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Abstract

In this work we propose a discretisation method for the Reissner–Mindlin plate bending problem
in primitive variables that supports general polygonal meshes and arbitrary order. The method is
inspired by a two-dimensional discrete de Rham complex for which key commutation properties
hold that enable the cancellation of the contribution to the error linked to the enforcement of the
Kirchhoff constraint. Denoting by : ≥ 0 the polynomial degree for the discrete spaces and by ℎ the
meshsize, we derive for the proposed method an error estimate in ℎ:+1 for general : , as well as a
locking-free error estimate for the lowest-order case : = 0. The theoretical results are validated on
a complete panel of numerical tests.
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1 Introduction
In this work we propose a novel discretisation method for the Reissner–Mindlin plate bending problem
in primitive variables that supports general polygonal meshes and arbitrary order. In its lowest-order
version, the method can be proved to behave robustly with respect to the plate thickness C. Its design is
based on the two-dimensional discrete de Rham (DDR) complex of [19], for which key commutation
properties hold that enable the cancellation of the contribution to the error linked to the enforcement of
the Kirchhoff constraint.

We consider in what follows an elastic plate of thickness C > 0 with reference configuration
Ω×

(
− C2 ,

C
2
)
, where Ω ⊂ R2 is a bounded connected polygonal domain with boundary mΩ. Without loss

of generality, it is assumed in what follows that Ω has diameter 1 and that C < 1. The Reissner–Mindlin
model describes the deformation of the plate in terms of the rotation ) : Ω→ R2 of the fibers initially
perpendicular to its midsurface and of the transverse displacement D : Ω → R. Introducing the shear
strain $ and denoting by 5 : Ω → R the transverse load, the strong formulation of the model with
clamped boundary conditions reads

$ + div(C grads )) = 0 in Ω, (1a)
− div $ = 5 in Ω, (1b)

$ =
^

C2
(grad D − )) in Ω, (1c)

) = 0, D = 0 on mΩ. (1d)
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Here, div is the row-wise divergence of tensors, grads is the symmetric part of the gradient applied to
vector-valued fields overΩ, and C is the fourth-order tensor defined by Ct = V0t+ V1(tr t)I for all second-
order tensor t, with I the identity tensor. The parameters of C are V0 ≔ �

12(1+a) and V1 ≔
�a

12(1−a2) , where
� > 0 and a ∈ [0, 12 ) are the Young modulus and Poisson ratio of the material, respectively. The shear
modulus ^ is given as ^ ≔ ^0�

2(1+a) , with shear correction factor ^0 usually taken equal to 56 for clamped
plates. Denoting by �10 (Ω) the space of real-valued functions that are square-integrable along with their
derivatives and that vanish on mΩ in the sense of traces, the standard weak formulation of (1) hinges on
the spaces � ≔ �10 (Ω)

2 for the rotation and * ≔ �10 (Ω) for the transverse displacement. Specifically,
assuming that 5 ∈ !2(Ω), it reads: Find () , D) ∈ � ×* such that

�(() , D), ((, E)) = ℓ(E) ∀((, E) ∈ � ×*, (2)

where the bilinear form � : [� ×*]2 → R and the linear form ℓ : * → R are such that, for all
(3, F), ((, E) ∈ � ×*,

�((3, F), ((, E)) ≔ 0(3, () + 1((3, F), ((, E)), ℓ(E) ≔
∫
Ω

5 E,

with bilinear forms 0 : � ×�→ R and 1 : [� ×*]2 → R such that

0(3, () ≔ V0

∫
Ω

grads 3 : grads ( + V1
∫
Ω

div 3 div (, (3)

1((3, F), ((, E)) ≔ ^

C2

∫
Ω

(3 − gradF) · (( − grad E). (4)

The role of the bilinear form 1 is to enforce the Kirchhoff constraint that, as C → 0, the rotation of the
normal fibers equals the gradient of the transverse displacement. Notice that the choice of considering
clamped boundary conditions is made for the sole purpose of simplifying the theoretical discussion:
other standard boundary conditions can be considered with straightforward modifications. A critical
point in the numerical approximation of problem (2) is robustness for small C. Methods for which error
estimates uniform in C can be established are commonly referred to as (shear) locking-free.

The finite element literature for the locking-free discretisation of problem (2) on standard meshes
dates back to the 1980s. In [15], the authors proposed a reformulation involving, in addition to the
primitive variables ) and D, the introduction of two additional variables corresponding to the irrotational
and solenoidal parts of the transverse shear strain. This work pointed out the relevance of establishing
a discrete version of the Helmholtz decomposition to obtain error estimates uniform in C. A method in
primitive variables was later proposed in [5], based on a nonconforming (Crouzeix–Raviart) piecewise
linear space for the displacement and a bubble-enriched continuous space for the rotation, and involving
a projection in the discrete version of the bilinear form 1. Recent developments of these ideas, including
the extension to higher orders and the use of the Taylor–Hood element pair for the underlying Stokes
problem, can be found in [25, 30] The idea of using reduced integration or projections in the enforcement
of the Kirchhoff constraint can be found in several other works; see, e.g., [6, 16, 24, 27, 29]. A different
approach, resorting to a mixed formulation where the shear strain appears as a separate unknown, is
considered in [2]. The key point is, in this case, the design of a suitable coupling bilinear form, for
which abstract conditions are provided. Recent results on mixed finite element schemes can be found in
[26]; see also the references therein. Mixed approaches inspired by fully nonconforming (discontinuous
Galerkin) methods have been proposed in [4], later leading to choices of finite element spaces that do
not require reduced integration [3]; see also [17, 28] for related developments. Discontinuous Galerkin
methods in their weakly over-penalised symmetric formulation are considered in [13, 14].

While the use of standard (e.g., simplicial conforming) meshes can be satisfactory for simple
geometries and problems, it may lack flexibility in more complex situations. The support of general
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meshes can greatly simplify the meshing process in the presence of small geometric features [1] and
pave the way for advanced techniques such as nonconforming adaptive mesh refinement (which does
not trade mesh quality for size) and mesh coarsening [7, 8, 22], that are crucial to exploit high-order
approximation in the presence of geometric singularities. Owing to the onset of polygonal elements
and/or hanging nodes, such strategies are inaccessible to standard conforming finite elements. These and
similar considerations have prompted, in the last few years, the development of locking-free discretisation
methods for problem (2) supporting general polygonal meshes. A first example is provided by the low-
order Mimetic Finite Difference method of [10], that hinges on transverse displacements defined at mesh
vertices, rotations defined at mesh vertices and edges, and uses shear forces at edges as intermediate
unknowns. The key ingredient to establish a first-order locking-free error estimate is once again a
discrete Helmholtz decomposition. A lowest-order Virtual Element method has also been recently
proposed in [11], inspired by the reformulation of problem (2) originally introduced in [9] in the context
of Isogeometric Analysis and using the transverse displacement and shear strain as unknowns.

The DDR method proposed in this work contains several key elements of novelty. First, to the best
of our knowledge, it is the first scheme to support general polygonal meshes and high-order. Second, it
does not resort to reduced integration or projections in the discrete counterpart of the bilinear form 1.
Third, it admits an inexpensive lowest-order version for which locking-free estimates can be rigorously
established. The starting point for the design of the scheme is the two-dimensional DDR complex of
[19, Remark 13]. This complex satisfies a crucial commutation property between the reconstructions of
the discrete displacement gradient, the continuous gradient, and the interpolators on the corresponding
spaces; see (10) below. When performing a convergence analysis in the spirit of the Third Strang Lemma
[18], one can leverage this commutation property to cancel the error resulting from the enforcement of
the Kirchhoff constraint through the discrete counterpart of the bilinear form 1. This remark suggests
the use of DDR counterparts of the �10 (Ω) and N0(rot;Ω) spaces for the displacement and the rotation,
respectively. In order to have sufficient information to reconstruct a full strain tensor, the discrete
N0(rot;Ω) space has to be enriched by the addition of normal components at edges. It turns out that
this enriched space can be embedded into the standard Hybrid High-Order (HHO) space for elasticity
originally introduced in [21] (see also [20, Chapter 7] and [12] for an application of HHO methods to
Kirchhoff–Love plates), so that the standard HHO construction can be exploited to design the discrete
counterpart of the bilinear form 0. With these ingredients, we establish in Theorem 4 an estimate in
ℎ:+1 (with ℎ denoting the meshsize and : the polynomial degree of the DDR sequence) for the natural
(coercivity) norm of the error. The right-hand side of this estimate does not explicitly depend on C, but
involves, as is unavoidable for high-order schemes, norms of higher order derivatives of the strain; such
norms are not expected to remain bounded as C → 0. Through the introduction of novel liftings of the
displacement and of the rotation, we show in Theorem 6 that an error estimate uniform in C (and thus
locking-free) can be established in the lowest order case : = 0.

