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Woodwind tonehole’s linear behavior is characterized by two complex quantities: the series
and shunt acoustic impedances. A method to determine experimentally these two quantities
is presented for the case of open toneholes. It is based on two input impedance measure-
ments. The method can be applied to clarinet-like instruments, and can be used for undercut
toneholes as well as toneholes with pads above their output, under the condition that a sym-
metry axis exists. The robustness of the method proposed is explored numerically through
the simulation of the experiment when considering geometrical and measurement uncertain-
ties. Experimental results confirm the relevance of the method proposed to estimate the
shunt impedance. Even the effect of small changes in the hole’s geometry, such as those
induced by undercutting, are characterized experimentally. The main effect of undercutting
is shown to be a decrease of the tonehole’s acoustic mass, in agreement with theoretical
considerations based on the shape of the tonehole. Investigation on the effects of pads will
be studied in a further work. Experimental results also reveal that losses in toneholes are
significantly higher than those predicted by the theory. Therefore the method is suitable
for the experimental determination of the shunt impedance, but it is not convenient for the
characterization of the series impedance.

©2021 Acoustical Society of America. [https://doi.org(DOI number)]

[XYZ] Pages: 1–10

I. INTRODUCTION

For woodwind instruments, the effect of toneholes
on the intonation and the ease of playing is essential.
The present paper focuses on linear behaviour of open
toneholes, which is especially important for the playing
frequencies.

The characterization of holes can be independent of
the geometry of the resonator (either cylindrical or con-
ical, see e.g.1).

The first theory was given by Keefe2, and completed
by4,7. It is based on matching plane waves within the res-
onator and the tonehole. The tonehole is characterized
by a transfer matrix of order 2. Because of reciprocity,
only three elements of the matrix are necessary. Fur-
thermore, in the present paper, the tonehole is assumed
to be symmetrical, and two elements (i.e., two complex
impedances) are sufficient (see4) for symmetrical tone-
holes. This can approximately happen for undercut tone-
holes. For toneholes with pads above their output, the
radiation of the tonehole is modified, but it can be as-
sumed that a symmetry axis exists, and two elements are
also sufficient. The theory, based upon modal expansion,
assumes the tonehole to be cylindrical, and this leads
to a difficulty of the geometric matching between two
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cylinders. However, the number and nature of the ma-
trix elements does not depend on the shape of the tone-
holes, and they can be determined either by experiment
or numerical discretization (see e.g.8–10). The Finite Ele-
ment Method can be used, but the geometric and acous-
tic modeling of boundary layers (see9) and nonlinear be-
haviour is not straightforward. Acoustic experiment can
be also used for the computation of the input impedance
of an instrument by using the transfer matrix method:
the measurement of the two acoustic impedances make
unnecessary the knowledge of the precise geometry. For
the computation of the input impedance of an instru-
ment, the acoustic characterization of the open toneholes
is sufficient. We notice that the measured elements cor-
respond to the pair tonehole-tube, because they depend
on the tube diameter, and are useful for predicting (and
maybe for optimizing) the input or transfer impedances.
Moreover, the presence of pads located above the output
of the open hole modifies their radiation, and therefore
the shunt impedance. This paper is limited to open holes
without pads, but the present method can be used for
holes with pads.

Considering the equivalent circuit of an open tone-
hole, the elements are essentially acoustic masses. One is
in series, modifying the acoustic pressure, and the other
is in parallel, modifying the acoustic flow rate. They
can be regarded as length corrections to the main tube
and to the tonehole, respectively. Nevertheless, for high
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(i.e., long) toneholes, compressibility (and propagation)
effects can appear. Moreover, for both the impedances
in series and in parallel, losses (i.e., resistances) exist.
Losses added to the series mass are generally ignored,
and no theoretical determination exists, while experimen-
tal evidence was found by Dalmont et al10 in a nonlinear
regime. At low frequencies, the two masses are almost
independent of frequency, but they increase when ap-
proaching the first cutoff of the main tube. This variation
has been theoretically studied only for the 2D, rectangu-
lar case(see4), but it is general5. Other shunt acoustic
masses intervene, in particular that of the plane mode
in the hole, and a resonance of the total shunt mass can
occur at high frequency: this is detailed in Section II.

