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This paper demonstrates the power of neural networks models when used in conjunction with statistical theory techniques. A modelling methodology is presented and illustrated by an application to an industrial four-effect evaporator used in dairy industry. The hybrid neural network model will enable multi-step ahead prediction for multivariable (MIMO) systems, essential to perform industrial process control such as Model Predictive Control (MPC). The modelling methodology based on a probabilistic approach will implement techniques such as statistical bootstraps, principal component analysis and network committees.

I. INTRODUCTION

The purpose of this paper is to demonstrate the performance of a hybrid neural network modelling methodology by applying concepts and techniques issued from the statistical theory field. The underlying probabilistic approach is considered to address the critical issues such as topology determination and generalization performance. The method will be illustrated and validated on a real life nonlinear multivariable (MIMO) industrial process, a four-effect (stage) evaporator. The system and the corresponding data sets has been chosen since it has already been used as a benchmark problem for regression modelling methods [START_REF] Zhu | Comparison of Three Classes of Identification Methods[END_REF].

In dairy industry [START_REF] Bylund | Dairy Processing Handbook[END_REF], evaporators are used to concentrate products (such as milk) before the spray drying process. The basic processing unit is the evaporator represented on Figure 1.

The basic principle of the four-effect evaporator (see Figure 1) [START_REF] Bylund | Dairy Processing Handbook[END_REF] consists in preheating the product before entering the effect (using the heat of the extracted vapor of the previous effect). The product flows down as a film obtained after a distribution plate. The film flows down on the evaporation tubes heated by condensing vapour on the outside of the tubes. A two-phase flow of concentrate and vapour reaches the separator where product and vapour are separated. To reduce energy consumption and heat damage, the evaporation is performed under vacuum.

In multiple effect (stage) systems, represented on Figure 2 [2], the evaporators are operated in series at increasing level of vacuum (decreasing temperatures). The concentrated product is pumped into the next distribution plate. The extracted vapour is compressed in thermocompressors and is used as a heat medium in the next evaporator.

The cascading of the evaporators leads to potential energy savings but also increases the performance of the evaporation while reducing the risk of damaging the product. Once the milk is concentrated, the product is directed to a dryer which can operate only if the product is concentrated enough.

The four-effect evaporator is a complex nonlinear system. One of the cause of nonlinearity is the cascading of the evaporators and their capacity to hold quantities of product. By doing so, they can act as buffers leading to nonlinear behaviour, especially for the flow of product. The nonlinearities and the complexity of the input and outputs make the realization of optimal control more difficult. Modern control methods such as Model Predictive control (MPC) are particularly suitable to perform multicriteria control and optimize operation costs while ensuring safeguards for critical parameters. MPC requires multi-step ahead prediction modelling techniques that can treat nonlinear multivariable industrial processes. The core of MPC (and the main challenge) is to obtain a reliable multi-step ahead prediction model. The nonlinear nature of the problem lead to use nonlinear model such as neural network models and particularly a hybrid neural network model developed for multistep ahead prediction problems.

The data set corresponding to a four-effect evaporator of the Netherlands Institute for Diary Research NIZO and was obtained from the DAISY data base [START_REF]DAISY: Database for the Identification of Systems[END_REF]. The process is modeled as a three-input three-output process with disturbances. The input signals are PRBS and are used to ensure that the input space span the entire operation modes. The sample rate is 30 seconds and the training and validation sets contain 3000 samples each.

II. HYBRID NEURAL NETWORK MODEL

The modelling methodology is based on the use of committees of network. In multi-step ahead prediction, the use of the previous predictions leads to highly correlated prediction error. As the prediction horizon increases, the prediction error grows exponentially. The committees of network are used to produce a set uncorrelated predictions. These predictions are combined to produce a more accurate single-step ahead prediction but also will improve the multi-step ahead prediction as the prediction error will no longer be correlated.

The rational for that approach is the statistical concept that a set of uncorrelated models will produce predictions centered on the desired answer. This requires uncorrelated model that are obtained by training each individual with different training sets. In that sense, it is a different solution proposed for the conditioning approach considered in Bayesian methods [START_REF] Mackay | Bayesian Methods for Adaptive Models[END_REF].

