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Probabilistic Approach for Hybrid Neural Network Modeling

This paper presents a probabilistic approach used to address the various issues involved in the system identification and presents a modeling methodology particularly aiming at the problems involved with multi-step ahead forecasting necessary to implement control methods such as predictive control. The method will be illustrated by an entry to the time series competition, i.e. a chaotic time series. It is based on hybrid neural networks used in committee to perform a nonlinear regression. The leading idea to implement a probabilistic approach of the neural network modeling using techniques from the fields of statistical theory [1] and system identification [2].

I. Overview of the Method

A. Probabilistic Approach

All the modeling methods have to tackle two main problems : the determination of the model space and the determination of the parameter space [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF]. The model space relates to the space of architecture, the noise model, the data preprocessing techniques etc... The parameter space determination, given a model space, involves finding a set of parameters that will minimize a given performance criterion. The two problems share a common probabilistic interpretation. The model space determination is the inference of the relative probability of alternative models, given the data sets, and the parameter optimization is the inference of the most probable parameter set given the model space, the training set and the training method parameters. Both problems are highly conditioned to the data. In theory, only an infinite data set (or at least one containing all the possible occurrence of the input space) could give a hypothetical true model space. Similarly, only an infinite training set could lead to an optimal parameter space. In fact, such a perfect model would be only a memory and the notion of prediction would be illusive. Moreover, in practical applications, it is not conceivable to use infinite or even very large data sets, either because they are not available or simply because their use would lead to too large computation times.

The main consequence of that is that the result-ing model is not ideal and that the probability that the prediction is erroneous is conditioned to the conditioning variables. Since the conditioning is the cause of the prediction error, many modeling techniques attempt to reduce it. We will see how we intend to do so but more importantly, we will use the very nature of that conditioning to actually produce better predictions.

To explain the underlying idea of the method, we first have to introduce the concept of the density of probability over the model and parameter spaces. We can define m ∞ and D ∞ to be, respectively, the hypothetical ideal model and the infinite data set. Therefore, any model m i obtained from the data subset D i can be described by its probability to be m ∞ . If D i belongs to a family of subsets F(D ∞ ), then the probability P(m i = m ∞ /D i ) over F(D ∞ ) defines the model space density of probability. Similarly, it is possible to define a parameter space density of probability as a function of the conditioning variables (data set, model space, training set and parameters). If the data sets are uncorrelated and the training variables randomized, it can be shown that the density of probability can be approximated by normal distributions.

B. Distribution Center

The most important result provided by the probabilistic approach is the existence of an hypothetical center where the probability is maximum. All the models are therefore estimates of that hypothetical ideal model and parameter space and can be described by their distance from it. If the density of probability was available through analytical results, it would be therefore possible to find an analytical mean to obtain the ideal model and parameter space. This is only possible in a limited number of cases where the simplicity of the modeling does not even requires to use such ends. In most practical applications, such an analytical solution is out of reach so that the distribution center concept must be used in other ways.

By definition, the distribution center corresponds to the maximum likelihood locus. Therefore, if the model and parameters estimates are obtained through uncorrelated means, then statistical theory tells us that they will be evenly distributed around the maximum likelihood locus. This even distribution suggests the concept of averaged locus, i.e. the space obtained by averaging the estimated spaces. The more estimates we have, the closer will be the averaged locus to the ideal space.

The averaged locus concept can actually be used to obtained solutions in continuous spaces, but, in general, the spaces are discrete (a neural network has either two or three layers and not 2.41 layers). This is valid for both the model and parameter spaces. However, since our ultimate goal is to obtain good predictions rather than optimal models, we can use the only continuous space available : the prediction space. It can be demonstrated that if a set of models is obtained by uncorrelated means, then their predictions will also be uncorrelated. An immediate result from statistical theory is that the prediction space will be uniformly distributed around the zero mean error point. In other words, on average, the mean of the combined prediction error will be zero. Of course, again this is absolutely true only with an infinite number of predictions but it can be shown that in any case, the average of the combined prediction error will always be inferior to the averaged prediction errors.

C. Combined Predictions

The basic idea of combining predictions from uncorrelated models to obtain better predictions is known as the ensemble method [START_REF] Sollich | Learning with Ensembles : How Over-fitting can be Useful[END_REF]. In our methodology, the ensembles are constituted of neural network predictors designated as network committees. Arising from uncorrelated modeling techniques, they have different input spaces and different topologies so that in our approach, there are no such things as optimal topologies but only a set of topologies associated with probabilities. We will see later that the extensive use of the combination approach provides other modeling improvements that leads to the classification of four models as Hybrid Neural Network models [START_REF] Mammone | When Networks Disagree : Ensemble Methods for Hybrid Neural Networks[END_REF].