The rest of the paper is organised as follows. In Section 2 we introduce the discrete setting. Section
3 contains the statement of the discrete problem preceeded by the required constructions. The analysis
of the method is carried out in Section 4, the main theorems being stated in Section 4.2 and their
proofs given in Sections 4.3 and 4.4. Finally, Section 5 contains a complete panel of numerical results,
introducing a novel analytical solution for the model and showing that the method displays, to a certain
extent, a locking-free behaviour also for : ≥ 1.

2 Setting
2.1 Mesh
For any measurable set . ⊂ R2, we denote by ℎ. ≔ sup{|x − y | : x, y ∈ . } its diameter and by |. | its
Hausdorff measure. We consider meshesMℎ ≔ Tℎ ∪ Eℎ ∪Vℎ, where: Tℎ is a finite collection of open
disjoint polygonal elements such that Ω =

⋃
) ∈Tℎ ) and ℎ = max) ∈Tℎ ℎ) > 0; Eℎ is the set collecting
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the open polygonal edges (line segments) of the elements; Vℎ is the set collecting the edge endpoints.
It is assumed, in what follows, that (Tℎ, Eℎ) matches the conditions in [20, Assumption 7.6]. The sets
collecting the mesh edges that lie on the boundary of a mesh element ) ∈ Tℎ and on mΩ are denoted by
E) and Eb

ℎ
, respectively. We also denote by E i

ℎ
= Eℎ \ Ebℎ the set of internal edges. The coordinates

vector of + ∈ Vℎ is denoted by x+ .
Each � ∈ Eℎ is endowed with an orientation determined by a fixed unit tangent vector t� ; we then

choose the unit normal n� such that ( t� , n� ) forms a right-hand system of coordinates. For ) ∈ Tℎ and
� ∈ E) , we set l) � = 1 if t� points in the clockwise direction of m) , and l) � = −1 otherwise. It can
be checked that n) � ≔ l) �n� is the outer unit normal to ) on � .

2.2 Polynomial spaces
For any . ∈ Tℎ ∪ Eℎ, we denote by Pℓ (. ) the space spanned by the restriction to . of two-variate
polynomials of total degree ≤ ℓ, with the convention that P−1(. ) = {0}. We additionally denote by
cℓP,. the corresponding !2-orthogonal projector. For all � ∈ Eℎ, the space Pℓ (�) is isomorphic to
univariate polynomials of total degree ≤ ℓ (see [20, Proposition 1.23]). In what follows, with a little
abuse of notation, both spaces are denoted by Pℓ (�). For . ∈ Tℎ ∪ Eℎ, the vector and tensor versions
of Pℓ (. ) are respectively denoted byPℓ (. ) ≔ Pℓ (. )2 and Pℓ (. ) ≔ Pℓ (. )2×2, and the corresponding
!2-orthogonal projectors 0ℓ

P,.
and 0ℓP,. are obtained applying cℓP,. component-wise. We additionally

denote by Pℓs (. ) the subspace of symmetric-valued functions in Pℓ (. ).
For all ) ∈ Tℎ, let x) ∈ ) be such that ) contains a ball centered at x) of radius dℎ) , where d is

the mesh regularity parameter in [20, Assumption 7.6]. For any integer ℓ ≥ 0, we define the following
relevant subspaces of Pℓ ()):

R
ℓ ()) ≔ rotPℓ+1()), R

c,ℓ ()) ≔ (x − x) )Pℓ−1()), (5)

where, for a vector y ∈ R2, y⊥ denotes the vector obtained rotating y by − c2 . We have

P
ℓ ()) = R

ℓ ()) ⊕ R
c,ℓ ()). (6)

Notice that the direct sums in the above expression are not !2-orthogonal in general. The !2-orthogonal
projectors on the spaces (5) are, with obvious notation, 0ℓ

R,)
, and 0c,ℓ

R,)
.

3 DDR scheme
The scheme for (2) is designed using spaces of unknowns from the DDR method [19] together with an
enrichment inspired by HHO methods [20].

3.1 Spaces and interpolators
Let a polynomial degree : ≥ 0 be fixed and set

�:
ℎ
≔

{
(
ℎ
=

(
((R,) , (

c
R,)
)) ∈Tℎ , ((� )� ∈Eℎ

)
: ((R,) , (

c
R,)
) ∈ R:−1()) ×Rc,: ()) for all ) ∈ Tℎ,

and (� ∈ P: (�) for all � ∈ Eℎ
}
,

*:
ℎ
≔

{
E
ℎ
=

(
(E) )) ∈Tℎ , EEℎ

)
: E) ∈ P:−1()) for all ) ∈ Tℎ and EEℎ ∈ P:+1c (Eℎ)

}
,

where P:+1c (Eℎ) is spanned by the functions over the mesh edge skeleton whose restriction to each edge
� ∈ Eℎ is a polynomial of total degree ≤ : + 1 and that are continuous at the edges endpoints. The
space�:

ℎ
is an enrichment of the two-dimensional DDR space ^:curl,ℎ with edge unknowns representing

a full vector-valued field as opposed to its tangent component only; the space *:
ℎ
coincides with the

two-dimensional DDR space ^:grad,ℎ.
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Smooth functions are interpolated as follows: For all ( ∈ �1(Ω)2

O:�,ℎ( ≔
(
(0:−1

R,)
( |) , 0

c,:
R,)

( |) )) ∈Tℎ , (0:P,�( |� )� ∈Eℎ
)
∈ �:

ℎ
, (7)

while, for all E ∈ �0(Ω),

�:*,ℎE ≔
(
(c:−1P,) E |) )) ∈Tℎ , EEℎ

)
∈ *:

ℎ
,

with c:−1P,� (EEℎ ) |� = c
:−1
P,�E |� for all � ∈ Eℎ and EEℎ (x+ ) = E(x+ ) for all + ∈ Vℎ.

For all ) ∈ Tℎ, we denote by�:) and*:
)
, respectively, the restrictions of�:

ℎ
and*:

ℎ
to ) , collecting

the polynomial components that lie inside ) and on its boundary. A similar convention is adopted for
the elements of these spaces and for the interpolators.

3.2 Discrete differential operators and potentials
We introduce discrete versions of the differential operators and of the rotation field reconstructed from
the unknowns in the discrete spaces.

3.2.1 Discrete gradient and transverse displacement reconstruction on*:
)

We follow here standard constructions from the DDRmethod. For all ) ∈ Tℎ, the polynomial transverse
displacement gradient M:

) : *
:
)
→ P

: ()) is such that, for all E
)
∈ *:

)
,∫

)

M:
) E) · ( = −

∫
)

E) div ( +
∑
� ∈E)

l) �

∫
�

EE) (( · n� ) ∀( ∈ P: ()). (8)

We additionally define the transverse displacement reconstruction %:+1
*,)
: *:

)
→ P:+1()) such that, for

all E
)
∈ *:

)
,∫

)

%:+1*,) E) div ( = −
∫
)

M:
) E) · ( +

∑
� ∈E)

l) �

∫
�

EE) (( · n� ) ∀( ∈ Rc,:+2()).

A global transverse displacement reconstruction is obtained setting, for all E
ℎ
∈ *:

ℎ
,

(%:+1*,ℎEℎ) |) ≔ %:+1*,) E) ∀) ∈ Tℎ .

Finally, we define a global discrete transverse displacement gradient M:
ℎ
: *:

ℎ
→ �:

ℎ
as follows: For all

E
ℎ
∈ *:

ℎ
,

M:
ℎ
E
ℎ
≔

(
(0:−1

R,)
M:
) E) , 0

c,:
R,)

M:
) E) )) ∈Tℎ , ((EEℎ )

′
|� t� )� ∈Eℎ

)
,

where the derivative along the edge is taken in the direction of t� .
To state the key commutation property used to prove the error estimates for the DDR scheme, we

need to introduce a modified version of the interpolator on �:
ℎ
, which is adjusted to the account for

the fact that, on the edges, the discrete gradient only encodes the tangential derivatives. The modified
interpolator is O♭,:�,ℎ : �

1(Ω)2 → �:
ℎ
such that, for all ( ∈ �1(Ω)2,

O♭,:�,ℎ( ≔
(
(0:−1

R,)
( |) , 0

c,:
R,)

( |) )) ∈Tℎ , (c:P,� (( |� · t� ) t� )� ∈Eℎ
)
. (9)

The commutation property is the following, obtained by considering only the face components in the
3D formula [19, Eq. (3.33)]:

M:
ℎ
(�:*,ℎE) = O♭,:�,ℎ (grad E) ∀E ∈ �1(Ω). (10)
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3.2.2 Discrete scalar rotor and rotation reconstruction on �:
)

Let a mesh element ) ∈ Tℎ be fixed. The local scalar rotor operator ':) : �
:
)
→ P: ()) is such that, for

all (
)
∈ �:

)
, ∫

)

':) ()
@ =

∫
)

(R,) · rot @ −
∑
� ∈E)

l) �

∫
�

((� · t� ) @ ∀@ ∈ P: ()). (11)

This operator enables the reconstruction of a discrete rotation V:�,) : �
:
)
→ P

: ()) defined such that,
for all (

)
∈ �:

)
and all (3, @) ∈ Rc,: ()) × P:+1()),∫

)

V:�,) ()
· (3 + rot @) =

∫
)

(c
R,)
· 3 +

∫
)

':) ()
@ +

∑
� ∈E)

l) �

∫
�

((� · t� ) @. (12)

The scalar rotor and rotation reconstructions correspond to the face curl and tangential face potential of
the DDR method [19, Eqs. (3.15) and (3.18)]. We note the following property [19, Proposition 15]:
For all (

)
∈ �:

)
,

0:−1
R,)
(V:�,) () ) = (R,) and 0c,:

R,)
(V:�,) () ) = (c

R,)
. (13)

In consequence, for all( ∈ �1())2, we have 0:−1
R,)

[
V:�,) (O

:
�,) ()

]
= 0:−1

R,)
( and 0c,:−1

R,)

[
V:�,) (O

:
�,) ()

]
=

0c,:−1
R,)

( (where we have used Rc,:−1()) ⊂ R
c,: ()), see (5), to write 0c,:−1

R,)
= 0c,:−1

R,)
0c,:
R,)

). Combining
these relations with (6) written for ℓ = : − 1 and [19, Lemma 4], we get

0:−1
P,)

[
V:�,) (O

:
�,) ()

]
= 0:−1

P,)
( ∀( ∈ �1())2. (14)

3.2.3 Discrete symmetric gradient, divergence and stabilisation on �:
)

The discretisation of the bilinear form (3) requires to define a discrete symmetric gradient (and diver-
gence) on the discrete space of rotations. Since vectors in this space have polynomial components inside
the elements and on the edges, a natural approach to define such discrete differential operators comes
from the Hybrid High-Order (HHO) machinery [20]. In what follows, we let a mesh element ) ∈ Tℎ be
fixed.

Gradients and divergence. Let us define the local (vector-valued) HHO space, extension of �:
)
in

which the element component is taken in the full polynomial space:

�:HHO,) =
{
w
)
= (w) , (w� )� ∈E) ) : w) ∈ P: ()) , w� ∈ P: (�) ∀� ∈ E)

}
. (15)

The discrete rotation enables the definition of the following embedding I:HHO,) : �
:
)
→ �:HHO,) :

I:HHO,) () ≔ (V
:
�,) ()

, ((� )� ∈E) ) ∀(
)
∈ �:

)
. (16)

Owing to (13), I:HHO,) is indeed a one-to-one mapping.
Using HHO techniques (see in particular [20, Section 7.2.5]) on I:HHO,) () , we can then design

the local discrete gradients (standard and symmetric) and divergence of a discrete rotation (
)
∈ �:

)
.

Specifically, this leads to defining the rotation gradient G:
)
: �:

)
→ P: ()) such that, for all (

)
∈ �:

)
,∫

)

G:) () : t = −
∫
)

V:�,) ()
· (div t) +

∑
� ∈E)

l) �

∫
�

(� · (tn� ) ∀t ∈ P: ()). (17)
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The local symmetric gradient G:s,) : �
:
)
→ P:s ()) and divergence �:

)
: �:

)
→ P: ()) are obtained

setting, for all (
)
∈ �:

)
,

G:s,) () ≔
1
2
[
G:) () + (G

:
) ()
)ᵀ

]
, �:) ()

≔ tr(G:) () ).

In (17), since div t ∈ P
:−1()) we can replace V:�,) ()

with 0:−1
P,)
(V:�,) () ) and thus, using (14) and

following the techniques of [20, Section 7.2.5], we obtain the commutation formula G:
)
(O:�,) () =

0:
P,)
(grad () for all ( ∈ �1())2; this shows that G:

)
(hence also G:s,) and �:

)
) has optimal approxi-

mation properties.
Stabilisation. As usual in numerical methods for polytopal meshes, the discrete counterpart of a
bilinear form such as (3) involves a consistent component (here, based on G:s,) ), and a stabilisation
term. In HHO methods, the local stabilisation bilinear forms are defined through the introduction of
a higher-order reconstruction. For elasticity problems involving the discrete symmetric gradient, and
accounting for the embedding (16), this leads to defining p:+1

)
: �

)
→ P

:+1()) by: For all (
)
∈ �

)

and all w ∈ P:+1()),∫
)

grads p
:+1
) (

)
: grads w = −

∫
)

V:�,) ()
· div(grads w) +

∑
� ∈E)

∫
�

(� · (grads w n) � ), (18a)∫
)

gradss p
:+1
) (

)
=
1
2

∑
� ∈E)

∫
�

((� ⊗ n) � − n) � ⊗ (� ) , and (18b)∫
)

p:+1) (
)
=

∫
)

V:�,) ()
if : ≥ 1,

∫
m)

p:+1) (
)
=

∑
� ∈E)

∫
�

(� if : = 0. (18c)

In a similar way as for G:
)

above, in (18a) the term V:�,) ()
can be replaced with 0:−1

P,)
(V:�,) () )

(because div(grads w) ∈ P:−1())). Hence, using (14) and the techniques of [20, Section 7.2.5] we see
that, for : ≥ 1,

p:+1) (O:�,) () = 0:+19,) ( ∀( ∈ �1())2, (19)

where 0:+19,) : �
1())2 → P

:+1()) is the strain projector of degree : +1, see [20, Section 7.2.2]. If : = 0,
the relation (19) is still verified with a modified version of the strain projector (still denoted by 019,) ),
inspired by the modified elliptic projector of [20, Section 5.1.2], whose closure equation involves the
average over m) instead of the average over ) ; this modified strain projector has the same approximation
properties as the standard strain projector.

The local stabilisation is then defined by:

s) (3) , () ) =
∑
� ∈E)

ℎ−1)

∫
�

(%:) � − %:) )3) · (%
:
) � − %:) )() ∀3

)
, (
)
∈ �:

)
,

where the difference operators are such that, for all (
)
∈ �:

)
and � ∈ E) ,

%:) ()
≔ V:�,)

[
O:�,) ( p

:+1
) (

)
− V:�,) ()

)
]
, %:) �()

≔ 0:
P,�
( p:+1) (

)
− (� ). (20)

Observing that V:�,) O
:
�,) : �

1())2 → P
: ()) is a projector (see [19, Eq. (3.21)]) and using (19), it can

be checked that %:) (O:�,) () = 0 and %:) � (O:�,) () = 0 for all � ∈ E) , whenever ( ∈ P
:+1()). As a

consequence, we have the following polynomial consistency property for s) :

s) (O:�,) (, /) ) = 0 ∀((, /
)
) ∈ P:+1()) ×�:

)
. (21)
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Remark 1 (Original HHO stabilisation). In the original HHO stabilisation, the !2-projector 0:
P,)

is
used instead of V:�,) O

:
�,) in the expression of %:) ; see (20). The reason for using V:�,) O

:
�,) here lies in

the need to satisfy, for the interpolator O:�,) on �:
)
, the polynomial consistency (21). Note also that, in

s) , the scaling factor ℎ−1) has been preferred over the original HHO scaling factor ℎ−1
�
, as it is proved in

[23] to lead to a more robust discretisation in presence of small edges.
Using the !2-boundedness of V:�,) O

:
�,) (stemming from the two-dimensional versions of [19,

Proposition 27 and Lemma 28]), the commutation property (19), and the polynomial consistency (21), it
is easy to reproduce, with our definitions ofG:s,) , p

:+1
)

and s) , the standard HHO analysis of [20, Section
7] and to obtain corresponding boundedness and consistency results (translated through I:HHO,) ).

Global operators. Global symmetric gradient, divergence, and higher-order reconstruction operators
are obtained setting, for all (

ℎ
∈ �:

ℎ
,

(G:s,ℎ(ℎ) |) ≔ G:s,) () , (�
:
ℎ(ℎ
) |) ≔ �:) ()

, and ( p:+1ℎ (
ℎ
) |) = p:+1) (

)
for all ) ∈ Tℎ.

Likewise, denoting by �:HHO,ℎ the global HHO space obtained patching together the local spaces
(15) by enforcing the single-valuedness of the edge components, we define the global embedding
I:HHO,ℎ : �

:
ℎ
→ �:HHO,ℎ by setting, for all (

ℎ
∈ �:

ℎ
, (I:HHO,ℎ(ℎ) |) ≔ I:HHO,) () for all ) ∈ Tℎ. We

also let sℎ : �:ℎ ×�
:
ℎ
→ R be the global stabilisation bilinear form such that

sℎ (3ℎ, (ℎ) ≔
∑
) ∈Tℎ

s) (3) , () ) ∀(3
ℎ
, (
ℎ
) ∈ �:

ℎ
×�:

ℎ
.