The first statistical technique used to obtain uncorrelated models is the so called statistical bootstrap [START_REF] Shao | The Jacknife and Bootstrap[END_REF], [START_REF] Cloarec | Multistep Ahead Prediction of the Sunspot Series using Hybrid Neural Network Models[END_REF]. It is a resampling method used to decrease the dependencies on the parameter optimization and the model performance estimates. The rational for its use is the same that justifies PRBS for system identification. It can be used to overcome limited training data sets [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF] or in our case, to reduce the computation times. A bootstrap set is obtain by random drawing with replacement on the training set.

The bootstraps are used at all steps of the modeling. They will be particularly useful to provide generalization estimates. It has been shown [START_REF] Hansen | Early Stop Criterion from the Bootstrap Ensemble[END_REF] that a performance criterion evaluated over several other bootstraps can be considered as a good estimate of the generalization. With such an estimate, it is no longer required to divide the data into the classical training, test and validation sets. With bootstraps, the former training and test sets can both be used for training. In that case, by providing larger data sets, the bootstraps contribute to improve the overall generalization performance of the model.

Another technique implemented will be the Principal Component Analysis (PCA) [START_REF] Jobson | Applied Multivariate Data Analysis[END_REF]. Mathematically similar to a singular value decomposition (SVD), the results will be used to perform the orthogonalization, the feature extraction and the reduction of the input space. All these characteristics lead to feed the network with more relevant information, lead to better generalization (noise filtering) and computation times.

The PCA is not applied to PRBS input because of their uncorrelated nature. We will see that although the use of PRBS inputs is relevant in linear models, they can unefficient in nonlinear models especially when preprocessing methods like PCA are used.

The PCA are also used to analyze the output of each layer. The optimal topology is then the topology that would perform the compression of the inter-layer signals.

Further statistical methods will be used in the effective input determination. Statistical inference will be applied to decision making based on the performance of linear regression models but also in the weight elimination process.

While the previous techniques can be applied to various identification methods, the key feature of our methodology is the use of committees. The concept of network committees, also called ensembles or redundant networks [START_REF] Cloarec | Multistep Ahead Prediction of the Sunspot Series using Hybrid Neural Network Models[END_REF], [START_REF] Mammone | When Networks Disagree : Ensemble Methods for Hybrid Neural Networks[END_REF], comes from the field of statistical theory and is a natural extension of the estimates accuracy improvement through statistical data analysis. The committees are collections of finite numbers of neural networks trained on different sample sets, with different initial conditions or learning criteria. Their use is known to improve the generalization performance by decreasing the effect of spatial and temporal dependencies.

Once trained, the network committees are used to improve the decision making process of the structural determination. By enabling statistical inference, the model selection process was made on the basis of confidence limits. Furthermore, since the committees prediction errors are uncorrelated, they can be combined using a network combiner to give better predictions but The use of committees for single-step ahead predictions gives good results (see Table I) and the same principle can be used to obtain multi-step ahead predictions. Such predictions are implemented by the committees for increasing horizon of predictions. The statistical analysis enable to determine the optimal horizon of prediction. The combiner network is then trained using the multi-step ahead prediction as inputs. We have already shown in [START_REF] Cloarec | Multistep Ahead Prediction of the Sunspot Series using Hybrid Neural Network Models[END_REF], [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF] that the use of neural networks to perform the combination considerably improves the final multi-step ahead predictions.

III. RESULTS AND COMPARISONS

The three outputs systems is modeled by three MISO models, noted DMC-model, FP-model and TP-model for the dry matter content model, flow of product model and temperature of product model, respectively. Although it would be possible to implement MIMO models, the separation enable to identify clearly the different dynamics of the system. To perform multistep ahead prediction, the one-step ahead prediction of each output is calculated and used to implement the next prediction.

The first step of the modelling is the determination of the causal inputs. This is achieved by combining correlation and spectral analysis to linear model performance based statistical decision making processes. The inputs corresponding to the output variables are processed using PCA and only the most significant components are used as inputs in the networks.

