a 1.5
Tesla scan using one head coil, two 18-channel design
body flex coils and one 36-channel design peripheral
angio coil used in combinationof the 32-channel design
spine coil in order to performwhole-body imagingwith
the following parameter settings TR/TE=6.76/
2.39 ms and Flip Angle=10°. Typical image size
is 250×250×200 voxels for a resolution of
1.5× 1.5× 4.0 cubic millimeter per voxel. All images
were pre-processed with bias field correction and a
grey-level homogenization on whole-body MR com-
posing. An histogram-matching of M1 exam on M0
was also performed. Segmentation parameters γ and
threshwere set empirically at first. γwas fixed to 0.0025
and thresh, defined from the diameter of the largest
organ, was equal to 100mm. They were not modified
during the experiments.

4.2.2.Methodology
The semi-automatic rFM segmentation was validated
at M0 for the delineation of 12 anatomical structures
disseminated over the whole-body MRI, namely the
cervical, axillary, inguinal, iliac, mediastinum and
retroperitoneum lymph nodes along with liver and
spleen organs. These regions present a large anatomi-
cal variability, and not always clear anatomical con-
tours, thus they require interactive segmentation. MR
images at M0 were used to assess our rFM method

Figure 4.Boxplots of theDice coefficients obtained for the segmentation of the different regions of 3D synthetic data transformed at
M1 using the LrFMpipeline with andwithout regularization.
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stability, and compared to the manual delineation
performed by clinical experts. Figure 5 illustrates a
rFM segmentation obtained on one of these whole-
body MR exams, as already shown in (Risser et al
2018). Extensions of the quantitative results of (Risser
et al 2018) for the rFM segmentation are given inA.2.1.
The resulting sets of seeds defined on M0 exams are
the initial material to evaluate in this section the
accuracy and the stability of the LrFM pipeline on the
same regions in theM1 exam.

Different variants of the LrFM pipeline are asses-
sed to quantify the impact of its different steps: (SAll)
LrFM segmentation using all seeds, i.e. without auto-
matic seeds selection and no manual intervention.
(SSel) LrFM segmentation after the automatic selection
of relevant seeds but nomanual intervention. (SCorReg)
Full LrFM pipeline, as shown in figure 2. (SCorNoReg)
Same as (SCorReg) but with no regularization during
the Fast Marching propagation. We also denote by
(SMask) the propagation of the rFM segmentation
masks obtained at M0 on the M1 exam, after region-
specific registration with TM M

l
0 1. These different

tests are compared to (SrFM) rFM segmentation
directly computed on M1 exam, considered as the
reference hereafter.

The agreement between our LrFM segmentation
results and reference segmentations (here, SrFM), is
then quantified by considering seven metrics, classi-
cally used to evaluate the performances of a segmenta-
tion algorithm (Lavdas et al 2017): (Global and Local
DSC) The dice coefficients, already introduced in
section 4.1, are computed globally and locally. Global
computations consider all voxels over the whole-body
images and local computations focus on specific
organs of interest. (RE) The Recall corresponds to the
sensitivity (i.e. the true positive rate) and reaches 1
when all voxels of the reference are correctly retrieved
in the segmentation. (PR) The Precision is the positive
predictive value, it illustrates how many of the seg-
mented voxels are actually positive in the reference (it
ranges from 0 (no true positive) to 1 (no false positive).
(HD) The Hausdorff Distance is the maximal distance

from a voxel in the segmentation to a nearest voxel in
the reference segmentation. (MSD) The Mean sym-
metric Surface Distance is the average of all the dis-
tances between the boundary voxels of the evaluated
segmented region and the nearest voxel on the bound-
ary of the reference region. (RMSSD) The Root Mean
Square symmetric Surface Distance is similar to the
MSD but considers the squared distances between the
two sets of boundaries, the root of the squared dis-
tances leads to the RMSSD. For both the MSD and the
RMSSD, a value of 0 corresponds to a perfect overlap
between the two segmentations. These three distances
are expressed inmillimeters and are unbounded. Here
distancemetrics are only computed locally.

Note that the evaluation metrics are averaged on a
set of 9 patients out of the 10 original ones. Indeed, one
patient did not performed correctly breath holding
duringMR acquisition atM0, which led to poor image
quality with a strongmovement artifact which induces
poor segmentations.

