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ABSTRACT 

Road traffic noise remains a major source of noise 
pollution in urban areas where long-term exposure has 
been shown to cause a wide range of health-related 
problems, including serious illnesses such as 
cardiovascular disease. The health-related effects of traffic 
noise exposure are well correlated to the long-term 
averaged sound pressure levels. Traffic noise also results 
in noise annoyance. Noise annoyance, in this case, is 
influenced by several acoustical as well as non-acoustical 
factors, in addition to long-term averaged levels. Its direct 
evaluation usually relies either on field questionnaires or 
on listening tests in controlled environments. Predictive 
models may then be derived by correlating perceived 
annoyance with acoustical and psychoacoustical indices. 
To improve the direct evaluation of noise annoyance, this 
paper presents preliminary work on the correlation of 
perceived annoyance, acoustical indices and physiological 
measurements using autonomic nervous system 
monitoring based on heart rate, respiration rate, skin 
electrodermal response, and skin blood flow. To this 
purpose, measurements were carried out in a laboratory on 
several subjects exposed to different simulated road noise 
soundscapes. The reproduced soundscapes are based on 
auralized sound samples which model road traffic noise 
scenarios comparing different abatement solutions. The 
auralization approach ensures replicable traffic flow 
conditions with and without the abatement solution. 
Results show the correlation between physical and 
physiological parameters and perceived sound quality, as 
well as the potential for new ways of analyzing auralized 
sound samples from physiological parameters. 

1. INTRODUCTION 

Transportation noise remains today the main source of 
noise pollution in urban areas and long-term exposure has 
been shown to cause serious health-related problems [1], 
[2]. Another measured effect of traffic noise is the 
perceived noise annoyance which is a result of several 
acoustical as well as non-acoustical factors, in addition to 
long-term exposure. Different methods exist for the direct 
evaluation of noise annoyance using questionnaires in-situ 
or in controlled laboratory environments [3], [4]. Work is 
also carried out to estimate noise annoyance from 

acoustical and/or psychoacoustical indices, thus avoiding 
the need to rely on panel studies [5]. To improve the direct 
evaluation of noise annoyance, it is of interest to also 
consider physiological measurements. Preliminary work 
on the subject was recently published, combining 
perceived annoyance rating with acoustical properties and 
biometric data [6]. The present paper shows new results 
based on a laboratory experiment where several subjects 
were exposed to different simulated road noise 
environments. The reproduced soundscapes are created 
using auralized sound samples of road traffic scenarios, 
comparing different abatement solutions (noise 
barriers) [7], [8]. The choice of auralized sound samples 
was made in order to obtain the same flow of vehicles for 
each abatement solution under study. The physiological 
measurements monitor the autonomic nervous system 
(ANS) based on heart rate, electrodermal response (EDR), 
respiration rate and skin blood flow (μCirc). This type of 
measurements was previously applied in the context of 
different sensory stimuli, such as tastes and flavor, to 
objectively assess induced physiological stress without 
declarative questionnaires [9]. The relationships between 
the activity of the autonomic nervous system and emotions 
have been studied extensively in the past [10]. One 
important result of this work is that ANS activity can be 
used to identify recurrent behaviors or patterns, based on 
different physiological indicators (such as respiration, 
mental sweating, cardiovascular responses). Particularly, 
emotions with a negative valence induce an ANS response 
whose intensity is correlated to the intensity of 
physiological stress. In that case, the ANS response 
activates the sympathetic nervous system (SNS). In a 
related study [11], psychophysiological measurements 
including variability of the heart rate, electromyography, 
and respiratory rate, were also applied to study the effect 
of noise on mental load.  

2. EXPERIMENTAL SETUP 

The experimental setup includes two main systems: the 
physiological data logger and the auralized sound samples 
reproduction. The associated equipment is shown in Figure 
1. 
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Figure 1. Experimental setup: (A) test room visual 
feedback, (B) data collection laptop PC with Labchart 
software and (C) Audient ID14 audio interface for the 
reproduction of auralized sound samples. 

2.1 Physiological monitoring system 
The physiological monitoring system is composed of a 
Powerlab 8 channel datalogger connected to 
ADInstruments Labchart software (see Figure 2). The 
recorded physiological data includes heart rate, using III-
lead and ADInstruments FE232 dual bioamp, breathing 
rate, using ADInstruments thoracic conductance belt, skin 
blood flow, using PeriFlux 5000 Perimed laser Doppler, 
and the electrodermal conductance response, using 
ADInstruments galvanic skin response amplifier, FE116 
GSR Amp. 