Previous articles6,10,14,15 used experiment devices for
the measurement of the series and shunt impedances for
open or/and closed toneholes, including the possibility
of hole undercutting and pad existence6,11–14. They took
advantage of the tonehole symmetry to limit the exper-
iment to simultaneous measurement of two quantities,
the input impedance of a tube with one tonehole at its
middle, and a transfer impedance. This allows avoid-
ing dismantling the apparatus during the measurement.
The present paper aims at exploring another method.
It limits the measurement to two input impedances, by
reversing the cylindrical tube (see Fig. 1), the extrem-
ity being open. Thus the termination impedance is un-
changed when turning the tube. The drawback is the
need of dismantling the set up.

FIG. 1. Scheme of the tonehole geometry and acoustic vari-

ables. For the second situation, an apostrophe is added to

the geometrical and acoustic quantities, and L′

1 = L2, and

L′

2 = L1

In Sect. II, the calculation is performed by using the
theoretical, known model of a cylindrical tonehole on a
cylindrical tube. From the theoretical values of the two
characteristics, the calculation determines the two input
impedances of the tube in the two situations, the second
being the reversed situation of the first. In Sect. III, the
inverse problem (often called the crime inverse problem)
is computed. It necessitates the determination of the two
tonehole characteristics from the two input impedances

of the tube in two different situations. In other words two
input impedances become the starting point from which
the two characteristics are derived. Therefore the tube
reversed method consists in reversing the tube. If the
calculations are correct, the two tonehole characteristics
obtained by solving the inverse problem are identical to
the initial values calculated from the model.
In practice there is a very small error because of the nu-
merical computation (direct and inverse). If some data
of the inverse problem are slightly wrong, the two char-
acteristics obtained slightly differ from the initial values.
The data of the inverse problem are either geometric data
or measured input impedances. Modifying these data al-
lows assessing the sensitivity of the method to uncertain-
ties on these data. This is the purpose of Sect. IV, which
discusses some parameter choices of the experiment, such
as the main tube length and the location of the tonehole.

Sect. V describes the experiment including the mea-
surement method of the input impedance and results for
cylindrical toneholes, with dimensions similar to those of
a clarinet. Sect. VI presents experimental results for ex-
amples of undercut toneholes. Sect. VII discusses the
validity and interest of the method.

II. DIRECT PROBLEM: MODEL OF A TUBE WITH AN

OPEN TONEHOLE

The radii of the main tube and the hole are denoted
a and b, respectively. The wavenumber in free space is
denoted k = ω/c; ω is the angular frequency, and c is
the sound speed in free space. The wavenumber involv-
ing viscous-thermal losses in the main tube is given by a
standard expression3 (p. 242):

ka = k
[
1 + 1.044

√
−2j/rv − 1.08j/r2

v

]
(1)

where rv = a
√
ωρ/µ for the main tube. ρ is the air den-

sity, and µ the air viscosity. The same formula holds for
the tonehole, with the notations kb and b. The charac-
teristic impedances are Zc = ρc/πa2 and Zch = ρc/πb2.
The quantities at the left (resp. right) of the tonehole
are denoted with subscript 1 (resp. 2). The lengths of
the main tube on the two sides of the tonehole are L1

and L2. The height of the tonehole is t. The schematic
of the tonehole geometry and the acoustic variables are
shown in Fig. 1. In both the main tube and the tone-
hole, only the plane mode propagates, i.e., higher order
modes are evanescent, i.e., the frequency is low enough
(k < 1.84/a). The plane mode can be matched on the
two sides of the tonehole symmetry axis by a second order
transfer matrix2. The effect of the tonehole is described
by the following equation:

(
P1

U1

)
= Mh

(
P2

U2

)
, (2)

where acoustic pressure and volume velocity are denoted
P and U , respectively. For the volume velocity, the axis
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is oriented to the right. Mh is a symmetrical matrix
with unity determinant16. It corresponds to the T-circuit
(see3,4) shown in Fig. 2. It is written as follows:

Mh =
1

1− YsZa/4

(
1 + YsZa/4 Za

Ys 1 + YsZa/4

)
(3)

The series impedance Za and the shunt impedance
Zs = 1/Ys are the impedances corresponding to the anti-
symmetric and symmetric parts of the velocity at the in-
put of the tonehole2,3, respectively. For an open tonehole,
they are given by the following equations4:

Za = jkZcta (4)

Zs = jZch(kti + tan [kbt+ k(tm + tr)]). (5)

In the equivalent circuit and the transfer matrix the ef-
fective shunt impedance Zh appears. It is defined by:

Zh = Zs − Za/4. (6)

FIG. 2. Equivalent circuit for the tonehole

The lengths included in the above expressions are
given hereafter. If δ = b/a, the series length correction
ta is given by4:

ta = −bδ2/
[
1.78tanh(1.84t/b) + 0.94 + 0.540δ+ 0.285δ2

]
.

(7)
This quantity is very small (a typical value is 0.5 mm).
For this reason several authors neglect the corresponding
term in Eq. 6. However, in the matrix Mh it is not con-
sistent to ignore a quantity in one element while keeping
it in the other elements. This remark can be related to
the dual role of pressure and volume velocity in Eq. (3).
An important remark is that the corresponding acoustic
mass is negative2. No failure of causality is done, because
causality is ensured by the complete matrix Eq. (3).

At low frequencies, the length ti, due to evanescent
modes, is independent of frequency and can be regarded
as an internal length correction for the tonehole height.
It can be written as (see4, and10 for a correction):

ti = b(0.82− 0.193δ − 1.09δ2 + 1.27δ3 − 0.71δ4). (8)

The length tm is related to the matching volume be-
tween the tonehole and the main tube, and cannot be

exactly computed with the modal matching method, ex-
cept when the main tube is rectangular (in which case it
vanishes). Its value is given by7:

tm = bδ(1 + 0.207δ3)/8. (9)

The length trh is the (complex) radiation length
given by trh = Zrh/(jkZch), where rh is the subscript
for the hole end, and Zrh the radiation impedance of the
tonehole. Different expressions exist in the literature.
For the sake of simplicity, we assume that it is equal
to the radiation of a tube without flange (see e.g.17). At
low frequencies, the order of magnitude of the uncertainty
concerning the real length correction trh = Re(tr) is 0.2b,
which is the difference between the two extreme cases
(without flange and with infinite flange, respectively).
If losses near the walls are ignored, the total equivalent
height of the tonehole is defined as:

ts = Im(Zs/(kZch)). (10)

At low frequencies, it is equal to:

ts = ti + t+ tm + tr. (11)

The geometric values chosen in this paper are the tone-
hole radius b = 4 mm (the main tube radius is a = 7.3
mm), and height t = 8.5 mm; the matching length
correction is tm = 0.3 mm. The length correction for
radiation is tr = 2.5 mm (with a significant uncertainty
of 0.2b = 0.8 mm) and the internal length correction is
ti = 2.1 mm. The total equivalent height is therefore
ts = 13.4 mm. This quantity is of major interest for the
computation of the input impedance of an instrument.
Using the standard transmission line theory, the effect of
a tonehole height difference by 1 mm can be computed:
it implies a typical shift of the first impedance peak of
a typical clarinet by 0.5% to 1% (i.e., 9 to 17 cents).
Therefore the cumulative shift for several toneholes can
be rather high.

It remains to derive the input impedance Zin. in is
the subscript of the tube input, and r that of the termi-
nation. The basic equation is:

(
Pin

Uin

)
= M1MhM2

(
Pr

Ur

)
. (12)

M1 and M2 are the transfer matrices of the cylindri-
cal sections of the tube (i = 1, 2):

Mi =

(
Ai Bi

Ci Ai

)
=

(
cos kaLi jZc sin kaLi

jZ−1
c

sinkaLi cos kaLi

)
.

