
HAL Id: hal-03234064
https://hal.science/hal-03234064

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Objective Metrics to Identify the Tonehole Lattice
Cutoff Frequency of Conical Woodwind Instruments

Erik Petersen, Vincent Turcotte, Tom Colinot

To cite this version:
Erik Petersen, Vincent Turcotte, Tom Colinot. Objective Metrics to Identify the Tonehole Lattice
Cutoff Frequency of Conical Woodwind Instruments. Forum Acusticum, Dec 2020, Lyon, France.
pp.3177-3180, �10.48465/fa.2020.0996�. �hal-03234064�

https://hal.science/hal-03234064
https://hal.archives-ouvertes.fr


OBJECTIVE METRICS TO IDENTIFY THE TONEHOLE LATTICE
CUTOFF FREQUENCY OF CONICAL WOODWIND INSTRUMENTS

2020

Erik Alan Petersen1 Vincent Turcotte2 Tom Colinot1

1 Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
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ABSTRACT

The tonehole lattice cutoff frequency is a characteristic of

many woodwinds that is generally assumed to be linked

to the musical personality of a given instrument. For fre-

quencies below the cutoff, the input impedance peaks tend

to have large amplitudes and regular spacing in frequency,

while the peaks above the cutoff are attenuated and less

regularly spaced. An approximate cutoff of an instrument

is often identified as a perturbation in the magnitude or

phase of the input impedance that separates these two fre-

quency bands. A precise definition of the cutoff exists only

for infinite, loss-less lattices, and has been worked out for

the cylindrical resonators [1]. Conical resonators are more

challenging because there is no possibility of a strict geo-

metric regularity. Here, three objective metrics to identify

the cutoff are proposed and compared. The first defines

a cutoff frequency band that is defined by thresholds on

the modulus of the reflection coefficient. The second met-

ric divides the lattice into Π-shaped cells each of which

consists of two toneholes that the section of main bore be-

tween them. The resonance of the cells varies across the

length of the instrument, and the variation is interpreted as

a degree of acoustic irregularity. The third divides the ge-

ometry of the lattice into asymmetric unit cells all of which

have the same eigenfrequency. The range of eigenfrequen-

cies for which this is possible is interpreted as the range of

frequencies for which the lattice can be considered acous-

tically regular. These three metrics are applied to the mea-

sured input impedance and geometries of the saxophone

and bassoon.

1. ELEMENTS OF CUTOFF FREQUENCY
THEORY

The cutoff frequency of a tonehole lattice is a known phe-

nomena due to wave propagation in periodic media that

creates pass and stop bands for a wave incident upon the

lattice. Below cutoff, a wave propagating into the lattice

is evanescent, having mostly reflected back into the res-

onator and weakly radiated through the first open tonehole.

Above the cutoff, the wave propagates into the lattice and

may radiate from the first or any of the subsequent tone-

holes and end of the instrument. A full development of

this theory exists for infinite, loss-less lattices, but is also

adapted for finite and lossy systems such as woodwind in-

struments. It is also possible to define empirical estima-

tions of the cutoff frequency that do not depend on any

knowledge of the resonator’s geometry. The current sec-

tion provides a brief description of theoretical and empir-

ical definitions of the cutoff frequency, which are applied

to the bassoon in Section 2.

1.1 Standard T- and Π-shaped cells

The usual formulation of the cutoff frequency for a peri-

odic lattice is derived from the geometry of the constituent

T-shaped cell, consisting of a hole flanked by two sections

of the main pipe. In this case, the cutoff frequency corre-

sponds to the eigen frequency of the Helmholtz resonator

formed by the T-shaped cell closed on both sides of the

main bore section

fc =
1

2π

1√
maCa

(1)

where ma is the acoustic mass of the tonehole chimney and

Ca the acoustic compliance in the main bore for each cell:

ma =
ρh

πb2
and Ca =

2�S

ρc2
, (2)

where ρ is the density of the medium, h the height of the

chimney of the tonehole, b the radius of the tonehole, �
the length of the main bore on either side of the cell, S
the main bore section and c is the speed of sound in the

medium. Although this formula was derived initially for a

cylinder, it remains valid for a cone [2].