3.3 Discrete forms
Based on the reconstructions introduced in the previous section, we define the discrete counterparts
of the forms that appear in the weak formulation (2). Specifically, we let the bilinear form Aℎ :[
�:
ℎ
×*:

ℎ

]2 → R and the linear form ℓℎ : *:ℎ → R be such that, for all (3
ℎ
, F

ℎ
), ((

ℎ
, E
ℎ
) ∈ �:

ℎ
×*:

ℎ
,

Aℎ ((3ℎ, Fℎ), ((ℎ, Eℎ)) ≔ aℎ (3ℎ, (ℎ) + bℎ ((3ℎ, Fℎ), ((ℎ, Eℎ)), ℓℎ (Eℎ) ≔
∫
Ω

5 %:+1*,ℎEℎ, (22)

where the bilinear forms aℎ : �:ℎ ×�
:
ℎ
→ R and bℎ :

[
�:
ℎ
×*:

ℎ

]2 → R are such that

aℎ (3ℎ, (ℎ) ≔ V0

(∫
Ω

G:s,ℎ3ℎ : G:s,ℎ(ℎ + sℎ (3ℎ, (ℎ) + jℎ (3ℎ, (ℎ)
)
+ V1

∫
Ω

�:ℎ3ℎ �
:
ℎ(ℎ

,

bℎ ((3ℎ, Fℎ), ((ℎ, Eℎ)) ≔
^

C2
(3
ℎ
− M:

ℎ
F
ℎ
, (
ℎ
− M:

ℎ
E
ℎ
)�,ℎ .

(23)

Here, jℎ is an additional stabilisation term appearing only in the case : = 0 and which penalises the
jumps of higher-order reconstructions between elements:

jℎ (3ℎ, (ℎ) ≔


0 if : ≥ 1,∑
� ∈Eℎ

ℎ−1�

∫
�

[ p1ℎ3ℎ]� [ p
1
ℎ(ℎ
]� if : = 0,

where, for any internal edge � ∈ Ei
ℎ
, if )1, )2 are the two elements (in an arbitrary but fixed order) on

each side of � , we set [ p1
ℎ
3
ℎ
]� ≔ ( p1)13)1) |� − ( p

1
)2
3
)2
) |� while, for any boundary edge � ∈ Eb

ℎ
∩E)

8



for ) ∈ Tℎ, [ p1ℎ3ℎ]� ≔ ( p
1
)
3
)
) |� . We also introduced in (23) the DDR !2-product (·, ·)�,ℎ on �:

ℎ

assembled from the following local contributions: For all 3
)
, (
)
∈ �:

)
,

(3
)
, (
)
)�,) ≔

∫
)

V:�,) 3) · V
:
�,) ()

+ S�,) (3) , () )

with S�,) (3) , () ) ≔
∑
� ∈E)

ℎ�

∫
�

(V:�,) 3) − 3� ) · t� (V
:
�,) ()

− (� ) · t� .
(24)

Remark 2 (Normal components of edge polynomials). A simple inspection of (11), (12) and (24) shows
that the normal components of edge unknowns do not enter the definition of (·, ·)�,ℎ.
3.4 Discrete problem
Define the following subspaces of �:

ℎ
and*:

ℎ
incorporating the clamped boundary condition:

�:
ℎ,0 ≔

{
(
ℎ
∈ �:

ℎ
: (� = 0 for all � ∈ Ebℎ

}
, *:

ℎ,0 ≔
{
E
ℎ
∈ *:

ℎ
: (EEℎ ) |mΩ = 0

}
.

The discrete problem reads: Find ()
ℎ
, D
ℎ
) ∈ �:

ℎ,0 ×*
:
ℎ,0 such that

Aℎ (()ℎ, Dℎ), ((ℎ, Eℎ)) = ℓℎ (Eℎ) ∀((
ℎ
, E
ℎ
) ∈ �:

ℎ,0 ×*
:
ℎ,0. (25)

4 Analysis
Let

` ≔ min(^, V0). (26)

Throughout the rest of the paper, we use 0 . 1 as a shorthand notation for the inequality 0 ≤ �1
with multiplicative constant � that possibly depends on Ω, the mesh regularity, and on the polynomial
degree, but not on V0, V1, ^, `, C, or ℎ and, for local inequalities, on the mesh element or edge.

4.1 Discrete norm and stability
We define the discrete seminorm on �:

ℎ
×*:

ℎ
such that, for all ((

ℎ
, E
ℎ
) ∈ �:

ℎ
×*:

ℎ
,

‖((
ℎ
, E
ℎ
)‖�×*,ℎ ≔

[
V0

(
‖G:s,ℎ(ℎ ‖

2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ

)
+ V1‖�:ℎ(ℎ ‖

2
!2 (Ω)

+ ^
C2
‖(
ℎ
− M:

ℎ
E
ℎ
‖2�,ℎ + `

(
‖(
ℎ
‖2�,ℎ + ‖M

:
ℎ
E
ℎ
‖2�,ℎ

) ] 1
2

, (27)

where ‖·‖�,ℎ and |·|s,j,ℎ denote the seminorms respectively induced by (·, ·)�,ℎ and sℎ + jℎ on �:
ℎ
.

Using, respectively, the discrete Korn and Korn–Poincaré inequalities [20, Lemma 7.24 and Eq. (7.73)]
(see also [20, Lemma 7.42] in the case : = 0) and the fact that ℎ� ≤ 1 for the terms composing the
norm in the left-hand side (see (24) for the corresponding local contribution), we readily obtain

‖(
ℎ
‖�,ℎ .

(
‖G:s,ℎ(ℎ ‖

2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ

) 1
2 ∀(

ℎ
∈ �:ℎ,0. (28)

Together with the Poincaré inequality for M:
ℎ
in *:

ℎ,0, whose proof can be obtained using arguments
similar to [19, Theorem 31] (leveraging the Poincaré inequality with zero boundary condition stated in
[20, Lemma 2.15]), (28) proves that the energy seminorm ‖·‖�×*,ℎ is actually a norm on �:

ℎ,0 ×*
:
ℎ,0.

We can now establish the coercivity of Aℎ with respect to this norm.
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Lemma 3 (Coercivity). For all ((
ℎ
, E
ℎ
) ∈ �:

ℎ,0 ×*
:
ℎ,0, it holds

‖((
ℎ
, E
ℎ
)‖2�×*,ℎ . Aℎ (((ℎ, Eℎ), ((ℎ, Eℎ)). (29)

Proof. By the definitions (22) of Aℎ and (23) of aℎ and bℎ, we have

V0

(
‖G:s,ℎ(ℎ ‖

2
!2 (Ω)2×2+|(ℎ |

2
s,j,ℎ

)
+ V1‖�:ℎ(ℎ ‖

2
!2 (Ω)+

^

C2
‖(
ℎ
−M:

ℎ
E
ℎ
‖2�,ℎ = Aℎ ((3ℎ, Eℎ), (3ℎ, Eℎ)). (30)

We next write, using a triangle inequality,

‖M:
ℎ
E
ℎ
‖2�,ℎ + ‖(ℎ ‖

2
�,ℎ ≤ 2‖(ℎ − M

:
ℎ
E
ℎ
‖2�,ℎ + 3‖(ℎ ‖

2
�,ℎ

≤ 2^−1 ^
C2
‖(
ℎ
− M:

ℎ
E
ℎ
‖2�,ℎ + 3V

−1
0 V0

(
‖G:s,ℎ(ℎ ‖

2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ

)
. `−1Aℎ ((3ℎ, Eℎ), (3ℎ, Eℎ)),

(31)

where we have used the fact that C < 1 along with the discrete Korn inequality (28) to pass to the second
line and (30) together with the definition (26) of ` to conclude. The proof is completed by combining
(30) and (31) with the definition of ‖·‖�×*,ℎ. �

4.2 Error estimates
The regularity assumptions in the error estimates are expressed in terms of the broken Sobolev spaces

�B (Tℎ) ≔
{
E ∈ !2(Ω) : E |) ∈ �B ()) for all ) ∈ Tℎ

}
.

The first error estimate is for an arbitrary polynomial degree : .

Theorem 4 (Error estimate for arbitrary :). Denote by ((, D) ∈ � × * and ((
ℎ
, D
ℎ
) ∈ �:

ℎ,0 × *
:
ℎ,0

the solutions to problems (2) and (25), respectively. We assume the additional regularity D ∈ �1(Ω) ∩
�:+2(Tℎ) for the displacement and ) ∈ �1(Ω)2 ∩ �:+2(Tℎ)2 for the rotation. Then, it holds

‖()
ℎ
− O:�,ℎ) , Dℎ − �

:
*,ℎD)‖�×*,ℎ . ℎ

:+1
(
V
− 12
0 (V0 + V1) |) |� :+2 (Tℎ)2 + `

− 12 |$ |� :+1 (Tℎ)2
)
. (32)

Remark 5 (Regularity of the shear strain $). Under the regularity assumptions on D and ) in the theorem,
the shear strain defined by (1c) satisfies $ ∈ �1(Ω)2 ∩ �:+1(Tℎ)2.