In practice, the combination will be efficient only if uncorrelated models are used and if the predictions are coherent. In fact, purely random models would give uncorrelated predictions while their combinations would not be coherent. The main goal of our modeling technique is therefore to obtain a set of models providing good predictions yet uncorrelated from a limited initial data set. These criteria are qualitative rather than quantitative so that other criteria must be defined.

D. Generalization

A supervised neural network is a nonlinear parameterized mapping of an input space to an output space, also called the target space. The nonlinear nature of that connectionist model, and especially the hidden layers, gives neural networks greater computational flexibility and capacities than linear models. When neural networks are used as classifiers, the capacity corresponds to the number of discernible patterns and is a function broadly estimated to be proportional to the square of the number of parameters. In linear models, the capacity function is simply proportional to the number of parameters. The results is that by allowing the network to store all the patterns, the training algorithm does not provides a network that performs feature analysis and that therefore performs badly when presented with a pattern outside the set of pattern used in the training set. This poor interpolation/extrapolation ability is designated as poor generalization and is said to be the result of overtraining.

Theoretically, a learning algorithm, given a training set, can lead to a network with good generalization only if the network is optimally regularized, i.e. is the topology of the network is minimum with respect to the complexity of the problem. To a first approximation, the complexity of the problem can be expressed as the ratio between the complexity of the output space and the input space and expresses the content of minimal information available in the mapping. Again, the complexity of the problem is difficult to determine analytically and the various methods used to obtain estimates are not reliable enough to be used in practical cases. Therefore, it is not possible to determine analytically the optimal topology.

Since the generalization is, along with the minimization of the prediction error on the training set, the important issue, other means have to be used to obtain it. In fact, we will apply two different techniques to tackle the problem at both ends. The first approach consists of minimizing the dimension of the input space while the second one is to implement a learning method that uses a generalization criterion.

E. Statistical Bootstraps

One of the key feature of our modeling technique is the use of statistical bootstraps [START_REF] Hansen | Early Stop Criterion from the Bootstrap Ensemble[END_REF]. Along with jackknifing and crossvalidation, bootstrap is a statistical resampling technique. In fact, the major cause of poor conditioning is the availability of limited data sets. Therefore, the remaining data sets can be spatially and temporally correlated, adding to the conditioning when used for the determination of model and parameter spaces. Since we will be using combination, it is possible to use random data subsets for which the uncorrelated condition will be guaranteed. The consequence is that because each model will have to express a smaller number of features while still maintaining generalization, the resulting networks will have smaller topologies. Of course, the uncorrelation can be assumed only if the variety of the bootstraps is guaranteed, i.e. if the probability for two bootstraps to be identical is small enough. Again, a trade off has to be found between the size of the bootstraps and the number of individual models.

The bootstraps will be used at all steps of the modeling. They will be particularly useful to provide generalization estimates. It has been shown [START_REF] Hansen | Early Stop Criterion from the Bootstrap Ensemble[END_REF] that a performance criterion evaluated over several other bootstraps can be considered as a good estimate of the generalization. With such an estimate, it is no longer required to divide the data into the classical training, test and validation sets. With bootstraps, the former training and test sets can both be used for training. In that case, by providing larger data sets, the bootstraps contribute to improve the overall generalization performance of the model.

F. Regularization

As expressed already, the generalization will be obtained only if the complexity of the problem matches the capacity of the network. Moreover, the complexity must be limited so that the training process will be able to find the global minimum for the particular network. Therefore, regularization processes aiming to minimize the topology of the network are applied. Our modeling methods uses regularization methods based on statistical analysis.

In order for the regularization to be effective, we have first to optimize the input space, i.e. to minimize its complexity by performing preprocessing that will reduce the dimensions and the even distribution of the input space. The method called Principal Component Analysis (PCA) which is similar to the singular value decomposition (SVD) [START_REF] Rencher | Methods of Multivariate Analysis[END_REF][START_REF] Jobson | Categorical and Multivariate Methods[END_REF] attempts first to orthogonalized the input space. One of the advantages of orthogonalization is that the training method will converge faster and more efficiently towards the hypothetical global minimum. The input space reduction is carried out on the evidence of linear model performance. The singular value associated with each component expresses its contribution to the variance, i.e. information content, in the input space. However, since the variance is not equivalent to causality, a careful selection of the principal components must be carried out. The causality is established using linear models using, in turn, the various components until the most likely input space is obtained, with respect to statistical inference. Each linear model is determined for a given bootstrap and its generalization is estimated using other bootstraps.