(13)
The terminal impedance Zr is projected back to the

right of the tonehole, as follows:

Z2 =
A2Zr +B2

C2Zr +A2

. (14)

Similarly, the impedance Z1 at the left of the tonehole is
projected from Z2 by using the matrix Mh and Eq. (2).
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Finally the input impedance Zin is projected from Z1 by
using the matrix M1. A second choice of the lengths L1

and L2 lead to another value of the input impedance.

III. INVERSE PROBLEM

The aim of the inverse problem is to derive the two
tonehole characteristics from the two input impedances
Zin and Z ′

in
. The apostrophe indicates the reverse sit-

uation. The two different situations are L1 < L2, and
L′

1 < L′

2, when in the second case the tube is reversed
such that L′

1 = L2, and L′

2 = L1. The tonehole is not
located at the middle of the tube, in order to obtain two
different input impedances when the tube is reversed.
For the present method, the main tube is open: Zr is
the radiation impedance. It is assumed to be equal to its
theoretical value without flange17. It was checked that
the results are not very sensitive to the precise value of
the radiation impedance. Using of the measured value
of the radiation impedance does not change significantly
the results. The important condition is that the radia-
tion impedance is the same for the two situations. Now
the input impedance is assumed to be known, and is pro-
jected back to the left of the tonehole, using the inverse
matrix of M1 as:

(
P1

U1

)
=

(
A1 −B1

−C1 A1

)(
Pin

Uin

)
(15)

⇒ Z1 =
A1Zin −B1

−C1Zin +A1

. (16)

Following Fig. 2, the equations for the 3 elements of
the electrical equivalent circuit can be written: Defining
P = Zh(U1 − U2); P1 = Z1U1 = P + Za/2U1; and P2 =
Z2U2 = P − Za/2U2, the following equation is obtained:

1

Zh

=
1

Z1 − Za/2
− 1

Z2 + Za/2
. (17)

A similar equation holds for the second situation (re-
versed tube), replacing Z1 and Z2 by Z ′

1 and Z ′

2, respec-
tively.

1

Zh

=
1

Z ′

1 − Za/2
− 1

Z ′

2 + Za/2
. (18)

The following quadratic equation is obtained by elimi-
nating Zh:

AZ2
a/4 +BZa/2 + C = 0, (19)

A = (Z ′

1 − Z1)− (Z ′

2 − Z2);

B = 2(Z ′

1Z
′

2 − Z1Z2);

C = Z ′

2Z2(Z
′

1 − Z1)− Z ′

1Z1(Z
′

2 − Z2)

(20)

Eq. (19) can be solved for Za, then Zh is derived
from Eq. (17) or Eq. (18). However a simpler solution
is obtained by expressing Zh with respect to Za from Eq
(17. A term Z2

a
appears. Using the latter expression and

Eq. 19), and eliminating Z2
a , it can be written:

Za = −B

A
− 2Zh. (21)

Then, introducing this result in the quadratic equation
(19), the following result is obtained:

Z2
h =

B2

4A2
− C

A
. (22)

Two solutions exist for this equation. The solution with a
negative real part can be eliminated because the physical
system is passive. Zs can be deduced from Eq. (6):

Zs = Zh + Za/4. (23)

Throughout this paper, the results are focussed on 3
quantities: the total equivalent height of the tonehole ts,
given by Eqs. (10, 22, 23); the real part of the effective
shunt impedance Zh and the imaginary part of Za, from
Eq. (21).

The results of the inverse problem were checked by
using computed input impedances, and the order of mag-
nitude of the numerical error is smaller than 10−14.
Fig. 3 shows the comparison between the direct and
the inverse computations for the equivalent height of the
tonehole ts (see Eq.(10)). For Za, the numerical error
is smaller than 10−12. For other choices of termination
impedance, such as an infinite impedance or the charac-
teristic impedance, the entire computation remains valid.

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 3. (Color online) Equivalent height ts of the tonehole (in

m). Solid, red line: model; blue, dotted line: inverse problem

(from Eq. (22)). Dimensions a = 7.3 mm, b = 4 mm, t = 8.5

mm, L1 = 44 mm, L2 = 74 mm.

