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The paper demonstrates the use of predictive control techniques in conjunction with black-box modeling. The control strategy will be illustrated by an industrial application, a four-effect fallingfilm evaporator used in the dairy industry. Linear models are used to identify the multivariable system (MIMO). Particular attention is given to the multi-step ahead prediction behaviour of the process model. Model Predictive Control (MPC) is be used to control the evaporator, which allows for constrains to be set, both on control actions and output variables.

I. Introduction

T HE purpose of the paper will be to demonstrate the performance of Model Predictive Control (MPC) when applied to complex nonlinear multivariable (MIMO) systems. The control strategy will be illustrated and validated on an industrial plant, a four-effect (stage) falling-film milk evaporator. The system and the corresponding data sets [START_REF]DAISY: Database for the Identification of Systems, Department of Electrical Engineering[END_REF] are chosen since it has already been used as an illustrative example for black-box modeling [START_REF] Zhu | Comparison of Three Classes of Identification Methods[END_REF], [START_REF] Cloarec | Modelling of a Four-Effect Evaporator using Hybrid Neural Networks[END_REF] and control technique demonstration [START_REF] Van Wijck | Multivariable Supervisory Control of a Four-effect Falling-film Evaporator[END_REF].

In the dairy industry [START_REF] Bylund | Dairy Processing Handbook[END_REF], evaporators are used to concentrate products (such as milk) before the spray drying process. The basic principle of the four-effect falling-film evaporator [START_REF] Bylund | Dairy Processing Handbook[END_REF] consists of preheating the product before entering the first effect (using the heat of the extracted vapor from the previous effect). The product flows down as a film along the tubes of each effect, where a distribution plate is used at the top of each effect to direct the milk to the tubes. The film flows down on the evaporation tubes heated by condensing vapour on the outside of the tubes. A two-phase flow of concentrate and vapour reaches the separator where product and vapour are separated. To reduce energy consumption and heat damage, the evaporation is performed under partial vacuum.

In multiple effect (stage) systems, represented in Figure 1 [6], the evaporators are operated in series at increasing level of vacuum (decreasing temperatures). The concentrated product is pumped into the next distribution plate. The extracted vapour is compressed in thermocompressors and is used as a heat medium in the next evaporator.

The cascading of the evaporators leads to potential energy savings but also increases the performance of the evaporation while reducing the risk of damaging the product. Once the milk is concentrated, the product is directed to a dryer which can operate only if the product is sufficiently concentrated.

The four-effect falling-film evaporator is a complex nonlinear system. One of the causes of nonlinearity is the cascading of the evaporators and their capacity to hold quantities of product. By doing so, they can act as buffers leading to nonlinear behaviour, especially for the flow of product. The nonlinearities and the complexity of the input and outputs make the realization of optimal control more difficult. Modern control methods such as Model Predictive Control (MPC) are particularly suitable for performing multicriteria control and optimizing operation costs while ensuring safeguards for critical variables. MPC requires multi-step ahead prediction modeling techniques that can deal nonlinear multivariable industrial processes. The core of MPC (and the main challenge) is to obtain a reliable multi-step ahead prediction model. The nonlinear nature of the problem lead to use nonlinear model such as neural network models or alternatively, a linearised model which has good validity around the operating region of the system [START_REF] Cloarec | Modelling of a Four-Effect Evaporator using Hybrid Neural Networks[END_REF].

The data sets used to perform the modeling and control are those of an experimental four-effect falling-film evaporator at the Netherlands Institute for Diary Research NIZO and were obtained from the DAISY data base [START_REF]DAISY: Database for the Identification of Systems, Department of Electrical Engineering[END_REF]. The process is modeled as a three-input three-output process with disturbances. Other variables such as dry matter content of feed, temperature of feed, temperature of cooling water entering the condenser and surrounding temperatures are considered as disturbances.

The input signals are essentially pseudo-random binary sequences (PRBSs) and are used to ensure that the input space spans the range of operation modes. The sampling period is 10 seconds and the training and validation sets contain 3000 samples each. The model was resampled to a sampling period of 1000 seconds for control purposes in order to achieve a realistic prediction horizon of about 20 samples, which must cover the complete transient response of the system. This is vital since the controller calculation is iterative.

II. Model Predictive Control

The concept of Model Predictive Control (MPC) is to use the process model to predict future process outputs over a certain period of time called the prediction horizon, and the predictive controller calculates the future controller outputs such that the predicted process outputs (ŷ(k + 1), . . . , ŷ(k + N )) follow the set-points or the reference trajectories (w(k +1), . . . , w(k +N )) in the desired manner. The predictive controller is often regarded as an optimizer, as it attempts to minimize a cost function which involves the error between the desired output and the process output and the control actions, taking into account the constrains on the control actions.