Once the input space is optimal, it is possible to examine the optimization of the topology. The same method, PCA, is used with a different interpretation of the results to obtain the optimal number of neurons in each layer (we arbitrarily define the number of layers to be three rather than two so that the ratio of complexity to the number of parameters is maximal). A series of large networks are trained using a bootstrap as a training set. The outputs of the hidden layers are then analyzed using PCA. The singular values are used to determine the correlation between the signals and therefore the minimum number of neurons required to transmit the information. In that sense, PCA can be compared to the Karhunen-Loeve method. The topology is reduced so that the information transmitted between layers can only be in a compressed format. For each bootstrap and set of random training conditions, an optimal topology and network is defined. The statistical analysis of the results over the set of bootstraps is used to determine the larger optimal topology that will be used as an initial topology for the network committee.

When the optimal number of neuron is determined, the network committees are trained with bootstraps using the initial optimal topology. Because this topology is likely to be slightly superior to the optimal one (in order to avoid over-regularization when another bootstrap is applied), the network are trained with an early stop method. The early stop method is based on the fact that in the early stage of the training algorithm, the minimization of the performance criterion over the training set coincides with the improvement of the generalization. It is only after a given point that the training set criterion can be further minimized by the overtraining phenomena. A set of bootstraps is used to evaluate the generalization of the network and stops it when overtraining is detected.

Once we have a committee of networks with different model spaces and topologies, it is possible to further improve the regularization by performing weight elimination. Again, statistical analysis methods are used to supervised the process. Proceeding from the last layer to the first, the efficiency of each weight is evaluated by evaluation of the generalization performance with and without it. The decision concerning the elimination is based on statistical inference over the generalization.

When the regularization is completed, we have a committee of networks whose model and parameter spaces can be considered broadly uncorrelated while still having prediction performances good enough to be combined efficiently.

II. Prediction Competition

A. Introduction

The time series used in the prediction competition, represented in Fig. 1 is a chaotic time series consisting of 2000 points. The goal of the competition is to predict the next 200 points. The performance of the model is evaluated using the mean square error (MSE).

As suggested in the competition announcement, this time series has similar characteristics with a time series used in a previous competition and related to the chaotic emission of NH3 lasers [START_REF] Hübner | Lorentz-Like Chaos in NH3-FIR Laser[END_REF]. For different operating conditions, the laser intensity time series exhibited various Lorenz-like pulsation.

In any modeling technique, the more information is available, the easier will be the determination of the optimal model space. The systems analysis involves various data preprocessing and feature extraction. Several nonlinear transformation attempts to emphasize particular behaviour did not provide significant results.

The analysis of the instantaneous provided some understanding of the chaotic behaviour of the time series. It appears that some patterns can be described as an sinusoidal oscillation with decreasing frequency and an exponentially growing envelope. At a certain point, the oscillation stops and the time series switches to another averaged value and starts another oscillation pattern. The lack of accuracy of the estimated frequency as well as the lack of statistical coherence in the switching and averaged value feature did not allow the use of this (probably essential) characteristic.

B. Regression Model

The lack of information on the physical nature of the time series as well as the limited data set leads to the use of pure regression models. The regression order was defined using correlation analysis and statistical analysis of the performance of linear models. The outcome was to select the past 14 points as input candidates although the oscillation cycle involved 180 points.

As already expressed in section F. , the optimality of both the model and parameter space can be obtained only with a minimal model but also with the minimal information. Introduction of redundencies into the input space leads to the provision of superfluous degrees of freedom. The PCA method was used to orthogonalize the input space and perform dimensionality reduction. The PCA involved determines the eigenvalues of the covariance matrix of the input space and can be seen as a feature extraction process. The result is a set of principal components that expresses the input space on the orthogonal base defined by the eigenvectors. Moreover, the eigenvalues are related to the proportion of variance contained in each principal component. Figure 2 shows the first 5 principal components. The first component is normalized and the parameters are used to scale down the other components. By doing so, the amplitude of the input will be correlated to their relevance, i.e. their contribution to the overall variance.

The dimensionality reduction is performed by selecting a subset of principal components. The difficulty is to find a balance between information loss and dimension. In any model, only causal inputs should be used. Therefore, the selection of the components was performed by the statistical inference of linear model generalization performance using statistical bootstraps. This process lead to select only the first 5 components responsible for 99.9 % of the total variance.

C. Hybrid Neural Network Models

The model used to implement the prediction is a hybrid neural network. This structure proved particularly appropriate for increasing the horizon of prediction on chaotic time series [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF]. In multi-step ahead prediction, predicted outputs are used as new inputs. The feedback of the prediction error leads to correlated errors which in turn creates instability and an unreliable horizon of prediction.