However, the tonehole lattices of real instruments are

not periodic, and therefore the definition of T-shaped cells

is ambiguous because � is not uniquely defined. One way

to avoid this ambiguity is to study Π-shaped cells, defined

by two neighboring toneholes and the section of main bore

in between. The characteristic frequency of the Π-shaped

cell is

fch =
c

2π

√
ρ

2d

(
1

mnSn
+

1

mn+1Sn+1

)
, (3)

where d is the distance between the center of the two sub-

sequent holes, mn is the acoustical mass of the n-th hole
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and Sn the section of the main bore underneath it. Note

that the T- and Π-cell definitions are equivalent when the

tonehole lattice is perfectly regular.

1.2 The asymmetric division algorithm

Another way to estimate the cutoff frequency of a lattice

that is not periodic is by dividing it iteratively into asym-

metric T-shaped cells [3]. We start by fixing a test value

of cutoff fc, as well as the upstream bore length of the first

T-shaped cell comprising the first open tonehole. Knowing

the bore length upstream of a given hole, the bore length

downstream is computed so that the resulting T-shaped

cell’s cutoff frequency fc is equal to the test value. The

upstream bore length of the neighboring hole is thus fixed

as the remaining part of the distance between the two holes.

The algorithm is carried out until one of the two following

outcomes.

1. There is no next hole. In this case, the lattice is suc-

cesfully divided for the value of the test cutoff fre-

quency.

2. One of the computed lengths is negative or imagi-

nary. This means the division was unsuccessful.

The final result of this process is a set of test cutoff fre-

quency values that lead to successful division of the lattice.

This set can be interpreted as a range of possible cutoff

values for which the lattice can be considered acoustically

periodic if losses are ignored.

1.3 The reflection coefficient interpretation

The methods presented up to this point rely on precise

knowledge of the geometry of the lattice. However, it is

common to measure only acoustical characteristics of a

given resonator, such as its input impedance, as precise

geometrical measurements can be tedious or invasive on

intricate bores. The reflection coefficient of the resonator

is obtained from the input impedance

R(f) =
Z(f)/Zθ − 1

Z(f)/Zθ
∗ + 1

, (4)

where

Zθ =
ρc

S

1

(1 + 1/jkx)
, (5)

is a modification of the characteristic impedance, account-

ing for wave propagation in a conical bore with an input

half-angle θ and missing length x. Two cutoff metrics are

derived from two different interpretations of the reflection

coefficient.

1.3.1 Reflection coefficient modulus drop

Below cutoff, the reflection coefficient modulus is approx-

imately equal to one. At cutoff, the modulus drops quickly

because the wave propagates into the lattice and radiates

through subsequent toneholes, and is also subject to greater

thermoviscous losses due to the longer propagation path

(see for instance [4]). Defining a threshold allows a sim-

ple, arbitrary estimation of the cutoff. In the present case,

the threshold is set at half of the maximum value of the re-

flection coefficient modulus, and the estimate of the cutoff

f|R| is the lowest frequency such that

|R(2πf|R|)|
|R(2πf)|max

= 0.5. (6)

1.3.2 Effective length shift

The effective length of the resonator is proportional to the

group delay associated to the reflection coefficient, defined

as

�eff(f) = −1

2

c

2π

d( � R(2πf))

df
. (7)

Below cutoff, this effective length corresponds approxi-

mately to the distance from the input to the first open tone-

hole, because waves do not propagate farther into the lat-

tice. Above cutoff, the effective length is subject to large

variations, as the wave may propagate into the lattice and

undergo multiple reflections from subsequent toneholes.

Therefore, the cutoff can be estimated as the first fre-

quency for which the effective length deviates by an ar-

bitrary threshold from its low frequency value.

The average effective length of the bore between 100 Hz

and 200 Hz is taken as reference �ref . The cutoff estimate

f� corresponds to the lowest frequency for which the ef-

fective length deviates from this reference by at least the

reference value

�eff(f�) = �ref ± �ref . (8)

As for the reflection coefficient modulus drop, the devia-

tion from low frequency acoustic length must be defined

by an arbitrary threshold, this case �ref provides satisfac-

tory results.

2. APPLICATION TO THE BASSOON

The complete geometry of the bore of a modern German

bassoon has been measured in order to compute the char-

acteristic frequencies and apply the asymmetric division

algorithm. The input impedance of the first register fin-

gerings of the bassoon are measured using an impedance

sensor adapted for woodwind measurements [5].

Figure 1 shows the impedance, reflection coefficient,

and effective length for the E fingering of the bassoon. On

this particular fingering the metrics defined in Section 1.3

are very similar.

