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Interacting Hawkes processes with multiplicative inhibition

Céline Duval∗, Eric Luçon† and Christophe Pouzat ‡

stract

the present work, we introduce a general class of mean-field interacting nonlinear Hawkes processes
delling the reciprocal interactions between two neuronal populations, one excitatory and one in-
itory. The model incorporates two features: inhibition, which acts as a multiplicative factor onto
intensity of the excitatory population and additive retroaction from the excitatory neurons onto the
ibitory ones. We give first a detailed analysis of the well-posedness of this interacting system as well
its dynamics in large population. The second aim of the paper is to give a rigorous analysis of the
gtime behavior of the mean-field limit process. We provide also numerical evidence that inhibition
retroaction may be responsible for the emergence of limit cycles in such system.

y words: Multivariate nonlinear Hawkes processes, Inhibition, Mean-field systems, Neural
works.
0 MSC: 60G55, 92B20, 60F99.

Introduction

. Biological description
Neurons are peculiar network forming cells whose (biological) function is to receive signals from
er neurons, ’integrate’ these signals and transmit the ’integration result’ to other neurons or effector
ls like muscles [39]. Since most neurons are large cells by biological standards (e.g. the motoneurons
trolling the muscles of our big toes are about a meter long) they use a specific mechanism to reliably
nsmit signals from one of their extremities to another [14]: a propagating electrical wave of short
ation (∼ 1-2 ms) called the action potential or spike. Action potentials are all-or-none events (a
essary condition for getting reliable transmission across long distances) that are triggered when
neuron’s membrane potential (i.e. the electrical potential difference between the inside and the
side of the neuron) is ’large enough’. To simplify, between two successive action potentials the
ron ’sums’ its inputs, changing thereby its membrane potential and, when this membrane potential
sses a more or less sharp threshold, the neuron fires a spike that propagates [39]. Neurons come in
main categories: i) excitatory neurons make their postsynaptic partners more likely to spike; ii)

ibitory neurons make their postsynaptic partners less likely to spike. Although, we are dealing with
logical material, implying that there are many sub-types within both of these categories [5, 39], we
interested in studying a simplified model of the neocortex–the outmost and most recently evolved
t of the vertebrate brain–and we are going to consider just two neuronal types, excitatory and
ibitory with the actual neocortical proportions of 80% and 20% [5].
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INTRODUCTION 2

. Our model
In this paper, a general class of mean-field interacting Hawkes processes is considered, modeling the
iprocal interactions between a population A of excitatory neurons and a population B of inhibitory
rons. Hawkes processes, originally introduced in [33], have met a recent interest in the mathematical
roscience literature, for their ability to model the dependence of the activity of a neuron in the history
the network. We adopt here a usual simplifying hypothesis on the network, that is to suppose all-
all connections between neurons, within a large population (mean-field framework). We refer to
tion 1.3.2 below for a detailed account of the use of Hawkes processes in the modeling of neuronal
works.
More precisely, consider a population of neurons of size N = NA + NB ≥ 1, that is divided into
ulation A (that is considered to be excitatory) with size NA := bαNc with α ∈ (0, 1) fixed (typically
0.8, see [5]) and a population B with size NB = N −NA which is considered to be inhibitory. A

ticular instance of the model we describe in the paper (and its main motivation) is then given in
ms of a family of counting processes (Z1

t , . . . , Z
NA
t ) (population A) and (ZNA+1

t , . . . , ZNt ) (population
with coupled conditional stochastic intensities given respectively by λA and λB as follows




λAt : = ΦA

(
1
N

∑
16j6NA

∫ t−
0 h1(t− u)dZju)

)
ΦB→A

(
1
N

∑
NA+16j6N

∫ t−
0 h2(t− u)dZju

)
,

λBt : = ΦA→B

(
1
N

∑
16j6NA

∫ t−
0 h3(t− u)dZju

)
+ ΦB

(
1
N

∑
NA+16j6N

∫ t−
0 h4(t− u)dZju)

)
.