4.2.3. Results
LrFM Segmentation evaluation metrics are described
in table 1. For each considered metric, all tested
segmentation strategies were shown to perform with
significantly different accuracies (p<0.0005, Krus-
kal-Wallis test).

4.2.3.1. LrFMversus SMask:
Results show that registeringM0 seeds to perform the
segmentation at M1 globally offers better perfor-
mances compared to registering theM0 segmentation
mask (SMask). Indeed, considering SrFM at M1 as
reference, our SCorReg strategy was the most accurate
strategy (mean global DSC of 0.93±0.01, mean local
DSC of 0.81±0.05). In comparison, SMask presented
a mean global DSC of 0.79±0.05 and a mean local
DSC of 0.43±0.12. This means that the organs are
better segmented regardless of their volumes. Our
SCorReg strategy enables to segment organs of interest
with better precision and better sensitivity compared
to SMask (mean local PR of 0.78±0.06, compared to

Figure 5. Segmentation obtained on awhole-bodyMR image atM0 by using the rFMapproach, as already shown in (Risser et al 2018).
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0.42±0.13 for SMask, andmean local RE 0.84±0.04,
whichwas equal to 0.50±0.13 for SMask). SCorReg also
showed a good robustness by obtaining the lowest
distancemetrics with low variability. It showed amean
localHDof 23.03±5.17, ameanMSDof 1.48±0.81
and amean local RMSSDof 2.92±1.16whereas these
metrics reached 38.89±9.77, 7.21±4.07 and
10.18±4.75 respectively for the SMask strategy. Parti-
cularly, SCorReg was shown significantly different from
all the other strategies for all metrics (p<0.022,
Mann-Whitney test).

4.2.3.2. Number of seeds and time gain:
The LrFM pipeline also allowed to reduce user-
interaction for the longitudinal segmentation task
compared to SrFM. Indeed, the set of seeds automati-
cally registered on M1 is composed of 524 seeds per
patient in average. The seeds selection reduces this set
to 331 seeds (−37%) in average. The manual correc-
tion, which is the only step of the pipeline requiring
user interaction, leads to the addition of 75 new seeds
in average per patient. In comparison, SrFM at M1
requires a mean of 386 seeds. Hence, the longitudinal
pipeline leads to a reproducible segmentation result
with a reduction of 80% of manually corrected seeds
(deleted or displaced). Besides, this manual correction
takes 36 minutes in average on the database of 9
patients, whereas it takes 50minutes to define all seeds
directly on M1 and segment it. The majority of the
corrected seeds concerned the background. For the
smallest organs (e.g. axillary, inguinal and cervical
lymph nodes), the transported seeds were more likely
to fall outside the region to segment (because of nodes
shrinkage), so the manual correction consisted in re-
positioning them. For the biggest organs, the robust-
ness of the segmentation required less correction, the

minimal manual intervention essentially consisted in
adding background seeds.

4.2.3.3. Interest of the seeds selection:
The seeds selection, leading to SSel, increases the
accuracy of the LrFM segmentation compared to SAll.
The mean global DSC remains stable (0.86±0.03)
but the mean local DSC increases from 0.55±0.09 to
0.59±0.14 for SSel, showing that the seeds selection
mainly improves the small organs contours. SSel leads
to a more accurate segmentation with a mean local PR
reaching 0.61±0.14 when it was 0.53±0.06 in SAll.
On the contrary, the local RE decreases slightly from
0.66±0.11 in SAll to 0.63±0.16 for SSel. The
detection of right positive regions is hence clearly
improved in SSel, along with the increase of false
negatives. Both strategies seems comparatively robust
since they obtain similar mean and median distance
metrics, however the contours variability is reduced in
SSel. The seed selection led to a slight increase in mean
distance metrics (MSD increases from 6.88±3.02 to
7.17±3.30, HD from 42.12±10.54 to 44.24±6.70
and RMSSD from 10.45±3.80 to 10.77±3.90),
which comes from the suppression of some relevant
Background seeds useful to constrain segmentation;
their removal created spreading with small volume
that did not impact dice scores. Figure 6(a) shows an
example of SSel which reduces potential false positive
regions. Subsequent manual seeds correction SCorReg
enables to significantly refine the segmentation to
obtain a satisfactory result (figure 6(b)).