The basic structure of the predictive controller is illustrated by Fig. 2. P A predictive controller uses the receding horizon approach, that is, instead of using the whole controller output sequence of (u(k), u(k + 1), •, u(k + N -1)) t as determined by the optimizer, only the first control signal u(k) is applied to the process. At the next sample, the optimization procedure is repeated but using the latest measured process outputs rather than the predicted outputs at the previous sample. The advantage of using the receding horizon approach is that it compensates for future disturbances and modeling errors. The operation of the MPC is summarized in Fig. 3. At time t k , the process output is compared to the setpoint, and a 'reference trajectory' (chosen by the designer) established along which it is desired to drive the process output. The predictive controller, using an optimization procedure, then determines a set of allowable control signal required to achieve this output response and applies the fist of these control actions. This procedure is repeated at t k+1 .

The cost function is usually a quadratic function, such as equation 1:

J(k) = Q N 2 i=N 1 (ŷ(k + i) -w(k + i)) 2 + R N 2 i=1 (∆u(k + i -1)) 2 (1) 
where:

• N 1 and N 2 are the minimum and maximum prediction horizon, respectively,

• N u is the control horizon,

• Q and R are weighting factors,

• bl and bu are the lower and upper bounds on the control, respectively. The constrains on the command signal are defined by equation 2:

bl ≤ u(k + i -1) ≤ bu ∀i ∈ [1, N u ] (2) 
The GPC (Generalized Predictive Control) approach assumes that after an interval of N u (N u < N 2 ), projected control increments are zero [START_REF] Clarke | Generalized Predictive Control: Part 1. The Basic Algorithm[END_REF], i.e.:

∆u(k + i -1) = 0 ∀i > N u (3) 
For the constrained optimization problem, an analytical solution is not available and therefore an iterative optimization method is used. This iterative optimization is implemented using a quazi-Newton algorithm, which utilized a numerical gradient of the function to be optimized. The process responses and controller actions to positive step changes in the set-points are shown by figures 4,5 and 6. For simplicity, the set-points are used as the reference trajectories, i.e. the reference trajectories are constants before and after the step change. In such a case, the dynamic response can be shaped using the control weighting function. Alternatively, the reference trajectories can also be defined as first (or higher) order trajectories, and similar results can be obtained.

III. Results and Discussions

Figures 4(c) and 5(c) show that the step changes in the set-point for y 1 (DMC) and y 2 (FP) almost have no influence on y 3 (TP) i.e. decoupling of the system has been achieved. Figure 4(b) shows that the changes in set-point for y 1 (DMC) causes y 2 (FP) to response sharply and reversely, and a heavier control weighting is preferable to reduce such an impact on y 2 . However, Figure 5(a) suggests that minimum control weighting is desirable to reduce the impact of the change in set-point for y 2 on y 1 .

Figures 4(a), 5(b) and 6(c) show that the bigger the control weighting factor R is, the smoother the process output will be following set-point changes, and the smaller R is, the faster the process output will reach the desired value. In this way, the transient response of the system can be shaped.

Figures 6(a) and 6(b) show that the impact of a step change in the set-point for y 3 (TP) is considerable and, in some senses, undesirable. It is shown that a heavier control weighting is required. The set-point 3 changes at sampling time k = 5 from 46 to 46.5, an increase of 0.5C. When R = 100, y 1 (DMC) increases by 16% from 0.5 to ≈ 0.58, and y 2 (FP) increases from 0.05 to more than 0.15. However, bigger control weighting factors will cause the outputs of y 1 and y 2 to resume their set-points in a more relaxed fashion.

In short, the set-point changes in y 1 (DMC) and y 2 (FP) do not have severe impact on process outputs. The set-point change in y 3 (TP) has a severe impact on process outputs, and this change also causes much bigger controller actions than those caused by the changes in set-point 1 and 2 as shown by figures 6(d, e, f), figures 5(d, e, f) and figures 4(d, e, f). A bigger control weighting factor R is helpful to obtain more gentle controller actions. 

IV. Conclusions

This paper only presents the simulation results of the preliminary stage of a project for predictive control of complex nonlinear MIMO systems of evaporators and spray dryers. Further investigations on predictive controller for nonlinear systems described by neural network models are still to be conducted, and the predictive control strategy is to be compared with other conventional control strategies.

These preliminary results, however, do give useful insight into the behaviour of the system and confirm that predictive control is a suitable control strategy to employ.

Fig. 1 .

 1 Fig. 1. Four-effect Falling-film Evaporator.

• input 1 :

 1 Flow of Feed (FF) • input 2 : Vapour Flow to First Effect Evaporator Stage (VF) • input 3 : Cooling Water Flow to Condenser (CWF) • output 1 : Dry Matter Content of the Product (DMC) • output 2 : Flow of Product (FP) • output 3 : Temperature of Product (TP)

Fig. 2 .

 2 Fig. 2. Block Diagram of a Predictive Controller.
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 3 Fig. 3. Operation of a Predictive Controller.
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 6 Fig. 6. Process Response and Control Actions to setpoint change in TP.
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