The structure of the DMC-model input space can be expressed by :

Input(1, 2, 3) = P CA (1,2,3) (DM C(k -1, k -2, • • • , k -13)) Input(4, 5, 6) = P CA (1,2,3) (F P (k -1, k -2, • • • , k -5)) Input(7, 8) = P CA (1,2) (T P (k -1, k -2, • • • , k -5)) Input(9, 10, 11, 12) = F F (k -4, k -5, • • • , k -8)) Input(13, 14, 15) = V F (k -6, k -7, k -8) Input(16, 17, 18) = CW F (k -1, k -2, k -3)
for the DMC-model, the first three inputs are the three first principal scores of the set made of the past 13 dry matter content of the product.

Similarly, we have the input spaces of the FP-model : [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF][START_REF] Cloarec | Probabilistic Approach for Hybrid Neural Network Modeling[END_REF][START_REF] Hansen | Early Stop Criterion from the Bootstrap Ensemble[END_REF][START_REF] Jobson | Applied Multivariate Data Analysis[END_REF][START_REF] Mammone | When Networks Disagree : Ensemble Methods for Hybrid Neural Networks[END_REF][START_REF] Ljung | System Identification : Theory for the User[END_REF][START_REF] Van Overschee | N4SID Two Subspace Algorithms for Identification of Combined Deterministic-Stochastic Systems[END_REF] 

Input(1, 2) = P CA (1,2) (DM C(k -1, k -2, • • • , k -8)) Input(3, 4, 5, 6) = P CA (1,2,3,4) (F P (k -1, k -2, • • • , k -8)) Input
= F F (k -2, k -3, • • • , k -8)
For the TP-model, the input space is :

Input(1, 2) = P CA (1,2) (T P (k -1, k -2, • • • , k -6)) Input(3, 4, 5, 6) = F F (k -2, • • • , k -5) Input(7, 8, 9, 10) = CW F (k -2, • • • , k -6)
The analysis of the input space indicates that the product spends between 2 and 5 minutes in the system. The two values indicate that the four stages act like buffers. The transit time is minimal when the evaporators are full while it is minimal when the systems is empty. The accuracy of that transit times are downgraded by the use of PRBS with unsufficient low frequencies. This explains the small correlation observed between the flow of feed and the output variables. Since the flow of feed plays an important causal role for the three outputs, and because the PRBS are uncorrelated inputs, the flow of feed input has to be used used with a higher order of regression.

Other input signal types such as ramps or steps may be more suitable to identify some characteristics of the buffer effect. Another possibility would be to evaluate the quantity of product in the system by balancing the input and output flows. Once identified, such variable could make a rich in information input. In any case, whatever the rational for general method such as PRBS, it is essential to adapt the modelling to the specificities of the system, in other words, to implement the understanding of the system.

As a consequence of the use of PRBS functions, the statistical decision methods used for topological, bootstrap, neuron pruning and weight elimination determination processes had to operate with poor confidence limits.

Another consequence of the lack of accuracy on the inputs is that the modelling will tend to emphasize correlated inputs over causal inputs. This can be a problem for multistep ahead forecasting since very good performance can be obtained in single-step ahead prediction only relying on inertial correlation. However, as the prediction horizon H increases, the model performance collapses.

Despite all the drawbacks of the data sets, a first network committee of 50 networks was trained. Form these, two subcommittees of networks optimized for error variance and error bias was selected. A network combiner was trained to perform the combination of the first step ahead prediction of the subcommittees, forming the hybrid neural network. The combination of the prediction enabled to improve by about 10 % the prediction MSE. Moreover, the statistics on the subcommittees predictions (variance) were used as upper bounds for the confidence on the combined predictions. The initial 10 % gain proved to be even more important for the multi-step ahead prediction.

Once the three hybrid neural network models were obtained, the multistep ahead prediction process was implemented. For each prediction horizon, three combiners were trained. It is important to have different combiners for each horizon of prediction since the performance of the subcommittee changes as the inertial correlation decreases. As H increases, the networks optimized for causal inputs perform better requiring to change their respective weight in the predictions combination.