4.2.3.4. Interest of the regularization:
The regularization allows the LrFM pipeline to be
more accurate and robust to intensity bridges, mostly
for weakly contrasted organs. Compared with
SCorNoReg, SCorReg presents an increase of both mean

Table 1.Evaluation of the different segmentation strategies on 9 patients of theCLL cohort. Results are presented for different variants of the
proposed LrFMpipeline (SAll, SSel, SCorReg and SCorNoReg), and comparedwith SMask, considering SrFM atM1 as reference, as explained in
section 4.2. Evaluationmetrics are Global and local DSC, precision (PR), recall (RE), Hausdorff distance (HD), mean surface distance
(MSD), rootmean square surface distance (RMSSD). The last line indicates the average number of seeds required for each patient, in
comparison to the 386 seeds used by SrFM atM1. The first line indicates themaximump-value obtainedwith theMann-Whitney statistical
test for each considered segmentation compared to SCorReg over the 7 evaluationmetrics. The last column gives the p-value according to the
Kruskal-Wallis statistical test comparing altogether the 5 segmentation techniques for each of the 7 evaluationmetrics.

SrFM atM1

(reference) SMask

LrFMpipeline with transformed seeds

SAll SSel SCorReg SCorNoReg p-value Krus

kal-Wallis

p-value — �0.001 �0.001 �0.009 — �0.022

Mann-Whitney

GlobalDSC — 0.79±0.05 0.86±0.03 0.86±0.03 0.93±0.01 0.90±0.03 < 0.0001

Local DSC — 0.43±0.12 0.56±0.09 0.59±0.14 0.81±0.05 0.72±0.09 < 0.0001

Local PR — 0.43±0.13 0.53±0.06 0.61±0.14 0.78±0.06 0.67±0.09 < 0.0001

Local RE — 0.50±0.13 0.66±0.11 0.63±0.16 0.84±0.04 0.81±0.09 < 0.0001

LocalHD — 38.89±9.77 42.12±10.54 44.24±6.70 23.03±5.17 39.45±9.79 < 0.0005

LocalMSD — 7.21±4.07 6.88±3.02 7.17±3.30 1.48±0.81 2.79±1.24 < 0.0001

Local RMSSD — 10.18±4.75 10.45±3.80 10.77±3.90 2.92±1.16 5.65±1.79 < 0.0001

Nbof seeds 386 — 524 331 401 401 —
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global and local DSC from 0.90±0.03 and
0.72±0.09 to 0.93±0.001 and 0.81±0.05, respec-
tively. The local DSC being more affected than the
global DSC shows that the smallest organs are themost
impacted by the absence of regularization. Indeed,
region spreading can quickly double the size of small
volumes and reduce local DSC. The absence of
regularization may lead to regions leaking through
small bridges, and therefore we observe an overall
increase of all distance metrics considered for
SCorNoReg. Hence, with regularization, all distance
metrics decreased for SCorReg, reducing segmentation
leaks across intensity bridges (MSD decreased from
2.79±1.24 for SCorNoReg to 1.48±0.81 for SCorReg,
HD from 39.45±9.79 to 23.03±5.17, and RMSSD
from5.65±1.79 to 2.92±1.16).

4.2.3.5. Local performances on the organs of interest:
The five segmentation strategies present significantly
different local DSC for all the organs of interest
(p<0.04, Kruskal-Wallis test) except for the left

cervical node and the retroperitoneum (which were
not enough represented in the patients set). The mean
local organDSC are summarized in table 2. Best results
are obtained with our LrFM segmentation pipeline
(SCorReg) for all considered organs. SCorReg is shown
significantly different from all the other strategies
(p<0.048,Mann-Whitney test).

For the biggest organs with a good contrast (the
liver and spleen), the local DSC results remain quite
stable along the different steps of the LrFM pipeline as
for SMask. Indeed, due to their very light deformation
from M0 to M1 exam, very few seeds significantly
needs to be eliminated ormanually corrected.