All four metrics are computed for the lowest 18 fin-

gerings of the bassoon excluding the two lowest, B�1 and

B1, because they have respectively 0 and 1 open toneholes.

Figure 2 shows that at least 3 of the 4 cutoff metrics over-

lap for most fingerings. The characteristic frequency fch

was computed for the first 3 cells, starting from the first

open tonehole. This way, they provide a first interval for

the cutoff, while neglecting the downstream holes that do

not have as strong a role. Both metrics due to the reflec-

tion coefficient are very close together in comparison to
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Figure 1. Impedance modulus and reflection coefficient

(modulus and effective length) for the E fingering of the

bassoon, with overlayed metrics calculated from the reflec-

tion coefficient. The vertical red and blue lines are defined

by Equations 6 and 8 and correspond to the red and blue

asterisks in Figure 2. The grey curves in the bottom panel

show the effective length of all the fingerings in the first

register, where longer lengths correspond to lower notes.

the metrics derived from the geometry. A full study would

be needed to know whether this is the case for other in-

struments, and how it depends on the chosen thresholds.

The asymmetric division algorithm provides a finer cutoff

interval than the characteristic frequencies for most finger-

ings, but fails to successfully divide the lattice for some

of the highest notes. This may be due to the so-called

“partial holes” specific to the bassoon, that open automat-

ically with certain holes and complicate the interpretation

of tonehole pairs. Overall, the cutoff estimates show an

almost constant trend, between 400 and 600 Hz, for all of

the fingerings. This is coherent with Benade’s findings [6].

However, he estimated the cutoffs by human observation

of the input impedance, where as here the estimates are

performed by multiple objective definitions. Note that the

trend is markedly different on another conical woodwind,

the saxophone, for which the cutoff increases progressively

for higher fingerings [7].

Figure 2. Comparison of the four cutoff metrics applied to

the bassoon. Circled I, II, III correspond repectively to the

characteristic frequency fch of Eq. (3) of the first, second

and third Π-shaped cells. The triangles mark the average

of these three values, and the squares mark the average of

all the cells in the lattice. The grey bars show the intervals

of successful test cutoff values in the asymmetric division

algorithm (Section 1.2). The red and blue stars mark f|R|
and f�, defined by Eqs. (6) and (8), respectively. See also

Figure 1.

3. IMPACT OF THE PRODUCED SOUND

This section examines the radiated sound of the bassoon

for which the cutoff estimations are shown in Figures 1

and 2.

The measurements were performed while the bassoon

was “played” by an artificial mouth, using a “Légère” syn-

thetic double reed, with the same fingerings used for the

impedance measurements. The air pressure was 4.3 kPa,

sufficient to produce musical notes through the entirety of

the instrument’s register. The recording devices comprised

a Piezotronics microphone: PCB 130E20, and a National

Instruments sound card: USB-4431. The microphone was

placed approximately 30 cm in front of the instrument at

the height of the junction of the boot joint. This position

was suggested by sound engineers as an efficient place-

ment in order to record an optimal sound with a single mi-

crophone [8]. However, the authors are aware of the limita-

tions inherent in this type of microphone placement [9,10].
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Each note was recorded three times with the same setup.

The amplitude of the harmonic components of all the notes

are superimposed on Figure 3, demonstrating a formant

ranging from approximately 400 to 700 Hz. These fre-

quencies match the cutoff frequencies determined by the

metrics in Section 2. Other authors have also observed

this formant and attributed it to the tonehole lattice cutoff,

although their methodology for determining the cutoffs is

likely the same as Benade [11]. Further study is required

in order to determine the perceptual difference in spectral

characteristics due to this formant.

Figure 3. Amplitude of the harmonics of the radiated

sound, produced with an artificial mouth, on the finger-

ings C2 to F3 (see Figure 2). The formant around 500 Hz

corresponds to the cutoff region.

4. CONCLUSION

Although the tonehole lattice of the bassoon is not geo-

metrically periodic, acoustical descriptors show that it is

notably regular, in that the cutoff is relatively constant

throughout all the fingerings of the first register. This sets

the bassoon apart from another reed conical instrument, the

saxophone, for which the cutoff frequency varies greatly.

This acoustical regularity influences the produced sound

by introducing a formant around the cutoff for all finger-

ings. Other implications of the cutoff, for instance on di-

rectivity or other timbre features of the instrument, remain

to be explored. The set of cutoff descriptors provided in

this paper can be simply applied to compare the tonehole

lattices of other instruments, based on their geometry or

their input impedance.
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