 
Figure 2. Labchart acquistion software with 
physiological signals during measurements: Red signal: 
ECG; Blue signal: EDRc, electrodermal conductance; 
Dark green signal: μcirc, skin blood flow; Pink signal: 
Respiration, breathing pattern; Purple signal: HRV, heart 
rate variability (BPM : beat per minute); Light green 
signal: breating rate (BPM: breath per minute). 

2.2 Sound reproduction system 
The auralization system uses binaural reproduction over 
headphones. Sound samples are played back on a laptop 
PC connected to an Audient ID14 audio interface. All 
sound samples are 24 bit/44100 Hz non-compressed audio 
files. Beyerdynamic DT770 PRO 80 Ohm headphones are 
used. Figure 3 shows a subject during measurements. 

2.3 Experiment sequence 
The measurement session was carried out on 5 healthy 
volunteering subjects (2 men and 3 women) ranging in age 
from 21 to 60 (mean age 39). Their hearing ability was not 
measured, but none of them reported any hearing 
impairment. The set of audio samples for each subject is 
the same and follows a predefined order. Three scenes are 

selected from a set of previously auralized scenes. Each 
scene includes two 20 second samples associated with two 
configurations of the abatement solution: “with” and 
“without”. The playback order is as follows: “scene 6 
without”, “scene 6 with”, “scene 7 without”, “scene 7 
with”, “scene 14 without”, and “scene 14 with” (the reader 
is referred to Section 3 for a description of each scene). A 
pause is inserted between each sound sample playback 
such as to ensure the subject returns to a stable 
physiological state. Note however, that the effects of sound 
onset on the measured parameters were not addressed in 
this preliminary study. During all measurement sessions, 
the subjects closed their eyes and were comfortably seated 
on an inclined chair. 
 

 
Figure 3. A subject in the test room, equipped with 
physiological sensors and headphones. 

2.4 Data processing 
Each physiological signal is windowed over the 20 second 
duration of audio samples and post-processed in Matlab 
2018®. Post-processing includes the computation of mean 
and standard deviation values. In addition, for the 
breathing rate, the heart rate and the digital skin blood flow 
signals, three basic nonlinear features are extracted as 
described below. They are indexed as “_r”, “_hr” and “_c”, 
respectively, in the remaining of this paper. 

First, the “Poincaré plot” features [13] are determined, 
based on the analysis of the scatterplot of several 
physiological indices (breathing rate, heart rate and digital 
skin blood flow signals). The derived indices SD1 and SD2 
are perpendicular standard deviations, as illustrated in 
Figure 4. For example, the “Poincaré plot” indices 
associated with the ECG R-R index and the derived heart 
rate time period, RRI (ms), are defined as:  

 (1) 

 

with 
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 (3) 

 
Figure 4. Poincaré plot of a RR time series with  
and  features (reproduced from [13]). 

The SD1 ( ,  and ) and SD2 ( , 
 and ) indexes are measures of the short-term 

and long-term components, respectively, of the 
physiological signals.  

The second non-linear feature extracted from the 
physiological signals is obtained with a PUCK Analysis. 
The PUCK Analysis [14] is a method which was 
introduced to assess the non-linear dynamic properties of 
time series. For example, it has been used for analyzing the 
R-R intervals based on a scatterplot, as illustrated in Figure 
5. The potential force can be estimated by comparing (or 
by using a correlation analysis on) the R-R interval 
difference in successive times  and 
from the long-term trend  where  
represents a moving average (see Figure 5). This method 
suggests that the slope and the slope standard deviation, 
SSD1 and SSD2, parameters, are indicators of sympathetic 
and parasympathetic modulation, respectively [15]. The 
calculation of SSD1 and SSD2 is similar to the standard 
deviation calculations of the SD1 and SD2 indexes carried 
out in the “Poincaré plot” analysis. 

 
Figure 5. Time and trend difference scatter plot. The 
slope represents the linear least-squares function (red 
line). SSD1 (yellow line) is the standard deviation of the 
data perpendicular to the slope, while SSD2 (blue line) is 
the standard deviation of the data parallel to the slope 
(reproduced from [15]). 

The third non-linear feature, extracted from the 
physiological signals, is the approximate entropy (ApEn) 
index. ApEn is a statistical variable quantifying regularity 
and complexity of time series [16]. This index is computed 
here for heart rate, breathing rate and skin blood flow. 

To reduce the inter-individual variability of 
physiological signals between subjects, all parameters 
introduced above are normalized with the mean-centered 
and normalized standard deviation. 