(1)

refer to Section 2.1 below for precise definitions and main hypotheses concerning Model (1). The
amics given by (1) is of Hawkes type: the intensity of each particle depends on the history of
whole system, through memory kernels hi, i = 1, . . . , 4 and firing rate functions ΦA and ΦB (a

ssical example, so-called linear, being when hi are positive, ΦA(x) = µA + x and ΦB(x) = µB + x,
ere µA, µB ≥ 0 are constant intensities modeling spontaneous activity in populations A and B in
ence of interaction). The main novelty of the Model (1) (in comparison with previous Hawkes models
h inhibition, see Section 1.3.2 below) lies in the multiplicative nature of the influence of inhibitory
ulation B onto population A, through the inhibition kernel ΦB→A (think for now as ΦB→A being
ecreasing nonnegative function on [0,+∞), with ΦB→A(0) = 1 and ΦB→A(x) −−−→

x→∞
0): activity of

ulation A should decrease as activity of population B rises. In this respect, a natural control case is
en ΦB→A ≡ 1 where λAt in (1) reduces to a simple, possibly nonlinear, Hawkes process [24] decoupled
m population B. The model secondly incorporates retroaction from population A onto population
that is supposed to be mostly additive, although possibly modulated by a nonlinear feedback kernel
→B.

. Stochastic models for inhibition
Two different asymptotic behaviors for (1) will be successively considered in the paper: its behavior
large population (N → ∞) and in large time (t → ∞). The large population analysis goes back to
ll-proven techniques for mean-field systems and, as we will see below, the natural limit of (1) will be
cribed in terms of an inhomogeneous Poisson process with nonlinear intensity. Similar mean-field
lysis have been successfully carried out for a large class of models (that do not restrict to interacting
nt processes), incorporating various relevant features in neuroscience, such as refractory periods
, 43], spatial inhomogeneities [3, 17], excitability [38]. At this point, due to the nonlinear (and often
Markovian) character of the mean-field limit, one major difficulty concerns the characterization
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INTRODUCTION 3

its dynamics as t → ∞, this difficulty being all the more present when one wants to incorporate
ibition. Whereas there is a vast literature on mean-field limits as N → ∞, a significantly fewer
ber of models are amenable to a rigorous longtime analysis. In this respect, we will show that the
sent Model (1) is sufficiently tractable for a detailed rigorous analysis as t→∞. This allows us in
ticular to highlight some biologically relevant effects of inhibition on the system, see Section 1.4.
The point of the current section is to motivate these theoretical difficulties in existing models in
roscience and to compare them with (1).

.1. Voltage-based models
A signal gets transmitted from one neuron to the next by the activation of a synapse: the action
ential of the presynaptic neuron reaches the presynaptic terminal, this triggers the release of packets
neurotransmitters (small molecules like glutamate for the excitatory synapses and GABA for the
ibitory ones) that diffuse in the small space between the pre- and post-synaptic neurons and bind
receptor-channels located in the membrane of the postsynaptic neuron [39]. Channels are macro-
lecules spanning the cell membrane and forming a pore through the latter; the pore can be closed
opened. After transmitter binding to these receptor-channels, the latter open and let specific ions
through their pore (mainly sodium for excitatory synapses and chloride for the inhibitory ones).

ese ion fluxes or currents will induce a change of the postsynaptic neuron membrane potential.
A simple quantitative neuronal model compatible with this biological description was introduced
1907 by Lapicque [36]. It is now known as the Lapicque or the integrate and fire model and it de-
ibes the membrane potential dynamics of ’point-like’ neurons (their spatial extension is not explicitly
deled) as follows [10, 48]:

Cm
dVi
dt

= − Vi
Rm

+
∑

j∈Si,E
Ij→i(t) +

∑

k∈Si,I
Ik→i(t) if Vi(t) < Vthr , (2)

ere i is the neuron index; Cm is the neuron capacitance; Rm is the neuron membrane resistance;
, respectively Si,I , are the indices of excitatory, respectively inhibitory, neurons presynaptic to i;
i(t) > 0, respectively Ik→i(t) 6 0, are the synaptic currents due to neuron j, respectively k, at time
thr is the ’threshold’ voltage. Every time Vi(t) = Vthr an action potential is emitted and Vi is reset
0. Very often the Ij→i(t) are set to:

Ij→i(t) = wj→i
∑

l

δ(t− tj,l) , (3)

ere wj→i is referred to as the synaptic weight ; δ stands for the Dirac delta function; the tj,l are the
cessive spike times of neuron j. In this model, when there are no inputs, the membrane potential
xes towards 0 with a time constant τ = RmCm. A presynaptic spike from an excitatory neuron
enerates an instantaneous upward ’kick’ of amplitude wj→i, while a presynaptic spike from an
ibitory neuron k generates an instantaneous downward ’kick’ of amplitude wk→i.
The actual action potential is not explicitly modeled–it was not doable at the time of Lapicque since
biophysics of this phenomenon was not understood–but is replaced by a point event. Notice that
h the synaptic input description illustrated by (3) the current generated in the postsynaptic neuron
a given synapse does not depend on the membrane voltage of the former. This constitutes a crude
roximation of the actual biophysics of synaptic current generation. A much better approximation
, 49]–but harder to work with analytically–is provided by using:

Ij→i(t) = gj→i(Vrev − Vi)
∑

l

δ(t− tj,l) , (4)
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ere gj→i is the synaptic conductance, Vrev is the synaptic current reversal potential–as its name says
s is the voltage at which the current changes sign–, it is negative or null for inhibitory synapses
larger than the threshold voltage for excitatory ones. Taking Vrev = 0 for the inhibitory inputs

see an important and empirically correct feature appearing: the downward ’kick’ generated by the
ivation of an inhibitory input becomes proportional to the membrane voltage Vi; the larger the latter,
larger the kick.
The biophysical and molecular events leading to the action potential emission and propagation are
now well understood [39] and are known to involve the stochastic opening and closing of voltage-gated
channels: the probability of finding a channel closed or opened depends on the membrane voltage.
is stochastic dynamics of the channels can lead to fluctuations in the action potential emission
propagation time when a given (deterministic) stimulation is applied repetitively to a given neuron
, 52]. Similarly, the synaptic receptor-channels do fluctuate between open and close states, but that’s
binding of the transmitter rather than the membrane potential that influences the probability of
ing the channel in the open state. An even (much) larger source of fluctuations at the synapse results
m the variable number of transmitter packets that get released upon a presynaptic action potential
ival [39], even if the same presynaptic neuron is repetitively activated in the same conditions. The
ult of all these fluctuation sources is a rather ’noisy’ aspect of the membrane potential of cortical
rons that legitimates the use of ’stochastic units’ as building blocks of neural network models [49, 52].
torically, the first stochastic units were built by adding a Brownian motion process term to the right
d side of (2) [10, 29, 46].
Among the vast literature concerning rigorous mean-field approaches in the context of integrate
fire systems and their derivations, we refer in particular to e.g. [9, 23] and references therein.

is approach leads to Chapman-Kolmogorov / Fokker-Planck equations that are hard to work with
lytically and numerically [12], the main difficulty being the existence of blowups in finite time for the
tem, due to the possibility of having a macroscopic number of neurons simultaneously close to the
ng threshold Vthr. Several extensions with random firing rates have been proposed in the literature,
, 25] and references therein, but the longtime analysis of such models (especially when it concerns
effect of inhibition) remains not fully understood (see nonetheless the recent significant advances

this direction in [22]).

.2. Hawkes processes
The model we consider in (1) enters into the framework of Hawkes processes [24, 33]. The point
view adopted here is to model directly the stochastic intensity [7, 18] by identifying a neuron’s
uence of strereotyped action potentials with the point process (tj,l)j,l in (4). In this context, the
wkes framework generically reads