Proof. See Section 4.3. �

The bound (32) shows that the DDR scheme achieves as expected a high-order of accuracy, when
the solution is smooth enough and C is not too small. When C → 0 the higher derivatives of the shear
strain $ are known to explode; typically, |$ |� :+1 (Tℎ)2 grows as C

−:−1, as explained in [5, Theorem 2.1
and following remarks]. Thus, even though C does not explicitly appear in the right-hand side of (32),
the dependency of this right-hand side on higher derivatives of the solution means that this estimate is
not locking-free. Such a dependency is unavoidable for high-order schemes (see, e.g., [4] in the case of
continuous/discontinuous Galerkin schemes). However, for : = 0, one could expect a better estimate
than (32) in which |$ |� 1 (Tℎ) is multiplied by C as in [4, 11, 17, 28]; this ensures that the method is
locking-free at least if Ω is convex since, on such domains, C |$ |� 1 (Ω) remains bounded as C → 0. Such
an error estimate is stated in the next theorem. Note that, contrary to most analyses in the aforementioned
references and others (a notable exception being [11]), the proof of the following estimate does not use
a Helmoltz decomposition of the shear strain.
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Theorem 6 (Locking-free error estimate for : = 0). Assume the hypotheses of Theorem 4, and that
: = 0. Then, it holds

‖()
ℎ
− O0�,ℎ) , Dℎ − �

0
*,ℎD)‖�×*,ℎ

. ℎ

(
V
− 12
0 (V0 + V1) |) |� 2 (Tℎ)2 + ^

− 12 C |$ |� 1 (Tℎ)2 + V
− 12
0 ‖$‖!2 (Ω)2 + `

− 12 ‖ 5 ‖!2 (Ω)
)
. (33)

Proof. See Section 4.4. �

Remark 7 (Locking-free property). If Ω is convex, all terms in the right-hand side of (33) are bounded
independently of C [5, Theorem 2.1]. The techniques used to prove (33) can be extended (at the price
of some technicalities) to arbitrary values of : to replace, in the right-hand side of (32), the term
|$ |� :+1 (Tℎ)2 with C |$ |� :+1 (Tℎ)2 + |$ |� : (Tℎ)2 + | 5 |� : (Tℎ) in the spirit of [4, Remark 4.3]. However, since
a bound independent of C for the quantity C |$ |� :+1 (Tℎ)2 + |$ |� : (Tℎ)2 + | 5 |� : (Tℎ) can only be established
for : = 0, this would not yield complete robustness of the estimate (32) for : ≥ 1. For this reason, and
also to make the exposition less technical, we have decided to state two separate estimates.

4.3 Proof of the arbitrary-order error estimate
Proof of Theorem 4. 1. Basic error estimate. Combining the coercivity (29) ofAℎ with the Third Strang
Lemma [18, Theorem 10], we obtain the following basic error estimate:

‖()
ℎ
− O:�,ℎ) , Dℎ − �

:
*,ℎD)‖�×*,ℎ . sup

((
ℎ
,E
ℎ
) ∈�:

ℎ,0×*
:
ℎ,0\{(0,0) }

Eℎ (() , D); ((
ℎ
, E
ℎ
))

‖((
ℎ
, E
ℎ
)‖�×*,ℎ

, (34)

where the consistency error linear form Eℎ (() , D); ·) is such that, for all ((
ℎ
, E
ℎ
) ∈ �:

ℎ,0 ×*
:
ℎ,0,

Eℎ (() , D); ((
ℎ
, E
ℎ
)) ≔ ℓℎ (Eℎ) − Aℎ ((O

:
�,ℎ) , �

:
*,ℎD), ((ℎ, Eℎ)). (35)

2. Reformulation of the consistency error. To prove (32), we need to estimate the dual norm of the
consistency error, which corresponds to the right-hand side of (34). We first recast bℎ. Recall the
definition (9) of the modified interpolator O♭,:�,ℎ and notice that, by Remark 2, it holds

(O:�,ℎ(, 3ℎ)�,ℎ = (O
♭,:

�,ℎ(, 3ℎ)�,ℎ ∀((, 3
ℎ
) ∈ �1(Ω)2 ×�:

ℎ
. (36)

We can then write

bℎ ((O:�,ℎ) , �
:
*,ℎD), ((ℎ, Eℎ)) =

^

C2
(O♭,:�,ℎ) − M

:
ℎ
(�:*,ℎD), (ℎ − M

:
ℎ
E
ℎ
)�,ℎ

=
^

C2
(O♭,:�,ℎ () − grad D), (

ℎ
− M:

ℎ
E
ℎ
)�,ℎ

= (O:�,ℎ$,M
:
ℎ
E
ℎ
− (

ℎ
)�,ℎ,

where we have used the definition (23) of bℎ along with (36) in the first line, the key commutation
property (10) to pass to the second line, and the definition (1c) of the shear strain $ followed by (36) to
conclude. Expanding the inner product (·, ·)�,ℎ according to its definition from the local products (24)
and using the relation V:�,)M

:
)
= M:

) (see [19, Proposition 15]), we infer

bℎ ((O:�,ℎ) , �
:
*,ℎD), ((ℎ, Eℎ)) =

∑
) ∈Tℎ

∫
)

$ · (M:
) E) − V:�,) ()

) − T (37)
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with

T ≔
∑
) ∈Tℎ

∫
)

[$ − V:�,) (O
:
�,) $)] · V

:
�,) (M

:
)
E
)
− (

)
) +

∑
) ∈Tℎ

S�,) (O:�,) $,M
:
)
E
)
− (

)
).

Accounting for the definition of the material tensor C, we also have, for all 3
ℎ
, (
ℎ
∈ �:

ℎ
,

aℎ (3ℎ, (ℎ) =
∫
Ω

CG:s,ℎ3ℎ : G:s,ℎ(ℎ + V0sℎ (3ℎ, (ℎ) + V0jℎ (3ℎ, (ℎ). (38)

Recalling the definitions (22) of Aℎ and ℓℎ, the relations $ = −div(C grads )) and 5 = − div $ (see
(1a) and (1b)) along with (37) and (38) shows that the consistency error (35) can be recast as

Eℎ (() , D); ((
ℎ
, E
ℎ
)) = Egrad,ℎ ($; Eℎ) + T + Egrads,ℎ (C grads ); (ℎ), (39)

where the adjoint consistency errors for the gradient on *:
ℎ
and for the symmetric gradient on �:

ℎ
are

defined as

Egrad,ℎ ($; Eℎ) ≔ −
∫
Ω

div $ %:+1*,ℎEℎ −
∑
) ∈Tℎ

∫
)

$ · M:
) E) ,

Egrads,ℎ (C grads ); (ℎ) ≔ −
∑
) ∈Tℎ

∫
)

div(C grads )) · V:�,) () −
∫
Ω

CG:s,ℎ (O
:
�,ℎ)) : G:s,ℎ(ℎ

− V0sℎ (O:�,ℎ) , (ℎ) − V0jℎ (O
:
�,ℎ) , (ℎ

).

3. Bound on the consistency error. To deal with Egrads,ℎ, we use the estimate in [20, Lemma 7.27] (and
[20, Lemma 7.43] if : = 0) which, in the present context, yields

|Egrads,ℎ (C grads ); (ℎ) | . ℎ
:+1(V0 + V1) |) |� :+2 (Tℎ)2

(
‖G:s,ℎ(ℎ ‖

2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ

) 1
2

. ℎ:+1V
− 12
0 (V0 + V1) |) |� :+2 (Tℎ)2 ‖((ℎ, Eℎ)‖�×*,ℎ, (40)

where the conclusion follows from the definition (27) of the discrete norm.
The term T is estimated using Cauchy–Schwarz inequalities:

|T| ≤
∑
) ∈Tℎ

‖$ − V:�,) (O
:
�,) $)‖!2 () )2 ‖V

:
�,) (M

:
)
E
)
− (

)
)‖!2 () )2

+
∑
) ∈Tℎ

S�,) (O:�,) $, O
:
�,) $)

1
2 S�,) (M:

)
E
)
− (

)
,M:

)
E
)
− (

)
) 12

.
∑
) ∈Tℎ

ℎ:+1 |$ |� :+1 () )2
(
‖V:�,) (M

:
)
E
)
− (

)
)‖!2 () )2 + S�,) (M:

)
E
)
− (

)
,M:

)
E
)
− (

)
) 12

)
. ℎ:+1 |$ |� :+1 (Tℎ)2 ‖M

:
ℎ
E
ℎ
− (

ℎ
‖�,ℎ,

where we have used, in the second line, the consistency properties of V:�,) O
:
�,) and S�,) (two-

dimensional versions of [19, Eqs. (6.3) and (6.9)], see Remark 8 below), and the conclusion follows
fromCauchy–Schwarz inequalities on the sum and the definition of the norm ‖·‖�,ℎ. Using the definition
(27) of the discrete norm, we infer

|T| . ℎ:+1^− 12 C |$ |� :+1 (Tℎ)2 ‖((ℎ, Eℎ)‖�×*,ℎ . (41)
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The estimate of Egrad,ℎ follows proceeding as in the proof of [19, Theorem 39], with straightforward
modifications to account for the different boundary conditions, fewer (and simpler) terms to track, and
accounting for Remark 8:

|Egrad,ℎ ($; Eℎ) | . ℎ
:+1 |$ |� :+1 (Tℎ)2 ‖M

:
ℎ
E
ℎ
‖�,ℎ ≤ ℎ:+1`−

1
2 |$ |� :+1 (Tℎ)2 ‖((ℎ, Eℎ)‖�×*,ℎ . (42)

4. Conclusion. Plugging the estimates (40), (41) and (42) into (39), we arrive at

|Eℎ (() , D); ((
ℎ
, E
ℎ
)) |

. ℎ:+1
(
V
− 12
0 (V0 + V1) |) |� :+2 (Tℎ)2 + ^

− 12 C |$ |� :+1 (Tℎ)2 + `
− 12 |$ |� :+1 (Tℎ)2

)
‖((

ℎ
, E
ℎ
)‖�×*,ℎ .