Concerning the biggest organs with a weak con-
trast (e.g. the mediastinum and retroperitoneum),
their evolution fromM0 toM1 is better handled with
the seed-based LrFM pipeline compared to SMask. For
instance for the mediastinum, a mean local DSC of
0.32±0.25 was obtained with SAll, versus
0.20±0.16 with SMask. In these cases, the seed selec-
tion is beneficial to improve the local precision

Figure 6. (a) Segmentingwith allM0 seeds transported onM1MRI (left) leads here to region spreading (middle) frommisplaced seed
(AxR) due to lymph node shrinkage. The automatic seeds selection helps removing outlier seeds (here, seedwith intensity lower than
the rest ofAxR seeds). Segmentation result after seed selection (right). (b)The segmentation has spread in regions of similar intensities
after seeds selection (second). It is then necessary tomanually add two background seeds to constrain the propagation (third) and
obtain a similar result as the ground truth superimposed in orange (fourth). Illustration of the interest of automatic seeds selection (a)
andmanual seeds correction (b).
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(0.37±0.30 with SSel) and the manual seeds correc-
tion remains necessary to obtain a satisfactory result
(0.64±0.15 with SCorReg). Due to their low contrast,
the regularization is very relevant for these regions,
(0.47±0.22 for SCorNoReg).

Furthermore, the small organs with weak contrast
(e.g.. cervical lymph nodes), are the most complex to
delineate. Their mean local DSC is very low
(<0.10±0.10) with SMask, because their large
deformation is poorly handled. In comparison, SAll
offers more robust results (0.20±0.27). Due to their
local variability and complex registration, the seeds
selection is very drastic, and leads to the elimination of
almost all seeds for cervical nodes. Therefore, the
manual seeds correction is essential to add missing
ones and obtain a correct segmentation (0.73±0.08).
In these regions, the regularization is essential due to
the presence of multiple regions with similar inten-
sities as that of cervical nodes (0.47±0.22).

In comparison, for small regions with a better con-
trast (e.g. axillary or inguinal lymph nodes), SAll pre-
sents a higher accuracy than SMask thanks to the
algorithm robustness towards seeds location. The
seeds selection did not have much impact on these
lymph nodes, with quite stable mean local DSC. The
manual seeds corrections enables to achieve good deli-
neation with high mean DSC. The regularization was
less significant for these regions thanks to their better
contrast.

5.Discussion

Wehave proposed a longitudinal segmentation frame-
work, that relies on a semi-automatic regularized
multi-label fast marching (rFM) segmentation to
delineate organs of interest. This proposed rFM
segmentation uses a regularization map, which takes
advantage of both properties from the Fast Marching

(very fast) and regularized methods (robust to seed
displacement). We compared atM0 the implemented
segmentation algorithm with a software available in
clinical routine, Iplan RT5, and the semi-automatic
delineation outperformed the cumbersome manual
task. This semi-automatic rFM approach thus enables
to reduce both processing time and user-variability. In
addition, the provided approach is sufficiently generic
to be adopted for the delineation of any organ.

The seed-based extended longitudinal pipeline
offered better longitudinal segmentation results com-
pared to registration-based transformation of baseline
rFMmasks onM1. This can be due to the higher flex-
ibility of our regularization model on seeds propaga-
tion, compared to the implicit spatial regularization
required by locally rigid deformations. Indeed, the
rFM segmentation process was shown to be robust
enough to seeds location to handle smooth deforma-
tions. Thus, the use of seeds appears more tractable to
handle heterogeneous spatial deformations of multi-
ple levels without requiring very accurate longitudinal
registration.

Besides, to cope with potential misplacement of
organs seeds after longitudinal registration, we intro-
duced a step of automatic seeds selection. This helped
reducing the number of seeds to verify to only con-
sider the relevant ones. This step also permitted to
reduce regions spreading during FM corresponding to
false positive regions. Although a final manual seeds
correction remained necessary, it is worth noting that
this automatic seeds registration allows for a consider-
able time gain of image analysis. Indeed, the manual
seeds correction remains less time consuming than
placing one by one the seeds for another direct semi-
automatic rFM segmentation onMi. As a perspective,
the seeds selection can be more robust by identifying

Table 2. Local dice coefficients for each organ of interest averaged over the 9 patients for all segmentation strategies. The first rowpresents
themaximump-value obtainedwith theMann-Whitney statistical test comparing each segmentation strategy with SCorReg over all the
organs of interest. Themaximump-values according to theKruskal-Wallis statistical test comparing altogether all segmentation techniques
considering each organ of interest are given in the last column.