λit = Φi


 ∑

j∈Si,E

∫ t

0
hj→i(t− u)dZju


 , (5)

ere λit is the intensity of neuron i, Φi a positive function, Zjt is the counting process associated with
ron j, hj→i(t) is the synaptic kernel associated with the synapse between neurons j and i. To
litatively match the case of the integrate and fire model (2), we would take Φi(x) = µi0 + x where
is the basal rate of neuron j and hj→i(t) = (wj→i/τ) exp−t/τ . It is not really possible to account
the vast recent literature on mean-field analysis of Hawkes processes in neuroscience, we refer to
. [6, 15, 17, 24, 26] and references therein for further details. Note that this framework allows for a
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INTRODUCTION 5

ge versatility in the modeling, since it can accommodate for various features such as age-dependent
aviors/refractory periods [15, 16, 43] or spatially-structured dynamics [17].
Intensity-based models such as (5) lead to much better looking equations, that are also easier to
rk with numerically [18, 24, 32]: in the mean-field case, one naturally obtains large population
its in terms of inhomogeneous Poisson processes with intensity solving convolution equations [24].
particularly important instance of (5) that is explicitly solvable concerns the linear case where
x) = µi + x with nonnegative synaptic kernels hi→j : the corresponding convolution equation for
mean-field intensity becomes linear and one can explicitly compute its limit as t→∞, [24], Th. 10
11.
As far as inhibition is concerned, following the approach of Section 1.3.1, one would rightfully
icize the use of a Hawkes process by pointing out the difficulty, not to say the impossibility, of
difying it to accommodate inhibition without loosing the nice analytical properties of linear Hawkes
cesses [6, 18]. In this context, the main strategy followed in the literature so far has been to model
ibition by introducting kernels hj→i(·) in (5) taking negative values [4, 21, 42–44] or positive kernels
e.g. of Erlang type) multiplied by random and possibly negative coefficients [26, 27, 41]. This is what
could qualify as an additive inhibition, in the sense that the intensity of a neuron is the (temporal)
itive superposition of several memory kernels hi→j , in the same spirit as the scheme suggested by
for integrate and fire models. In order to keep λit positive, one crucially needs here to modulate
s superposition by a positive (necessarily nonlinear) synaptic kernel Φi, (e.g. Φi(x) = µi +x+ where
= max(x, 0)). The major counterpart is that one looses the nice analytical properties which makes
longtime analysis of linear Hawkes models tractable.
The strategy of the present Model (1) is different, as it relies on a multiplicative inhibition, in the
rit of the scheme provided by (4) for integrate and fire models: we view the inhibitory inputs as
dulations’ of the excitatory ones and describe inhibition as a multiplicative factor between 0 and
pplied to the excitatory inputs. In particular, the multiplicative structure of (1) no longer requires
synaptic kernels to take negative values: we may and we will only consider nonnegative kernels hi,
1, . . . , 4. In this way, the non-negativity of the intensity is then automatically preserved, together
h the ’nice’ properties of the canonical linear Hawkes process: we may still take advantage of the
itivity of the synaptic kernels and the respective monotonicities of ΦA and ΦB→A (positive and
reasing) to obtain asymptotic results similar to the linear case.

. The effect of inhibition: quenching of supercriticality and oscillations
We briefly review here the biological features concerning the effects of inhibition that one can
rieve from Model (1). We refer to the sequel for more details. The first main observation that
can make from Model (1) is that inhibition has an ability to quench supercriticality: Model (1)
accommodate with situations where population A alone (that is isolated from population B, i.e.
→A ≡ 1) is supercritical, in the sense that the intensity of A diverges as t→∞, whereas the addition
inhibition and retroaction forces the system to go back to subcriticality. We refer in particular to
eorem 3.6 below, where it can be shown rigorously that (1) cannot be supercritical in presence of
h inhibition and retroaction. This corresponds to a biological situation commonly observed, where
leptic seizures may be observed when inhibition is altered (see [39] and Remark 3.4 below).
Another particularly interesting feature of Model (1) is that inhibition may lead to oscillations, a
quitous phenomenon in the nervous system [11]. Emergence of oscillations in mean-field processes
longstanding issue in the literature, that is not specific to neuroscience applications, as it reflects

ommon feature of self-organization in statistical physics (see e.g. [19, 20, 30]), biological models of
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chrony [1, 13] or neuroscience [26, 37, 38]. We mention here specifically [26] where global oscillations
e been proven for interacting Hawkes processes with circular connectivity.

. About simulations
The Python code, together with a detailed documentation, that has been used for the simulations
de in the present paper is available at https://plmlab.math.cnrs.fr/xtof/hawkes-x-hawkes.