The multi-step ahead prediction was implemented to prediction horizons corresponding to the highest regression order of the predicted outputs. In other words, at the exception of the inputs, a H ∞ predictor was obtained.

The results of the single-step ahead predictions are presented in Table I with comparisons with the results obtained on three classes of identification methods [START_REF] Zhu | Comparison of Three Classes of Identification Methods[END_REF]. In [START_REF] Zhu | Comparison of Three Classes of Identification Methods[END_REF], three linear discrete time identification methods were compared and the application to the evaporator were performed by the authors. The prediction error method (PEM) is the most classical identification method (ARX, ARMAX, ...) [START_REF] Ljung | System Identification : Theory for the User[END_REF]. N4SID refers to the numerical algorithms for Subspace State Space System Identification [START_REF] Van Overschee | N4SID Two Subspace Algorithms for Identification of Combined Deterministic-Stochastic Systems[END_REF]. ASYM is the asymptotic method based on the asymptotic theory of Ljung [START_REF] Zhu | Comparison of Three Classes of Identification Methods[END_REF] and uses frequency domain criterion. The order denotes the McMillan degree of model.

In Table II, the H ∞ prediction models performances are represented. To enable comparisons, the performance criterion is the normalized mean square error (MSE). The hybrid models perform significantly better that the three methods presented. Moreover, while the three methods were in turn most efficient for different outputs, the hybrid model performs better for any of the output.

The comparisons of the H ∞ models, although they show better performance, are not as much significant as the single step ahead prediction. This is probably due to the uncertainty in the identification of the causal inputs. Although the method have shown a good ability to perform multi-step ahead predictions, the improvements are slightly under expectations. It is important to notice however that the poor performance of the multi-step ahead predictions, whatever the method used, are mainly explained by the prediction error on the flow of product. As already mentioned, an improvement in the input signals would lead to far better multi-step ahead predictions.

In order to illustrate the prediction performance, we can examine the predictions for one model. Figure 4 represents the single step ahead prediction on the Dry Matter Content of product (DMC-model) while Figure 5 represents the H ∞ predictions.

IV. CONCLUSION

The hybrid neural network modelling methodology have been applied successfully to the four-effect evaporator. The H ∞ is accurate enough to implement a Model Predictive Control strategy. Moreover, the availability of upper bounds of the confidence limits make possible to ensure that some critical parameters, such as excessive temperature that would damage the product, will stay within safe limits.

The modelling does not only provides prediction capabilities but also some understanding of the system behaviour. The insight gained should be used as a feedback to improve the iterative modelling process. Therefore, the next step would be to perform another data acquisition campaign with signals more suitable to provides valuable information for the identification process. Concerning the modelling method itself, the results would suggests the need for improvement in the causal input selection. Although the use of linear model based criterion is a rational choice, the use of multi-step ahead prediction criteria would probably help to differentiate further correlation from causality.

In any case, the angular stone of modeling is the human understanding of the system and the implementation of that knowledge in the modelling process.
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 2 Fig. 2. Four-effect Evaporator with Mechanical Vapour Compression.
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 3 Fig. 3. Multi-step Prediction Neural Network Structure.
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 4 Fig.[START_REF] Mackay | Bayesian Methods for Adaptive Models[END_REF]. Observed (solid) and Prediction (dashed) and 90 per cent Confidence Limits (dotted).
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 5 Fig. 5. Observed (solid) and Prediction (dashed) and 90 per cent Confidence Limits (dotted).

TABLE II COMPARISONS

 II OF THE NORMALIZED MSE FOR H∞ FORECASTING ON THE THREE OUTPUTS.

	Method	PEM	N4SID ASYM	ASYM	Hybrid NN
				(MISO) (reduced MISO)	
	Order	13	13	22	12	13
	Dry Matter Content	0.3464 0.3987	0.3700	0.3718	0.3205
	Flow of Product	0.4033 0.4048	0.4115	0.4102	0.3812
	Temperature of Product	0.2939 0.3003	0.3581	0.3582	0.2365