The estimate (32) follows using this bound in (34) and recalling that ` ≤ ^ and C ≤ 1. �

Remark 8 (Norms of $ in the estimates). In [19], the estimates mentioned above (Theorem 39 and
Section 6.1) involve, in the case : = 0, weighted �2-seminorms of $. This is because these estimates
are stated in three dimensions, in which interpolating a function on �:

ℎ
requires a higher minimal

regularity (to ensure traces along the edges are well-defined). In two dimensions, the local interpolator
obtained restricting (7) to ) is well-defined on �1())2, and the seminorm in this space is sufficient to
state the consistency estimates for : = 0.

4.4 Proof of the low-order locking-free error estimate
The proof of Theorem 6 relies on liftings of elements in *0

)
and �0

)
, for each ) ∈ Tℎ. The assumption

on the mesh yields a conforming simplicial subdivision S) of ) that is shape regular (with the same
regularity parameter as in the mesh regularity assumption); actually, by [20, Assumption 7.6] each
) ∈ Tℎ is star-shaped with respect to every point in a ball of radius rℎ) , where r is the mesh regularity
parameter, so S) can be constructed by adding only one vertex (the center of that ball) in ) and creating
the triangles between this vertex and the edges of ) . The proof given here, however, applies also to
elements that are possibly not star-shaped.

The coordinate x+ of any vertex + of S) can be written as a convex combination of the coordinates
of the verticesV) of ) :

x+ =
∑

, ∈V)
_+ ,, x, , with _+ ,, ≥ 0 and

∑
, ∈V)

_+ ,, = 1 (43)

(this includes the vertices+ ∈ V) , inwhich casewe choose_+ ,+ = 1 and_+ ,, = 0 if, ≠ +). Denoting
by P1c (S) ) the space of �1())-conforming piecewise P1 functions on S) , for all I) = IE) ∈ *

0
)
we

define Ĩ) ∈ P1c (S) ) such that

Ĩ) (x+ ) =
∑

, ∈V)
_+ ,, IE) (x, ).

This construction is linearly exact, that is��0
*,)

q) = q) ∀q) ∈ P1()). (44)

The next lemma, whose proof is postponed to the end of the section, states useful properties of the lifting
*0
)
3 I

)
↦→ Ĩ) ∈ P1c (S) ).
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Lemma 9 (Properties of the lifting on*0
)
). The following properties hold: For all I

)
∈ *0

)
,

00
P,)
(grad Ĩ) ) = M0) I) , (45)

‖ grad Ĩ) ‖!2 () )2 . ‖M0) I) ‖�,) , (46)
‖ Ĩ) − %1*,) I) ‖!2 () ) . ℎ) ‖M

0
)
I
)
‖�,) , (47)

where ‖·‖�,) is the local seminorm induced by the product (24) on �0
)
. Moreover, if I

ℎ
∈ *0

ℎ,0 and Ĩℎ
is defined such that ( Ĩℎ) |) = Ĩ) for all ) ∈ Tℎ, then Ĩℎ ∈ �10 (Ω).

We now define the lifting on �0
)
. For any (

)
= ((� )� ∈E) ∈ �0) , let (♭) = (((� · t� ) t� )� ∈E) be

the vector comprising only the tangential components to the edges. Since (·, ·)�,) is an inner product
when only these components are considered, we can write a unique decomposition

(♭
)
= M0

)
F
)
+ +

)
with F

)
∈ *0

)
and +

)
⊥ M0

)
*0
)
,

the orthogonality being understood for (·, ·)�,) . We then set

(̃) ≔ grad F̃) + V0�,) +) .

The proof of the properties of the lifting �0
)
3 (

)
↦→ (̃) ∈ !2())2 stated in the following lemma is

postponed to the end of the section.

Lemma 10 (Properties of the lifting on �0
)
). The following properties hold: For all (

)
∈ �0

)
,

00
P,)

(̃) = V0�,) ()
, (48)

‖ grad Ẽ) − (̃) ‖!2 () )2 . ‖M0) E) − () ‖�,) ∀E
)
∈ *0

)
. (49)

Moreover, for all (
ℎ
∈ �0

ℎ,0,( ∑
) ∈Tℎ

‖(̃) − V0�,) ()
‖2
!2 () )2

) 1
2

. ℎ
(
‖G0s,ℎ(ℎ ‖

2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ

) 1
2
. (50)

We are now ready to prove Theorem 6.

Proof of Theorem 6. Given the basic error estimate (34), we only have to find a proper upper bound of
the consistency error. We consider the first term in the expression (37) of bℎ ((O:�,ℎ) , �

:
*,ℎ

D), ((
ℎ
, E
ℎ
)).

Owing to (45) and (48) we have∫
)

$ · (M0) E) − V0�,) ()
) =

∫
)

$ · 00
P,)
(grad Ẽ) − (̃) ) =

∫
)

00
P,)

$ · (grad Ẽ) − (̃) )

=

∫
)

$ · (grad Ẽ) − (̃) ) +
∫
)

(00
P,)

$ − $) · (grad Ẽ) − (̃) )︸                                      ︷︷                                      ︸
≕T) ,0

=

∫
)

$ · grad Ẽ) −
∫
)

$ · V0�,) () +
∫
)

$ · (V0�,) () − (̃) )︸                       ︷︷                       ︸
≕T) ,1

+T) ,0 .
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Summing over ) ∈ Tℎ, using the fact that Ẽℎ ∈ �10 (Ω) (see Lemma 9) to perform an integration by
parts, recalling that 5 = − div $ by (1b), and setting T★ ≔

∑
) ∈Tℎ T) ,★ for ★ ∈ {0, 1}, we infer∑

) ∈Tℎ

∫
)

$ · (M0) E) − V0�,) ()
) =

∫
Ω

5 Ẽℎ −
∑
) ∈Tℎ

∫
)

$ · V0�,) () + T0 + T1

=

∫
Ω

5 %1*,ℎEℎ −
∑
) ∈Tℎ

∫
)

$ · V0�,) () +
∫
Ω

5 (Ẽℎ − %1*,ℎEℎ)︸                   ︷︷                   ︸
≕T2

+T0 + T1 .

We plug this relation into the expression (37) of bℎ ((O:�,ℎ) , �
:
*,ℎ

D), ((
ℎ
, E
ℎ
)) and recall (38) and the

definitions (22) of Aℎ and ℓℎ to re-write consistency error (35) as

Eℎ (() , D); ((
ℎ
, E
ℎ
)) = Egrads,ℎ (C grads ); (ℎ) − T0 − T1 − T2 + T. (51)

We now estimate T0, T1 and T2 . Using the approximation properties of 00
P,)

together with Cauchy–
Schwarz inequalities and (49), we have

|T0 | . ℎ|$ |� 1 (Tℎ)2 ‖M
:
ℎ
E
ℎ
− (

ℎ
‖�,ℎ . ℎ|$ |� 1 (Tℎ)2^

− 12 C‖((
ℎ
, E
ℎ
)‖�×*,ℎ, (52)

where we have used the definition (27) of ‖·‖�×*,ℎ to conclude. For T1, we use again Cauchy–Schwarz
inequalities and the estimate (50), together with the definition of the norm on �0

ℎ,0 ×*
0
ℎ,0, to write

|T1 | . ‖$‖!2 (Ω)2ℎV
− 12
0 ‖((ℎ, Eℎ)‖�×*,ℎ . (53)

Finally, for T2 , Cauchy–Schwarz inequalities followed by the estimate (47) yield

|T2 | . ‖ 5 ‖!2 (Ω)ℎ‖M0ℎEℎ ‖�,ℎ . ‖ 5 ‖!2 (Ω)ℎ`
− 12 ‖((

ℎ
, E
ℎ
)‖�×*,ℎ . (54)

Plugging (52)–(54) and the estimates (41) on T and (40) on Egrads,ℎ (C grads ); (ℎ) into (51), we infer

|Eℎ (() , D); ((
ℎ
, E
ℎ
)) |

. ℎ

(
^−

1
2 C |$ |� 1 (Tℎ)2 + V

− 12
0 ‖$‖!2 (Ω)2 + `

− 12 ‖ 5 ‖!2 (Ω) + V
− 12
0 (V0 + V1) |) |� 2 (Tℎ)2

)
‖((

ℎ
, E
ℎ
)‖�×*,ℎ .