SMask

LrFMpipeline with transformed seeds

SAll SSel SCorReg SCorNoReg p-value kruskal-Wallis

p-valueMannWhitney �0.040 �0.048 �0.023 — �0.046

CerR 0.09±0.09 0.25±0.27 0.03 0.76±0.06 0.52±0.13 0.015

CerL 0.08±0.10 0.19±0.26 0.00 0.70±0.10 0.42±0.07 —

AxR 0.26±0.16 0.49±0.32 0.48±0.33 0.78±0.10 0.67±0.12 0.008

AxL 0.24±0.22 0.32±0.24 0.36±0.26 0.78±0.10 0.74±0.11 0.0

IngR 0.40±0.09 0.63±0.08 0.34±0.06 0.82±0.12 0.67±0.17 0.001

IngL 0.32±0.10 0.52±0.16 0.46±0.14 0.82±0.08 0.73±0.19 0.004

IliaR 0.29±0.16 0.43±0.18 0.44±0.19 0.71±0.11 0.59±0.14 0.004

IliaL 0.30±0.15 0.41±0.19 0.39±0.23 0.76±0.07 0.65±0.11 0.001

Med 0.20±0.16 0.32±0.25 0.37±0.30 0.64±0.15 0.47±0.22 0.04

Retrop 0.47±0.07 0.55±0.18 0.62±0.03 0.81±0.06 0.79±0.07 —

Liver 0.85±0.05 0.90±0.03 0.89±0.04 0.93±0.02 0.92±0.02 0.003

Spleen 0.79±0.06 0.89±0.05 0,88±0.06 0.94±0.02 0.92±0.02 0.0

5
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an organ with important shrinkage and automatically
remove all its corresponding seeds.

To improve the robustness of the FMpropagation,
we introduced a regularized cost to penalize the cross-
ing of narrow bridges during the FM propagation. It
would be relevant to investigate this leaking problem
more globally, notably by raising the distancemetric to
powers higher than two, in order to approximate the
geodesic distance to the fmax function as proposed in
(Miranda and Falcão 2009, Couprie et al 2010).

More practically, the introduced rFM segmenta-
tion approach helped us draw amedical interpretation
of CLL evolution onMR exams in particular in quanti-
fying significant organs volume shrinkage at M1, and
more patient-dependent evolution atM12. In this arti-
cle, we focused our LrFM experiments on both synth-
etic and clinical data on the evolution of structures
fromM0 toM1. Further experiments onM12 data will
be conducted to evaluate the ability of LrFM to handle
regions deformation throughout the whole follow-up
process (i.e. for all follow-up exams).

Our approach needs as inputs the initial seeds
defined on baselineMR exam for all considered organs
of interest. As mentioned earlier, this step can still be
time-consuming for clinical experts, although less
than a complete manual delineation. But these seeds
are defined once for all and can be used for all MR fol-
low-up exams atMi. Therefore, one perspective would
be to prevent the definition of new seeds for each new
patient and consider the pre-existing seeds of the
cohort. Multiple strategies could for instance be con-
sidered. First, we could use the pre-defined seeds of the
closest pre-segmented patient of the database, e.g. the
one with similar height and weight, or with the closest
coarse segmentation of body envelopes. A second
strategy would be to build a mean seed-based atlas for
each organ of interest, considering all pre-defined
seeds of pre-segmented patients and transport this
atlas on each new patient. Another strategy would be
to benefit from the whole seeds database and integrate
it in a machine-learning approach to identify the posi-
tion of newly defined seeds or to select the pertinent
ones for each new patient, considering voxels intensity
and anatomical features for instance.

6. Conclusion

Motivated by the quantitative evaluation of Chronic
Lymphocytic Leukemia (CLL) response to a new drug
treatment over several follow-up time points, we
proposed a Longitudinal regularized Fast Marching
segmentation pipeline (LrFM) for multiple organs of
interest. The LrFM relies on our computationally
efficient regularization strategy for the Fast Marching
segmentation (rFM (Risser et al 2018)). The proposed
LrFM pipeline takes advantage of the seeds pre-
defined on a baseline image with the rFM technique to
segment new images of the same patient at a different

follow-up time, and, thus, limiting user manual
intervention. In our pipeline, initial seeds are regis-
tered on the new patient exam with a two-step affine
registration, the seeds set is reduced from the inaccu-
rate elements potentially transported outside the
considered organs after registration; the clean set of
seeds is then used to propagate the rFM.