When the frequency tends to zero, the small increase
is due to the visco-thermal dispersion, which diminishes
the sound speed, and increases the equivalent length.
Furthermore, the strong variation at higher frequencies
is due to the propagation of the planar mode in the tone-
hole (see the function tan(x) in Eq. (5)). The resonance
near 7540 Hz corresponds to the minimum of the input
impedance of the tonehole.

IV. SIMULATION OF THE EXPERIMENT

In order to simulate the experiment, errors are in-
troduced on the data of the inverse problem. The input
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impedance is first computed by using the model, and the
values are treated as experimental data.

A. Effect of uncertainty on the main tube length

For the second case, an error of 0.2 mm is added to
the length L1. It includes the uncertainty of the measure-
ment, and the uncertainty on the tube manufacture. For
the second case, an error of 0.2 mm on the length L1 is
considered together with an opposite error on the length
L2 (the later case corresponds to an error on the loca-
tion of the tonehole, without change in the total length
L1 + L2 ).

For the equivalent height of the hole ts, Fig. 4 shows
the comparison between results for the two cases sim-
ulated and the theoretical result (without errors intro-
duced). Between 1550 Hz and 1650 Hz, the error on the
result is very large. Because this also happens at other
higher frequencies, the figure is limited to 2000 Hz.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

FIG. 4. (Color online) Equivalent height ts (in m). Red, solid

thin line: theory without length errors. Blue, thick, solid line:

inverse problem (Eq. (22)) with 0.2 mm error on L1. Black,

dashed line: inverse problem with 0.2 mm error on L1 and

−0.2 mm error on L2.

The frequency ranges with large error are close to
the input impedance minima of the main tube (1560 Hz
for Zin and 1610 Hz for Z ′

in
). A simple qualitative in-

terpretation is the following: suppose that the radiation
impedance of the tube is 0 (whatever the frequency), and
that the input impedance vanishes at a given frequency,
therefore the eigenfrequencies of the tube in the two po-
sitions are equal, and the problem becomes ill-posed (one
equation for two unknowns): the solutions tend to infin-
ity. This reasoning is not exact, because the radiation
impedance is small, but not 0. The variations of ts are
very small up to 1400 Hz, as well as the discrepancies
with the theoretical values. Concerning the real part of
the shunt impedance Zh, it can be seen in Fig. 5 that
the accuracy of the simulated results is satisfactory up to
1400 Hz.

0 500 1000 1500 2000

Frequency (Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

FIG. 5. (Color online) Real part of the reduced shunt

impedance Re(Zh/Zc) (dimensionless). See line definitions

in the caption of Fig. 4.

0 500 1000 1500 2000

Frequency (Hz)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

FIG. 6. (Color online) Imaginary part of the reduced series

impedance Im(Za/Zc) (dimensionless). See line definitions in

the caption of Fig. 4.

However, concerning the imaginary part of the series
impedance Za, even a very small error on the lengths
causes large errors on the result (see Fig. 6). Even
the sign of the quantity is not determined. This result
suggests that it is extremely difficult to expect a precise
measurement of the series impedance. From this per-
spective, the method is less robust than the method of10,
even if the later is not very precise (the uncertainty is al-
most 35%). The present method is probably not suitable
for measuring this element through experimentation.

B. Effect of the data uncertainty on the measured input

impedance

A second attempt to simulate the experiment is
based on the introduction of a random error on the mod-
ulus of the input impedance (for the two configurations
of the main tube Zin and Z ′

in
)). The input impedance is
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modified as follows:

Z̃in = Zin{1 + 0.005[rand(N)− 0.5]}. (24)

The number N is the size of the input impedance vec-
tor. rand is a Matlab function that generates uniform
pseudo-random numbers in the interval [0, 1]. The value
0.005 is determined by the measurement of many input
impedances. It means that the error modelled ranges
from -0.25% to 0.25% of Zin. The three figures 7 to
9 show a confirmation of the previous observations: the
measurement can be accurate up to 1600 Hz for the shunt
impedance, but the measurement of the series impedance
is not possible (see Figs. 7 to 9). The relative error on
the equivalent height is less than 7%.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)
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0.013
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0.018

0.019

0.02

FIG. 7. (Color online) Tonehole equivalent height ts (in m).