Plugging this estimate into (34) concludes the proof. �

To conclude this section, we provide the proofs of the properties of the liftings.

Proof of Lemma 9. 1. Proof of (45). Let I
)
∈ *0

)
. For all ( ∈ P0()), an integration by parts yields∫

)

grad Ĩ) · ( =
∑
� ∈E)

∫
�

Ĩ) (( · n) � ) =
∑
� ∈E)

∫
�

IE) (( · n) � ) =
∫
)

M0) I) · (,

where the second equality comes from the definition of Ĩ) which ensures that ( Ĩ) ) |� = (IE) ) |� for
all � ∈ E) (both functions are linear on � and match at the edge’s vertices), and the last equality is
obtained applying the definition (8) of M0) . This proves (45).

2. Proof of (46). For any two vertices +,+★ of S) we have by construction

Ĩ) (x+ ) − Ĩ) (x+★) =
∑

, ,/ ∈V)
_+ ,, _+★,/

(
IE) (x, ) − IE) (x/ )

)
.
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Integrating the derivative (oriented by each tangent t� ) of IE) on m) between , and / and using the
two-dimensional version of the equivalence stated in [19, Eq. (4.24)] between ‖·‖�,) and the component
!2-norm, we have

|IE) (x, ) − IE) (x/ ) | ≤ ‖I′E) ‖!1 (m) ) ≤ |m) |
1
2 ‖I′E) ‖!2 (m) ) . ‖M

0
)
I
)
‖�,) .

Since card(V) ) is uniformly bounded by themesh regularity parameter and (_+ ,, ), ∈V) and (_+★,/ )/ ∈V)
are coefficients of convex combinations, we infer from the above relations that

| Ĩ) (x+ ) − Ĩ) (x+★) | . ‖M0) I) ‖�,) .

Since any edge 4 of S) has a length comparable to ℎ) , this shows that | grad Ĩ) · t4 | . ℎ−1) ‖M
0
)
I
)
‖�,)

where t4 is any unit tangent to 4. Hence, on any triangle g ∈ S) ,

‖ grad Ĩ) ‖!2 (g)2 = |g |
1
2 | (grad Ĩ) ) |g | ≤ |) |

1
2 | (grad Ĩ) ) |g | . |) |

1
2 ℎ−1) ‖M0) I) ‖�,) .

Using |) | 12 . ℎ) , squaring, summing over g ∈ S) and taking the square root concludes the proof of
(46).

3. Proof of (47). We start from the following Poincaré inequality with trace:

‖F) ‖2!2 () ) . ℎ
2
) ‖ gradF) ‖2!2 () )2 +

∑
� ∈E)

ℎ� ‖F) ‖2!2 (�) ∀F) ∈ P1c (S) ). (55)

To prove this estimate, consider a triangle g ∈ S) with an edge 4 ⊂ m) . Taking x ∈ g and y ∈ 4 we
have |F) (x) | ≤ ℎ) | (gradF) ) |g | + |F) (y) |; integrating over y ∈ 4, squaring, integrating over x ∈ g
and using |g |/ℎ4 . ℎ4 (by shape regularity) leads to

‖F) ‖2!2 (g) . ℎ
2
) ‖ gradF) ‖2!2 (g)2 + ℎ4‖F) ‖

2
!2 (4) . (56)

If all triangles in S) have an edge 4 ⊂ m) , summing (56) over g ∈ S) concludes the proof of (55);
otherwise, a discrete trace inequality and (56) give a bound on the trace of F) on the other edges of g,
and the process can be iterated on the triangles in S) that touch g but do not have an edge on m) .

Applying (55) to F) = Ĩ) − %1*,) I) , using a triangle inequality, ℎ� ≤ ℎ) , the estimate (46), and
the fact that ( Ĩ) ) |� = (IE) ) |� for all � ∈ E) , we obtain

‖ Ĩ) −%1*,) I) ‖
2
!2 () ) . ℎ

2
)

(
‖M0

)
I
)
‖2�,) + ‖ grad %1*,) I) ‖

2
!2 () )2

)
+ℎ2)

∑
� ∈E)

ℎ−1� ‖IE) −%1*,) I) ‖
2
!2 (�) .

The proof of (47) is completed by invoking [19, Lemma 35 and Eq. (4.24)] to write

‖ grad %1*,) I) ‖
2
!2 () )2 +

∑
� ∈E)

ℎ−1� ‖IE) − %1*,) I) ‖
2
!2 (�) . ‖M

0
)
I
)
‖2�,) . �

Proof of Lemma 10. 1. Proof of (48). By (45), 00
P,)

(̃) = M0)F) + V
0
�,) +) = V0�,) (M

0
)
F
)
+ +

)
),

where the last equality follows from the relation V0�,)M
0
)
= M0) , see [19, Eq. (3.22)]. This proves that

00
P,)

(̃) = V0�,) (
♭

)
. Since V0�,) depends only on the tangential components of (

)
(see (11) and (12)),

this concludes the proof of (48).

2. Proof of (49). We use the definition of (̃) to write grad Ẽ) − (̃) = grad(Ẽ) − F̃) ) − V0�,) +) and
thus, by triangle inequality,

‖ grad Ẽ) − (̃) ‖2!2 () )2 ≤ 2‖ grad(Ẽ) − F̃) )‖2!2 () )2 + 2‖V
0
�,) +) ‖

2
!2 () )2

. ‖M0
)
(E
)
− F

)
)‖2�,) + ‖+) ‖

2
�,)

= ‖M0
)
(E
)
− F

)
) − +

)
‖2�,) ,
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where the second line follows from (46) applied to I
)
= E

)
− F

)
and the estimate ‖V0�,) +) ‖!2 () )2 .

‖+
)
‖�,) (see [19, Proposition 27]), while the conclusion is obtained using the orthogonality for the

(·, ·)�,) product of +
)
and M0

)
(E
)
− F

)
). This gives

‖ grad Ẽ) − (̃) ‖!2 () )2 . ‖M0) E) − (
♭

)
‖�,)

and the proof of (49) is complete since ‖·‖�,) depends only on tangential components of vectors in�0
)
.

3. Proof of (50). Let q) (x) ≔ V0�,) ()
· (x − x) ) ∈ P1()). By (44), we have V0�,) ()

= grad q) =

grad ��0
*,)

q) , and thus (49) with E) = �
0
*,)

q) yields

‖V0�,) () − (̃) ‖
2
!2 () )2 . ‖M

0
)
(�0*,) q) ) − () ‖

2
�,)

.
∑
� ∈E)

ℎ� ‖V0�,) () · t� − (� · t� ‖
2
!2 (�) . ℎ

2
)

∑
� ∈E)

ℎ−1� ‖V0�,) () − (� ‖
2
!2 (�) ,

where the second inequality follows from the two-dimensional version of the norm equivalence [19,
Eq. (4.24)] together with the local version of (10) which gives M0

)
(�0
*,)

q) ) = O♭,0�,) (grad q) ) =
O♭,0�,) (V

0
�,) ()

). The estimate (50) follows writing ℎ) ≤ ℎ, summing over ) ∈ Tℎ, and invoking [20,
Eq. (7.103) and (7.109)] to see that∑

) ∈Tℎ

∑
� ∈E)

ℎ−1� ‖V0�,) () − (� ‖
2
!2 (�)2 . ‖G

0
s,ℎ(ℎ

‖2
!2 (Ω)2×2 + |(ℎ |

2
s,j,ℎ . �

5 Numerical results
We illustrate the practical behaviour of the DDR scheme (25) on two different analytical solutions and
three families of meshes of Ω = (0, 1)2: (mostly) hexagonal meshes, triangular meshes, and locally
refined meshes (with hanging nodes); Figure 1 shows a representative member of each family of meshes.
The DDR tools and the scheme (for both clamped and simply supported boundary conditions) have been
implemented in the HArDCore2DC++ framework (see https://github.com/jdroniou/HArDCore),
which is based on linear algebra facilities from the Eigen3 library (see http://eigen.tuxfamily.
org). The resolution of the global sparse linear systems uses the Intel MKL PARDISO library (see
https://software.intel.com/en-us/mkl). We focus on the ℎ-convergence for the degrees : ∈
{0, 1, 2, 3}, check the convergence rates, and discuss the robustness of the scheme with respect to the
thickness C of the plate. In all the tests, the Young modulus is taken as � = 1, while the Poisson ratio is
a = 0.3.

The error is computed as the (relative) ‖·‖�×*,ℎ-norm of the difference between the approximate
solution and the interpolate of the exact solution, that is:

�ℎ ≔
‖()

ℎ
− O:�,ℎ) , Dℎ − �

:
*,ℎ

D)‖�×*,ℎ
‖(O:�,ℎ) , �

:
*,ℎ

D)‖�×*,ℎ
.

17

https://github.com/jdroniou/HArDCore
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://software.intel.com/en-us/mkl


(a) Hexagonal mesh (b) Triangular mesh (c) Locally refined mesh

Figure 1: Members of mesh families used in numerical tests.