. Organization of the paper
The paper is organized as follows: the precise definitions and main hypotheses are given in Section 2,
ere a generalized version (7) of (1) is introduced. We first address well-posedness results for the
roscopic system (Section 2.2) and for its mean-field limit (Section 2.3) as well as propagation of
os estimates. The second purpose of the paper it to give a detailed analysis, in the particular case of
del (1), of the behavior as t→∞ of the limiting mean-field process in Section 3. Focus is put on the
sence/absence of inhibition and retroaction: the easier cases of decoupled dynamics are first treated
Section 3.2. The model with full connectivity (that is with inhibition and feedback) is considered in
tion 3.3. Fluctuations results and some resulting statistical tests for inhibition is given in Section 4.
amples of dynamics that fulfil the hypotheses of Section 3 are then given in Section 5. We give finally
Section 6 intuition and numerical evidence that inhibition and retroaction may lead to oscillations,
some particular instances of the inhibition kernel ΦB→A. Proofs of the main results are gathered in
tion 7 and Section 8.

Well-posedness and large population behavior

. Model and assumptions
Let α ∈ (0, 1) be fixed and for allN ≥ 1, defineNA := bαNc andNB := N−NA. The neurons within
ulation A (resp. population B) are indexed by i = 1, . . . , NA (resp. i = NA + 1, . . . , N). Consider
a filtered probability space (Ω,F , (Ft)t≥0 ,P) an independent family of i.i.d. Poisson measures
(ds, dz), i ∈ {1, . . . , N}) with intensity measure ds×dz on [0,∞)× [0,∞). Let (x, y) 7→ F (x, y) and
y) 7→ G(x, y) two nonnegative functions defined on (0,∞)2. Consider the family of càdlàg (Ft)t≥0

nt processes (Zit)t≥0,i=1,. . . ,N given by

Zit =

∫ t

0

∫ ∞

0
1z6λisπi(ds, dz), i = 1, . . . , N, (6)

ere the intensity λi, i = 1, . . . , N , is given as

λit = λAt := F

(
1
N

∑
16j6NA

∫ t−
0 h1(t− u)dZju,

1
N

∑
NA+16j6N

∫ t−
0 h2(t− u)dZju

)
, i = 1, . . . , NA,

λit = λBt := G

(
1
N

∑
16j6NA

∫ t−
0 h3(t− u)dZju,

1
N

∑
NA+16j6N

∫ t−
0 h4(t− u)dZju

)
, i = NA + 1, . . . , N.

(7)
the sequel, we sometimes write Zi,At (resp. Zi,Bt ) in place of Zit for i = 1, . . . , NA (resp. i =
+ 1, . . . , N) in order to specify the population the ith neuron belongs to.

mark 2.1. Note that it should be straightforward to generalize model (7) to multi-class populations
e e.g. [26]) of interacting neurons and similar results concerning wellposedness and convergence in
ge population remain applicable. We chose here not to go in this direction for simplicity of exposition.
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Let p ≥ 1 and T > 0. For any function h on [0,∞) such that |h|p is locally integrable (resp.
egrable) denote by ‖h‖p,T (resp. ‖h‖p) as the Lp norm of h on [0, T ] (resp. on [0,∞)):

‖h‖p,T :=

(∫ T

0
|h(s)|p ds

) 1
p

, resp. ‖h‖p :=

(∫ ∞

0
|h(s)|p ds

) 1
p

.

any locally bounded (resp. bounded) function h, denote in a same way ‖h‖∞,T := sups∈[0,T ] |h(s)|
‖h‖∞ := sups≥0 |h(s)| . For any Lipschitz-continuous function f on R, we denote by ‖f‖L the

pchitz constant of f . Throughout the paper, Assumptions 2.2 and 2.3 below will be required.

sumption 2.2 (Assumptions on hi, i = 1, . . . , 4). The kernels hi, i = 1, . . . , 4 on [0,+∞) are such
t

H(t) := α|h1(t)|+ (1− α)|h2(t)|+ α|h3(t)|+ (1− α)|h4(t)|, t ≥ 0, (8)

ocally integrable, i.e. ‖H‖1,T <∞, T > 0.