Statistical analysis of the above parameters is then 
carried out both with principal component analysis (PCA) 
and partial least squares (PLS) based on optimal 
multicollinear subspace, and according to the best 
physiological features to explain the descriptive physical 
components of the acoustic stimuli (see Figure 9). Last, 
multidimensional Fisher tests, with a minimal significance 
level set to p<0.05, are used to identify the classification 
abilities of the subspaces according to the sound samples 
characteristics.  

The above statistical analysis gives a first approach to 
assess objectively the effect of noise on human 
physiological stress (neuro-vegetative and mental stress). 

3. DESCRIPTION OF THE STIMULI 

The stimuli used in the experiments correspond to sound 
samples of road traffic and tramway noise for a fixed 
pedestrian in three different urban environments. The 
sound samples were obtained during previous work on 
low-height noise barriers for urban environments [7]. In 
this work, several scenes were modeled, representing 
typical scenarios where low-height barriers can 
significantly reduce traffic noise exposure. Each scenario 
was evaluated with and without noise barrier for several 
receiver positions. All sound samples were generated with 
the outdoor noise auralization engine of MithraSound© [8]. 
The reader is referred to previously published work for a 
detailed description of the traffic noise auralization 
technique implemented in MithraSound©. In this study, the 
auralized samples use the 3D binaural output suited for 
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headphones reproduction. For each scene, the samples 
“with” (B) and “without” (NB) noise barriers contain the 
same traffic and ambient noise sources, which enables a 
direct comparison of the two configurations. Among all 
available scenes and receiver positions from this previous 
work, three scenes were selected to conduct the present 
experiment. “Scene 6” (Figure 6) is a small half-circle 
plaza bordered by a main 2x1 road and a 2x1 tramway line 
as well as a circle one-lane road with less traffic. The 
receiver is located near the main axis on the right side of 
the plaza and looking up across the 2x1 road. “Scene 7” 
(Figure 7) is a rectangular square crossed by a one-way 
2x1 road and a 2x1 tramway line with smaller one-lane 
roads on each side. The receiver is positioned near the 
main axis in the center and looking down across the main 
traffic lanes. “Scene 14” (Figure 8) represents a 2x1 
tramway line with one-lane roads on each side and no 
close-by buildings. The receiver is 30 m away from the 
main axis, looking left towards the traffic.  

 
Figure 6. Auralized “scene 6” (scale in meters). 

 
Figure 7. Auralized “scene 7” (scale in meters). 

 
Figure 8. Auralized “scene 14” (scale in meters). 

All sound samples have a 20 second duration. Figure 9 
presents the averaged equivalent sound pressure level, 
Leq, per octave band for each scenario along with the A-
weighted total level, LAeq, and the A-weighted L10 
statistical index. The Leq levels in each octave band are 
written as Leq63, Leq125, etc. in the remaining of this 
paper.  

Figure 9. Auralized sound samples averaged SPL per 
octave frequeny bands, . 

Figure 10 shows the instantaneous sound pressure level, 
LAeq,125ms, versus time. 

 
Figure 10. Auralized sound samples fast instantaneous 
Leq,125 ms in dB(A) versus time. 
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4. RESULTS 

4.1 Correlation between acoustical indices and 
physiological features 
Five physiological samples were collected for each scene 
(without and with barrier). The cross-correlation of this 30 
samples matrix showed interrelation between noise level 
components (physical parameters) and physiological 
features. The next figure presents the PCA first two 
components explaining 50.77% of the inertia of the 
physiological data only. 

 
Figure 11. PCA correlation circle for the first two 
components (F1, F2). Red dots: explicative physiological 
variables; blue dots: illustrative acoustic variables. 

In Figure 11, the F1 component (30.68%) corresponds 
to the cardio-vascular pathway of physiological stress 
(non-linear parameters of skin blood flow and heart rate). 
The F2 component (20.09%) corresponds to the 
electrodermal (mean and standard deviation over the 20 
second sound samples) and breathing signals. The physical 
components of the acoustic scenes are more correlated to 
the F2 (20.09%), F4 (9.6%) and F5 (5.62%) components 
(see Figure 12). The 35.31% inertia of the physiological 
parameters explains the physiological stress induced by 
the physical properties of the sound samples. According to 
this relation between physiological and physical 
parameters, preliminary studies can be carried out in order 
to discriminate between sound samples and/or predict their 
physical characteristics. The physical parameter that best 
explains the physiological response is the total A-weighted 
sound pressure level, LAeq. The ones that least explain the 
physiological response are the octave band sound pressure 
levels, Leq, in the 63Hz, 250Hz and 500Hz bands.  

 
Figure 12. PCA correlation circle for the third and fourth 
components (F4, F5). Red dots: explicative physiological 
variables; blue dots: illustrative acoustic variables. 