Black lines: result of a simulation with a random error on

the input impedance of the tube (Eq. 24). Yellow line: no

random error.

0 500 1000 1500 2000

Frequency (Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
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FIG. 8. (Color online) Real part of the reduced shunt

impedance Re(Zh/Zc) (dimensionless). Black lines: result

of a simulation with a random error on the input impedance

of the tube (Eq. 24). Yellow line: no random error.
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FIG. 9. (Color online) Imaginary part of the reduced series

impedance Im(Za/Zc) (dimensionless). Black lines: result of

a simulation with a random error on the input impedance of

the tube (Eq. (24)). Yellow line: no random error.

C. Practical considerations for the dimensions of the main

tube

A conclusion of the simulation study implies that the
main tube has to be chosen to be as short as possible.
In order to avoid the coupling of evanescent modes be-
tween the tonehole and the radiating termination, the
distance L1 between the tonehole and the termination
can be chosen between 2 and 3 times the main tube di-
ameter. Furthermore the value of the first minimum fre-
quency implies a small total length L1 + L2. However it
is essential that the two lengths are sufficiently different,
in order to avoid the quadratic equation to become de-
generate. A convenient choice is L2 between 1/3 and 1/2
times the total length L1 + L2. We note that other ter-
minations for he the tube lead to correct results, but, for
instance, when the tube is closed, the first anti-resonance
is rather low and this limits the frequency range of the
measurement.

V. EXPERIMENTAL RESULTS FOR CYLINDRICAL TONE-

HOLES

A. Input impedance measurement

The previous analysis encourages us to study an ex-
periment based upon the method presented in the present
paper. The method is tested experimentally by using
wood pieces, and the CTTM sensor18 for the impedance
measurement. A piezoelectric buzzer is used as a source.
The pressure in the back cavity of the buzzer is mea-
sured by a microphone, which gives an estimation of the
volume velocity. The measured pipe is connected to the
front of the buzzer via a small open cavity in which a
second microphone measures the pressure. The input
impedance of the pipe is at first order proportional to
the transfer function between the two microphones. The
comparison with theoretical results for cylindrical tubes
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(without toneholes) is satisfactory: the discrepancy for a
closed tube is 4 cents for the resonance frequencies and 1
dB for the peak heights, except at very low frequencies.
For this reason, measurements are done above 200 Hz.

B. Preliminary results concerning the repeatability of the

measurement

We first study the repeatability for a tube and a
tonehole with dimensions equal to those previously con-
sidered. For the frequency range 200 to 1400 Hz, the
equivalent height ts of the tonehole is found to be be-
tween 14.4 mm and 15.5 mm, while the theoretical value
(from Eq. 10 is 13.4 mm. For 4 measurements after dis-
assembly and assembly, the uncertainty is found to be
about 1 to 2% (see Fig. 10). Furthermore Fig. 11
shows the comparison between the measurements of 4
tubes built with the same tools. The material of the
tubes is a composite material built by Buffet-Crampon
for the Greenline clarinet, and the holes were deburred.
The results are distributed on both sides of the theoreti-
cal one. This is an effect of the manufacturing tolerance,
which is of the same order of magnitude as the measure-
ment uncertainty, or higher. For all experimental results,
the Matlab function smooth has been used. We remark
measurements are not necessarily taken on the same day
and at the same temperature, but the computation took
it into account.
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Frequency (Hz)

0.01

0.012
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0.016
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0.02

FIG. 10. (Color online) Tonehole equivalent height (in m)

measured 4 times after disassembly. Blue, dashed lines: mea-

surements. Red, solid line: theory. Dimensions a = 7.3 mm,

b = 4 mm, t = 8.5 mm, L1 = 44 mm, L2 = 74 mm.

C. Comparison between two tubes of different lengths

Two tubes with the same length L2 = 44 mm abd
with a length L1 = 74 mm and 118 mm are compared.
The value of L2 is chosen to be 3 times the tube diameter.