5.1 Polynomial solution
The first series of tests is run with source term corresponding to the following exact polynomial solution
introduced in [17]:

D(x) = 1
3
G31 (1 − G

3
1)G
3
2 (1 − G2)

3

− 2C2

5(1 − a)
[
G32 (G2 − 1)

3G1(G1 − 1) (5G21 − 5G1 + 1) + G
3
1 (G1 − 1)

3G2(G2 − 1) (5G22 − 5G2 + 1)
]
,

) (x) =
[
G32 (G2 − 1)

3G21 (G1 − 1)
2(2G1 − 1)

G31 (G1 − 1)
3G22 (G2 − 1)

2(3G2 − 1)

]
.

The results are presented in Figure 2. We notice that, for all considered polynomial degrees
: ∈ {0, 1, 2, 3} and thicknesses C ∈ {10−1, 10−3}, the error decays as ℎ:+1 (as expected from Theorem
4) and is mostly independent of C. The same observation can be made for : ∈ {0, 1} and C = 10−5.
However, for : ≥ 2 we notice an apparent loss of convergence on the finest meshes when C = 10−5.

This loss of convergence is actually not a sign of lack of robustness of the scheme, but rather a
consequence of reaching the attainable precision combined with the accumulation of round-off errors.
Indeed, the considered solution is such that the �B-norms of the variables (displacement, rotation, shear
strain) remain uniformly bounded with respect to C, and Theorem 4 thus shows that we should expect
a convergence in O(ℎ:+1) with multiplicative constants that are independent of C. This apparent loss
of convergence actually comes from unavoidable rounding errors. In double precision, the matrices of
the local !2-products (·, ·)�,) are typically computed with a precision in the range [10−15, 10−12], the
worst cases corresponding to higher polynomial degrees : and elements with many edges – situations
in which the local !2-products lead to the largest matrices. When these local matrices are multiplied by
C−2 = 10−10 (for C = 10−5) to assemble the local term in bℎ, the precision drops to [10−5, 10−2]. Due to
this large scaling C−2, the final precision on the global matrix is then rather poor, especially on meshes
with a high number of elements; this poor precision prevents an accurate calculation of the approximate
solution ()

ℎ
, D
ℎ
).

We notice that the tests we present here are among the few on high-order schemes for the Reissner–
Mindlin plate model. In [9], isogeometric schemes are considered up to a polynomial degree 5,
corresponding to a convergence rate in ℎ4, and thus to the choice : = 3 in the DDR scheme. The smallest
thickness considered in this reference is C = 10−3, and the largest mesh has about 300 rectangles; at
these levels, no rounding error is noticeable in our tests (to compare, the second locally refined mesh
we consider has more than 600 elements, and the largest one has more than 10,000 elements). An over-
penalised discontinuous Galerkin scheme is presented in [14], and tests are produced with a polynomial
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: = 0, C = 10−1 : = 0, C = 10−3 : = 0, C = 10−5

: = 1, C = 10−1 : = 1, C = 10−3 : = 1, C = 10−5

: = 2, C = 10−1 : = 2, C = 10−3 : = 2, C = 10−5

: = 3, C = 10−1 : = 3, C = 10−3 : = 3, C = 10−5
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2
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1

4

(a) Hexagonal mesh
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(b) Triangular mesh
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1

2

1
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1

4

(c) Loc. Refined mesh

Figure 2: Error �ℎ w.r.t. ℎ for the polynomial solution of Section 5.1.

degree 4 (convergence rate in ℎ3), corresponding to : = 2 for the DDR scheme. Very thin plates are
considered in these tests, with C as small as 10−6; however, for this thickness, the largest triangular mesh
in the tests of [14] has 512 triangles; our second coarsest triangular mesh has 896 triangles and, as can be
seen in Figure 2b, for : = 2 and at this size of mesh the convergence is not affected by round-off errors.
It therefore seems that those previous tests were carried out under conditions in which round-off errors
are not perceptible, and that the tests we present here are the first ones to highlight this phenomenon for
high-order schemes and very thin plates.

5.2 Analytical solution with improved physical behaviour
As explained in [5, Theorem 2.1 and following remarks], as C → 0 the shear strain $ is expected to remain
bounded in !2-norm, but to grow unboundedly in �1-norm. The polynomial solution considered in
Section 5.1 does not reproduce this behaviour (for this solution, the shear strain is actually independent
of C). To test our DDR scheme in a setting which is at least quantitatively closer to the generic
physical behaviour of the Reissner–Mindlin model, we design in this section a new analytical solution
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on Ω = (0, 1)2 (with non-homogeneous boundary conditions), with the following behaviour as C → 0:

‖D‖� 3 (Ω) ∼ 1, ‖) ‖� 2 (Ω)2 ∼ 1, ‖$‖!2 (Ω)2 ∼ 1, |$ |� B (Ω)2 ∼ C−B+
1
2 for all B ≥ 1,

and 5 is independent of C.
(57)

As noticed in [5, Theorem 2.1], the expected growth of |$ |� 1 (Ω) is in C−1, not C−
1
2 as in the solution we

construct here. This solution could easily be adjusted to produce such a growth, but this would come at
the cost of extremely steep dependency on C (in particular, a term C6 in (58) below) that would make the
solution even more challenging to handle using double-precision arithmetic.
5.2.1 Design of the solution

We look for a solution under the form
D(x) = E(C, x) + C2F(C, x) and ) (x) = grad E(C, x),

where E(C, x) = C3+ (C−1x) + 6(x) with + (y) = H14−H1 cos(H2) and 6(x) = sin(cG1) sin(cG2).
(58)

Defining $ by (1c) gives $(C, ·) = ^ gradF(C, ·). The function F is then selected to ensure that (1a)
holds. Since div(C grads )) = div(C grads(grad E)) = (V0 + V1) gradΔE, (1a) corresponds to

F(C, ·) = − V0 + V1
^

ΔE(C, ·).

The transverse load 5 is fixed according to (1b):

5 (C, ·) = (V0 + V1)Δ2E(C, ·).
Let us now briefly check that (57) holds. We first notice that, for any natural numbers <, =, the mapping
(0,∞) × Ω 3 (C, x) ↦→ (m<1 m

=
2+) (C

−1x) is uniformly bounded. This shows that ‖D‖� 3 (Ω) , ‖) ‖� 2 (Ω)2
and ‖$‖!2 (Ω)2 remain bounded as C → 0; these norms also do not go to zero owing to the presence of 6
(which could actually be any smooth function with non-zero derivatives up to order 3). The function +
satisfies Δ+ (y) = −24−H1 cos(H2) and thus Δ2+ = 0; hence, 5 = (V0 + V1)Δ26 is independent of C. This
also shows that

$(x) = −2(V0 + V1)4−C
−1H1

[
cos(C−1H2)
sin(C−1H2)

]
− (V0 + V1) gradΔ6(x).

For a given B ≥ 1, taking any partial derivative of order B of this expression and using ‖4−C−1•‖!2 (0,1) ∼
C1/2 shows that |$ |� B (Ω)2 ∼ C−B+

1
2 .

5.2.2 Results

The results of the numerical tests with the analytical solution (58) are presented in Figure 3. We observe
a similar behaviour as in the numerical results for the polynomial solution (see Figure 2). The scheme
is here completely robust for : = 0 (as expected from Theorem 6), and for : = 1 up to C = 10−3 (and
also for C = 10−5 up to errors of magnitude 10−3). The degradation of convergence occurs however
sooner, with respect to increasing : or 1/C, than in Section 5.1: the apparent loss of convergence is here
already perceptible for (:, C) = (1, 10−5) or (:, C) = (3, 10−3) for example; it also seems more severe for
C = 10−5 and : ≥ 1.

This is not completely unexpected as the dependency of the analytical solution (58) with respect to C
is more severe, and the higher-order norms of the shear strain indeed grows with C here. Combined with
the round-off errors phenomenon previously mentioned, this explains the worse numerical behaviour.
We however notice that the scheme remains more robust, even for higher degrees, than what the error
estimate (32) could lead us to believe; considering for example : = 3, since |$ |� 4 (Tℎ) grows as C

−3.5,
the upper bound on the error in (32) grows between C = 10−1 and C = 10−3 by a factor 102×3.5 = 107,
which is clearly not the case of the error itself (on the finest mesh, the ratio of the errors for these two
values of C is at most 103).
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: = 0, C = 10−1 : = 0, C = 10−3 : = 0, C = 10−5

: = 1, C = 10−1 : = 1, C = 10−3 : = 1, C = 10−5

: = 2, C = 10−1 : = 2, C = 10−3 : = 2, C = 10−5

: = 3, C = 10−1 : = 3, C = 10−3 : = 3, C = 10−5
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(a) Hexagonal mesh
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(b) Triangular mesh
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(c) Loc. Refined mesh

Figure 3: Error �ℎ w.r.t. ℎ for the analytical solution of Section 5.2.
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