The pipeline has been evaluated on 3D synthetic
and clinical MR data with CLL, emphasizing its rele-
vance. Results show a better performance of our tech-
nique with a better accuracy and a better robustness to
organs deformation. In addition, it also allows to
reduce the number of seeds to verify manually, in
comparison to the direct segmentation at M1 using
rFM, allowing for an important time gain for follow-
up patient analysis. Consequently, the proposed seg-
mentation pipeline performs very favorably to the
tools usually available for clinicians for the long-
itudinal segmentation of several organs.
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Appendix. Experiments and results

A.1. Results on baseline 3D synthetic data
In this section, we show that the regularization in the
rFM strategy allows the segmentation on synthetic
data to be more accurate and robust to seeds place-
ment thanwith non-regularized FM.

A.1.1. Methodology. The 3D synthetic data
considered for the validation is described in
section 4.1.1. We evaluated the robustness of the semi-
automatic rFM segmentation strategy towards seeds
position and the interest of the regularization, by
running the segmentation process on the 3D synthetic
data, considering 10 distinct sets of seeds, with
regularization (γ>0) and without regularization
(γ=0). In each of these distinct sets, one seed was
randomly put in each region B, C and D, whereas a
random amount of one to four seeds were randomly
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placed in region A. Four of these segmentations are
illustrated onfigureA1.

A.1.2. Results. The segmentation accuracy was
assessed considering the Dice coefficient (DSC),
computed locally on each region of interest. Here, the
semi-automatic rFM segmentation result is compared
to the discrete spheres volume of each region. The
local DSC, obtained for each region, are summarized
in the boxplots infigure A2.

The segmentation is globally more robust to the
seeds location andmore accurate when the regulariza-
tion is considered. We obtain a mean local dice of
0.94±0.10 with regularization and 0.91±0.08
without regularization, and amedian local dice of 0.98

and 0.94 respectively, over all four regions averaged on
the 10 considered seeds sets. More particularly, it
enables to obtain highermedianDSC for all regions.

The regularization also leads to a more stable
segmentation with smaller variability for regions that
are connected by a narrow bridge, such as regions A
and C. Indeed, the spreading between regions A and C
is stopped with the regularization, as observed for
instance on figure A1, improving local dice coeffi-
cients. For region C, the median dice increases from
0.88 (without regularization) to 1.0 (with
regularization).

The regularization also slightly improves the acc-
uracy of region B, linked to A by a large bridge, a case
for which the regularization was not specifically

Figure A1. Segmentation results obtained using two sets of seeds, respectively composed of one and fourA seeds (raws), with and
without regularization (columns) on 3D synthetic data.

Figure A2.Boxplots of the local dice coefficients obtained for the semi-automatic rFM segmentation (using the 10 distinct random
seeds sets) for the different regions of the 3D synthetic data, atM0, with regularization (γ>0) andwithout regularization (γ=0).
Red line corresponds tomedian dice value; top and bottomof the boxes are thefirst and third quartiles. ‘Whiskers’ above and below
the box show themaximumandminimumvalues, while crosses that are outside the box correspond to outliers or suspected ones.
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designed. The median dice for B is 0.92 and 0.93,
without and with regularization, respectively; and it is
0.96 and 0.97 for A. The variability observed on the
boxplot for region AxR is due to the required equi-
distance property of seeds to limit the FM propagation
in A, and that is not always fulfilled with the random
position of the seeds. It is however limited with
regularization. Additionally, region D is very well
segmented regardless of seeds placement with a
medianDSCof 0.999.

A.2. Results on clinical data
The contributions in this section are twofold. In
section A.2.1, we propose further results than the ones
detailed in (Risser et al 2018) to show that the seed-
based rFM segmentation of clinical data is more
robust, accurate and quicker with the proposed FM
regularization, compared to the complete manual
delineation of regions by clinical experts. In
section A.2.2, we evaluate the two registration
approaches considered for the longitudinal pipeline.
Details on the MR dataset of CLL patients considered
for the experiments are given in section 4.2.1.