200 400 600 800 1000 1200 1400

Frequency (Hz)

0.01

0.012

0.014

0.016

0.018

0.02

FIG. 11. (Color online) Tonehole equivalent height ts (in

m) for 4 tubes built with the same tool. Blue, dashed lines:

measurements. Solid, red line: theory.

The dimensions of the tonehole are identical for the two
tube lengths (b = 4 mm; t = 8.5 mm). Fig. 12 shows a
small increase when the frequency approaches the eigen-
frequency of the tubes. As explained above, the short
tube yields better results on a wider frequency range.
The discrepancy between the results of the two tubes is
less than 3
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FIG. 12. (Color online) Measured value of the equivalent

height ts(in m) of the hole. Green, dashed lines: long tube.

Blue, dottted line: short tube. Red, solid line: theory

Concerning the real part of the shunt impedance, it
appears that the two tubes yield very similar values, ex-
cept in the vicinity of the eigenfrequency. Fig. 13 shows
that they are higher than the theoretical values. Re-
member that for a linear functioning, radiation losses are
proportional to ω2, while visco-thermal losses increase as
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√
ω. We refer to10 for a discussion about the theoretical

aspects. Finally, the experiment confirms that the se-
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FIG. 13. (Color online) Measured value of the real part of the

reduced shunt impedance Re(Zh/Zc) (dimensionless). See the

line definitions in the caption of Fig. 12.

ries impedance cannot be measured by the tube reversed
method, as shown in Fig. 14.
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FIG. 14. (Color online) Measured value of the imaginary part

of the reduced series impedance Im(Za/Zc) (dimensionless).

See the line definitions in the caption of Fig. 12.

VI. EXPERIMENTAL RESULTS FOR UNDERCUT TONE-

HOLES

Undercutting toneholes was studied in10 for high ex-
citation level and in19 (see also20) for rectangular geom-
etry. Eight short tubes of length 118 mm have holes
drilled at L1 = 44 mm that have three different geome-

tries: three are straight (but the hole is deburred), three
are undercut with a cylinder length of 6.7 mm (tubes de-
noted UC1) and two are undercut with a cylinder length
of 5.7mm (tubes denoted UC2). Figs. 15 and 16 show
the effect of undercutting the toneholes. The quantity
shown by Fig. 15 is slightly different from that shown
previously (see e.g. Fig. 13), because considering the
length correction in Eq. (10) implies a division by the
cross-section area Sh, but for the case of undercut tone-
holes, the area is not constant. For this reason, we choose
the acoustic mass (per unit density) ms:

ms = Zh/(jωρ). (25)

The figures represent the average quantities for each ge-
ometry. The effect of undercutting is a decrease of 10m−1

to 20m−1 for the acoustic mass when the undercutting
becomes wider. The jump below 400 Hz in Fig. 15 re-
mains unexplained.

Two causes for this mass increase can be analysed.
The widening implies a decrease of the acoustic mass of
the plane mode, and also of the internal length correc-
tion due to the discontinuity between the main tube and
the tonehole. The first of these causes can be modelled.
Considering the acoustic mass for the cylindrical tone-
hole case, calculating the average value, we obtain 280
m−1. For the cases of undercutting, we obtain 270 m−1

and 264 m−1. An elementary model can be made in or-
der to interpret these results. The shape of the most
undercut tonehole (UC2) is close to a cylinder extended
in a truncated cone joining the internal wall of the main
tube. For the cases studied, the lengths of the cylinder
ℓ and of the cone ℓ′ are approximately equal to 5.5 and
5 mm, respectively. The radius of the cylinder is b = 4
mm, the small radius of the cone is R1 = b and its large
radius is R2 = 5.4 mm. The calculation of the mass of
a tube with variable cross section is done by integrating
the inverse of the area along the axis. For a cone, the re-
sult is published in3, p. 325. It is that of a cylinder with
a cross section equal to the geometric average of the ra-
dius: S = πR1R2. The difference between the cylindrical
tonehole and the undercutting one is:

δm =
ℓ′

πb2

[
1− b

R2

]
. (26)

The result of this formula is 26m−1. This result, based
on approximate geometric and acoustic models, is con-
sistent with the experimental data. This is encouraging
for the use of an accurate measurement method for the
computation of the input impedance of an instrument.