At this point, note that we need not assume that hi ≥ 0, since we are only concerned for now
h well-posedness results concerning both the particle system (7) and its mean-field limit as well
propagation of chaos results. The positivity of the kernels will only be assumed for the study of
longtime behavior of the mean-field process in Section 3. However, in view of the discussion of
tion 1.3.2, the fact that the hi might take negative values is not something that we have in mind in
s paper.
In the sequel we require the following for the functions F and G.

sumption 2.3 (Assumptions on F and G). We suppose that both F and G are nonnegative functions
h that the following holds: for all K ∈ {F,G}, there exist constants ci = cKi ≥ 0, i = 1, . . . , 5 such
t

sup
x,y

K(x, y)

c1(|x|+ |y|) + c2
≤ 1, (9)

sup
x 6=x′,y

|K(x, y)−K(x′, y)|
c3 |x− x′|

≤ 1, (10)

sup
x,y 6=y′

|K(x, y)−K(x, y′)|
(c4|x|+ c5) |y − y′| ≤ 1 (11)

ample 2.4. Any globally Lipschitz function K (with Lipschitz constant ‖K‖L) satisfies Assump-
n 2.3 for c1 = c3 = c5 = ‖K‖L, c2 = K(0, 0) and c4 = 0.

An example of particular interest, which corresponds to (1) and satisfies Assumption 2.3 is

ample 2.5 (Multiplicative inhibition from B onto A). Suppose that F and G satisfy

F (x, y) = ΦA(x)ΦB→A(y), G(x, y) = ΦA→B(x) + ΦB(y), (12)

ere ΦA, ΦB→A, ΦB and ΦA→B are nonnegative functions, each of them globally Lipschitz with ΦB→A
nded (and with no loss of generality we assume 0 ≤ ΦB→A ≤ 1). A further particular case is when
and ΦB are linear:

ΦA(x) = µA + x, ΦB(x) = µB + x, x ≥ 0, (13)

ere µA, µB ≥ 0. In (13), suppose in addition that hi ≥ 0 for i = 1, . . . , 4.
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Although it is not required for the moment, the situation to have in mind for Example 2.5 is ΦB→A
ng nonincreasing with ΦB→A(y) → 0 as y → ∞ and ΦA→B nondecreasing with ΦA→B(x) → +∞
x → ∞. Example 2.5 satisfies Assumption 2.3 (F with constants c1 = c3 := ‖ΦA‖L, c2 := ΦA(0),
:= ‖ΦB→A‖L ‖ΦA‖L, c5 := ‖ΦB→A‖L ΦA(0) and G is globally Lipschitz, see Example 2.4).
Another model that satisfies Assumption 2.3 is

ample 2.6 (Multiplicative inhibition from B onto A with self-inhibition).

F (x, y) = ΦA(x)ΦB→A(y), G(x, y) = ΦA→B(x)ΦB→B(y), (14)

h ΦA, ΦB→A, ΦA→B and ΦB→B nonnegative functions, each of them globally Lipschitz with ΦB→A
ΦB→B bounded by 1. Again, a particular case to have in mind is

F (x, y) = (µA + x) ΦB→A(y), G(x, y) = (µB + x) ΦB→B(y), (15)

ce again with hi ≥ 0.

Example 2.6 generalizes Example 2.5 in the sense that population B is not only inhibitive onto
ulation A, but also onto itself, through the multiplicative kernel ΦB→B. This corresponds to a
logical situation [39]. The detailed longtime analysis of Example 2.5, (13) is given in Section 3. The
gtime dynamics of Example 2.6 appears to be trickier (see Section 8.3) and left for a future analysis.

In the remaining of this Section, we only require Assumption 2.3.

. Well-posedness of the particle system
The first result concerns well-posedness of the particle system (6):

oposition 2.7. Suppose Assumptions 2.2 and 2.3 hold. Then, conditional on the Poisson measures
)i=1,...,N , there exists a pathwise unique Hawkes process (Zi)16i6N as in (6) such that

∑N
i=1 E[Zit ] <

for all t > 0.