4.2 Physiological features explaining physiological 
stress induced by noise exposure 
According to the results in Section 4.1, part of the data 
inertia can be used to identify and classify important 
variables which explain the physiological stress induced 
by noise exposure. 

A partial least square regression was carried out in an 
attempt to construct a model of physical noise level. The 
Partial Least Square (PLS) method [17] finds the best 
subspace to explain all considered noise level indices 
(LAeq, L10, Leq63, Leq125, Leq250, Leq500, Leq1000, 
Leq2000, Leq4000 and Leq8000). Figure 13 shows the 
Variable Importance in Projection (VIP) of the PLS first 
sub-component.  
 

 
Figure 13. Variable Importance in Projection of the PLS 
first sub-component. 

The most important variables (VIP>1) identified from the 
PLS analysis, according to the noise level indices of the 
acoustic stimuli, are: 
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 the mean and the standard deviation of 
electrodermal conductance (tonic component 
variation induced by the 20s acoustic stimuli); 

 the ,  and slope for heart rate. 
Variables with a VIP lower than 0.8 are non-important and 
are not considered in the analysis.  
As an example, according to the optimal physiological 
subspace calculated from the PLS regression, the LAeq 
prediction model has a R² coefficient of 0.674. 

4.3 Sound samples classification ability of 
physiological stress features 
Another way to use optimal physical parameters (the first 
three PLS components) is the classification of sound 
samples according to the induced physiological stress. In 
this preliminary study, there are too few data collections 
for implementing a discriminating factor analysis due to 
the risk of over-learning. Instead, a Mahalanobis distance 
and discriminant Fisher test is carried out. Table 1 shows 
the intra and inter class Mahalanobis distances between all 
sound samples (6 NB, 6 B, 7 NB, etc.). 
 

Scene 6 NB 6 B 7 NB 7 B 14 NB 14 B 

6 NB 0.0 8.1 6.9 25.1 22.9 44.0 

6 B 8.1 0.0 0.2 6.1 4.8 16.8 

7 NB 6.9 0.2 0.0 6.4 5.5 17.2 

7 B 25.1 6.1 6.4 0.0 0.4 2.7 

14 NB 22.9 4.8 5.5 0.4 0.0 4.4 

14 B 44.0 16.8 17.2 2.7 4.4 0.0 

Table 1. Mahalanobis distances between sound samples 
with (B) and without (NB) barrier. 

Wilks' Lambda test is also carried out. This statistical 
test is used to decide whether several groups of 
multivariate observations have significantly different 
means. This test is significant (p < 1e-4) which indicates 
that sound sample means are different. 

This result is confirmed by the Fisher discrimination 
test. Table 2 gives the significance of the Mahalanobis 
distance given in Table 1. This significance shows the 
ability of the optimal subspace of physiological variables 
to discriminate sound samples. All samples are different 
from each other except for scenes 6B vs 7NB and scenes 
7B vs 14B. 
 

Scene 6 NB 6 B 7 NB 7 B 14 NB 14 B 

6 NB 1 < 5e-3 < 0.01 < 1e-4 < 1e-4 < 1e-4 

6 B < 5e-3 1 NS < 5e-2 < 5e-2 < 1e-4 

7 NB < 1e-2 NS 1 < 5e-2 < 5e-2 < 1e-4 

7 B < 1e-4 < 5e-2 < 5e-2 1 NS 0.130 

14 NB < 1e-4 < 5e-2 < 5e-2 NS 1 < 5e-2 

14 B < 1e-4 < 1e-4 < 1e-4 0.130 < 5e-2 1 

Table 2. Discriminant Fisher test between sound samples 
with (B) and without (NB) barrier. 

5. CONCLUSIONS 

This paper presents a preliminary panel study for the 
evaluation of short-term road traffic noise exposure using 
physiological measurements and auralized sound samples.  

The first result is that correlations exist between the 
physical noise level indices of the sound samples and the 
physiological parameters extracted from electrodermal 
response and heart rate. Potentially, these correlations can 
be used to analyze objectively the effect of noise exposure 
on human physiological stress with, e.g., PLS regression. 

The second result is that there is a possibility to use an 
optimal subspace of physiological parameters to classify 
or construct categories of sound samples. 

Further research is needed to validate and extend these 
results using more subjects and more samples. This should 
include samples with lower noise levels in order to assess 
the sensitivity of physiological measurements. In addition, 
the methodology for reproducing the set of sound samples 
must be refined to reduce the effects of sound onset 
transients on the physiological response. Also, 
randomization of the samples is necessary to improve the 
robustness of the results. 
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