A.2.1. Validation of whole-body rFM segmentation at
M0. As mentioned earlier, the semi-automatic rFM
segmentation was validated at M0 for the delineation
of 12 anatomical structures disseminated over the
whole-body MR. These regions present a large
anatomical variability and their anatomical contours
are not necessarily clearly visible and require
interactive segmentation.

Two experts with experience compared the time
dedicated to the segmentation of these 12 organs in 3
MR images using our semi-automatic rFM approach
and themanual segmentation editor of Iplan RT6.

The 3 rFM segmentations were performed after a
training phase of 30 segmentations using the described
algorithm and much more ones using Iplan RT. The
physician did not change the default values of γ and
thresh for the experiments.

Segmentation was performed until similar accur-
acy was obtained with both methods, which required
about 350 seeds for each patient. An average global
DSC of 0.90± 0. 03 and average local DSC of
0.67±0.1 were indeed measured when comparing
the rFM and the manual segmentations for the 3
patients. Mean segmentation time was 95 minutes
using iPlan for the 3 segmented images and 50minutes
using our rFM segmentation for the 9 segmented
images. The pre-computation of the regularization
map R required in average 50 seconds and each seed
propagation from 2 to 120 seconds, depending on the
number of seeds.

The liver (the biggest region of interest) counted
for 50 seeds in average. In comparison, a mean of 26
seeds was used for the spleen (the second biggest
region of interest). The parallel segmentation of these
two organs required in average 12 propagation runs.
For the axillary and inguinal lymph nodes, they
required less seeds (a mean of 22 and 12 seeds,
respectively) and the propagation was runned 6 and 4
times, thanks to their more contrasted and regular
shape. Regarding the iliac and cervical lymph nodes,
they were less contrasted and needed more seeds (19
and 11 seeds in average respectively) and also more
propagation runs to reach satisfactory segmentation (6
and 8 runs respectively). The propagation runs for the
mediastinal and retroperitoneal lymph nodes were in
average 3 and 5. The mean number of seeds reached 4
and 12 for those organs. Concerning the background
seeds, required to constrain regions contours, the
number of seeds were 368 in average.

Figure A3 illustrates three rFM segmentations of
the spleen organ performed on the same clinical exam
using different sets of seeds with variable amount and
position of seeds, positioned by clinical expert with
experience. Results show the low sensitivity of the rFM
segmentation to the number and position of seeds.
This gives a qualitative idea of the user-friendliness
and robustness of the rFM tool (i.e. low inter-user
variability) to obtain clinically-valid results.

Figure A3. Segmentation results of the spleen organ obtainedwith different sets of seedswith variable number and positions of seeds
(from left to right: 1, 3 and 4 organ seeds were used in this axial plan) using rFM segmentation. Seedswere positioned to obtain
coherent and good quality segmentation.

6
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A.2.2. Evaluation of longitudinal registration in LrFM
pipeline. In the LrFM pipeline, baseline seeds are
propagated on follow-up images using a displacement
field resulting from the two-step registration process
ofM0 onMi, and we consider here the exams acquired
after onemonth of treatment (i.e.M1).

We recall that the first step is a coarse global
alignment of exams while the second step performs
region-wise registration. We consider an affine
approach for the global alignment of body envelopes
between M0 and M1 and investigated two classical
strategies for the local step. We compared the elastic
regitration by BSpline with affine registration. We
evaluated the segmentation results considering trans-
ported seeds, according to these registration strategies,
before and after seeds selection. We compared these
results with a reference segmentation obtained with
the direct rFM segmentation onM1, in terms of global
and local dice scores.

We obtained equivalent segmentation results
using all seeds registered with BSpline or affine
techniques (equal global dice score, and similar local
dice of 0.58 and 0.56 respectively for Bspline and
affine registrations). Similarly, equivalent segmenta-
tion performances were obtained considering trans-
ported seeds after automatic selection (global dice of
0.82 and local dice of 0.57 for both strategies). In
addition, the number of seeds to verify after seeds
selection is lower for the affine approach (329)
compared to the BSpline one (352). This reduction is
significant to limit the time dedicated to manual
seeds correction.

Hence, we chose to consider an affine registration
for the region-wise step of our process since both
strategies achieved similar performances, however the
BSpline approach led to longer processing (more
computationally expensive processes) and analysis
time (higher number of seeds to verify).
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