The main idea used to improve the prediction is therefore to decrease the correlation of the error. This can be done by feeding back a predicted output ob-tained from a committee of models. As expressed in section C. , if the models are uncorrelated, the combination will not only provide better predictions but will also provide estimates of the prediction error confidence limits which in some applications are as important as the predictions themselves. To perform multistep ahead prediction, the combined predictions are used as new inputs in the committees. This give better results than the non-cooperative methods by reducing the propagation of the error correlation. In other words, the combination prevents the prediction error building up as the horizon of prediction increases. Fig. 3 represents the hybrid neural network structure. The first stage network committee is divided into two subcommittees, which are optimized (respectively) for prediction error bias and prediction error variance. Using the combination of these prediction, it is expected that the so-called bias-variance trade off is addressed in a more effective way than the use of the mean square error criterion. As expressed already, the combination will be effective only if the networks are uncorrelated.

D. Obtaining Uncorrelated Models

In neural network modeling, the first issue to address is the topological one. The determination of the hypothetical optimal topology is obtained by training a set of networks, using bootstraps as training sets and using PCA to prune neurons. 30 bootstraps containing 1 10 of the 2000 points training data set were randomly selected. The initial network topology was 6-6-1 and the maximum topology obtained for a 99 % confidence limit obtained from PCA neuron elimination was 4-4-1.

This topology was used first to train a committee containing 50 neural networks. The training involves an early stop criterion based on generalization and neuron pruning. The performance of these networks are evaluated using bootstrap-based generalization estimates and used to select the subcommittees. Over the 50, 26 were selected for the Bias Subcommittee, 25 for the Variance Subcommittee with 14 common networks.

The two subcommittees are further regularized by a weight elimination process based on statistical inference. Proceeding from the last layer to the first, the efficiency of each weight is evaluated using a generalization bootstrap-based performance criterion based on error bias or variance. The statistical inference of the results is used to dictate the weight elimination. This process is very efficient by eliminating about 30 % and 50 % of the number of parameters, respectively, for the variance and bias subcommittees. The elimination is carried out without retraining, i.e. the elimination is not compensated. Therefore, the elimination process allows an increase, within specific confidence limits, of the performance criteria.

When the networks have been regularized, parameter optimization is required and Genetic Algorithms were used. The main advantage of these evolutionary computation methods is their ability to implement optimization with many forms of criteria, such as multistep ahead prediction criteria, and their exploratory ability that enables them to lead more likely to global minima rather than local minima. However, they are extremely computationally intensive so that some optimization must be performed to accelerate the availability of a solution. Although GAs are very general optimization methods, a new optimization method taking into account the structural hierarchy in neural networks, was developed. The main idea was to generate an uncorrelated population in accordance with the hypothetical parameter space distribution. A broad estimates of the density of probability was obtained by retraining briefly the same network with variations of the training set. The statistics obtained were used to generate an optimal population, i.e. a population with characteristics enabling a positive evolutionary outcome on a limited population size. Moreover, rather than selecting parameters randomly for evolution, a probabilistic method taking into account the model hierarchy was used to further accelerate the computation.

E. Multi-step Ahead Prediction

The genetic algorithms can be used to optimize the networks on any prediction horizon. However, individual networks give poor multi-step ahead predictions and cannot be used for a large prediction horizon. Moreover, if the GAs provide generalization optimization, this effectively reduce the variety of the prediction and, as a result, decrease the performance of the combination. It was therefore preferred to implement the hybrid neural network structure presented in Fig. 3. The individual predictions are combined by a neural network, defined as the combiner, where a series of combiners, optimized for various horizon of prediction are used to improve the multi-step predictions. In the training process, the one step ahead predictions are obtained and a network is trained to optimize the combination. Using the prediction of the combiner, the two step ahead predictions are obtained and a second network is trained to optimize the combination. This iterative process is performed until the desired prediction horizon is reached. This method proved to be very efficient compared to the method aiming at optimizing the performance of the individual network.

F. Results

Figure 4, shows the evolution of the prediction error as the prediction horizon increases. An horizontal line represents the MSE of the time series and can be considered as a broad estimates of the prediction relevance. Therefore, it seems that the prediction error is growing exponentially and that beyond 16 steps ahead, the prediction are not reliable. Despite the poor prediction horizon, the prediction of the next 200 points is carried out and illustrated by Fig. 5.

III. Conclusion

A neural network modeling approach taking advantage of probabilistic theory to turn the some of the problems associated with neural networks, i.e. the overtraining, into positive issues, was presented. The application to the time series illustrated the modeling methodology, although the results were less than might be expected from previous works [START_REF] Cloarec | Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[END_REF].
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