Furthermore, Fig. 16 shows that the effect of un-
dercutting on the real part of the shunt impedance is
small, but significant: it causes a decrease in resistance
by approximately 10 % as the undercut is increased from
0 to that of tubes UC2. It is difficult to interpret the
differences between the three geometries and their varia-
tion with frequency, and the influence of nonlinear effects
cannot be ignored. However, a linear reasoning can be
applied here: undercutting a tonehole broadens the ef-
fective radius, and visco-thermal effects diminish.
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FIG. 15. (Color online) Measured value of the acoustic mass

per unit density ms of the hole. Red, solid line: theory of

a cylindrical tonehole in m−1. From top to bottom, 3 ge-

ometries of the tonehole: Blue, dashed line: no undercutting;

Green, dash-dot line: undercut tubes UC1, Magenta, dotted

line: undercut tubes UC2.
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FIG. 16. (Color online) Measured value of the real part of the

reduced shunt impedance Re(Zh/Zc) (dimensionless). Red

line: theory of a cylindrical tonehole. See line definitions in

the caption of Fig. 15.

VII. CONCLUSION

The method presented in this paper allows an eval-
uation of the effect of the complex shunt impedance of
an open tonehole. We recall that the aim is to insert
the experimental value in the computation of the input
impedance of an instrument. The effect of a hole modifi-
cation on the input impedance of an instrument is signif-
icant: a difference of 1 mm for the equivalent height may
imply a shift of the first impedance peak. The cumula-

tive shift for several toneholes can be rather high (see e.g.
an article on the clarinet tuning16).

It is important to use a short tube for this method,
due to anti-resonances associated to the total tube
length. We remark that a similar problem concerning
the “forbidden” frequency ranges is encountered in other
methods. Moreover the distance of the hole to the tube
end needs to be short.

Concerning the real part of the shunt impedance, the
results appear to be robust, and suggest further studies
on the theoretical aspects, even for cylindrical toneholes
in the linear regime.

Concerning the equivalent height of the tonehole (re-
lated to the imaginary part of the shunt impedance), the
primary quantity studied here, the results seem to be
very sensitive to small geometric differences. The rela-
tive variation of the equivalent height with frequency is
small, and the absolute variation remains small. For a
cylindrical tonehole, at approximately 500 Hz, the dis-
crepancy between experiment and theory is very small
for the equivalent height (0.5 mm), and is of the same
order of magnitude as the result obtained in10. The pa-
per is limited to the frequency range [200 Hz, 1400 Hz]
for the measurements. It is concluded that the varia-
tion with frequency is mainly due to the measurement
method. Assuming that the true value of the tonehole
equivalent height is independent of frequency, the choice
of an average of the values between 400 and 600 Hz as
appropriate can be extended to any hole geometry. This
result of the different cases examined in the present work
can be used for including the acoustic characteristics of
undercut toneholes in a computation of input impedances
of an instrument.

The method is not convenient for measuring the se-
ries impedance. Actually this quantity is very small, but
for this quantity the methods proposed in previous pub-
lications seem to be better. Concerning undercut tone-
holes, which are generally not symmetrical, in certain
cases it could be useful to search for a circuit with 3
unknowns (see4). The aim of the present paper is not
to improve a model, but it is useful in that it highlights
some of the complications inherent in existing open tone-
hole models. The main improvement to existing models
could be done on the radiation impedance of a tonehole,
including the influence of the pads.

ACKNOWLEDGEMENTS

The authors gratefully thank the French Associa-
tion Nationale de la Recherche et la Technologie for the
PhD grant of Hector Garcia (CONVENTION CIFRE N°
2017 1600), as well as the french Agence Nationale de
la Recherche, through the joint laboratory“Liamfi” be-
tween the Laboratoire de Mécanique et d’Acoustique and
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