In the case where F and G are globally Lipschitz (Example 2.4), existence and uniqueness of (6)
be proven directly through a fixed-point procedure as in [24]. Then, Proposition 2.7 is a direct
sequence of [24], Theorem 6, up to minor notational changes. The additional technical difficulty
our case (consider e.g. Example 2.5) is that even though ΦA and ΦB→A are globally Lipschitz, the
duct ΦAΦB→A is not and the usual result of [24] no longer applies. The key point to note is that
K(x, y) ≤ c1(|x|+ |y|)+c2 for K = F and K = G, and one can stochastically dominate our process
a linear Hawkes process that is known to exist. Therefore, the proof relies on a thinning procedure
ilar to [21]) and is carried out in Section 7.1. For similar ideas see [43] Prop. 1.4 or [21] Prop. 2.

. The mean-field limit
Following a standard procedure for mean-field systems [47], it is easy to derive the limit nonlinear
cess of (6) as N →∞. In the Hawkes setting, it reduces to an inhomogeneous Poisson process [24].
ormally speaking, as N →∞, the empirical mean in (7) concentrates around an expectation and it
atural to introduce the following: let (πA, πB) be independent Poisson point processes on [0,+∞)2

h intensity dsdz. Consider for t ≥ 0,

Z̄At =

∫ t

0

∫ ∞

0
1z6F(α

∫ s
0 h1(s−u)dE(Z̄Au ),(1−α)

∫ s
0 h2(s−u)dE(Z̄Bu ))πA(ds,dz), (16)

Z̄Bt =

∫ t

0

∫ ∞

0
1z6G(α

∫ s
0 h3(s−u)dE(Z̄Au ),(1−α)

∫ s
0 h4(s−u)dE(Z̄Bu ))πB(ds, dz), (17)
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e nonlinearity of the process Z̄ := (Z̄A, Z̄B) lies in the fact that it interacts with its own expectation
A
t ,m

B
t ) :=

(
E
(
Z̄At
)
,E
(
Z̄Bt
))

which solves
{
mA
t =

∫ t
0 F

(
α
∫ s

0 h1(s− u)dmA
u , (1− α)

∫ s
0 h2(s− u)dmB

u

)
ds,

mB
t =

∫ t
0 G

(
α
∫ s

0 h3(s− u)dmA
u , (1− α)

∫ s
0 h4(s− u)dmB

u

)
ds.

(18)

e following result is a well-posedness result for both (16)-(17) and (18):

oposition 2.8. Under Assumptions 2.2 and 2.3, for all T > 0, there exists a unique nondecreasing in
h coordinates locally bounded solution (mA

t ,m
B
t )t∈[0,T ] to (18) that is of class C1 on [0, T ]. Moreover,

any given independent Poisson point processes πA and πB on [0,+∞), there exists a pathwise unique
cess (Z̄At , Z̄

B
t ) to (16)-(17) such that (E(Z̄At ),E(Z̄Bt )) is locally bounded.

Proposition 2.8 is proven in Section 7.2.

We now turn to the propagation of chaos result: there exists a well-chosen coupling such that the
ticle system (7) and the nonlinear process (16)-(17) are close. Suppose that H is locally square
egrable:

‖H‖2,T <∞, T > 0. (19)

fine the following coupling: (Z̄it)i=1,...,NA , (resp. (Z̄it)i=NA+1,...,N ) as independent solutions to (16)
sp. (17)), each driven by πA = πi, i = 1, . . . , NA (resp. πB = πi, i = NA + 1, . . . , N) for the same
isson point processes (πi)i=1,...,N as in (6). The main convergence result is the following:

oposition 2.9. Under Assumption 2.3 and (19), for all T > 0, there exist some constant C > 0
pending on T and the parameters of the model) such that

sup
i=1,...,N

E

[
sup
t∈[0,T ]

∣∣Zit − Z̄it
∣∣
]
≤ C√

N
. (20)

mark 2.10. Under the Assumptions of Proposition 2.9, suppose additionally that
∥∥λA

∥∥
∞ < ∞,

‖∞ <∞ (see (24) for the definitions of κi, i = 1, . . . , 4) and that

max
({
cF3 + cF4 κ1

∥∥λA
∥∥
∞ + cF5

}
(κ1 + κ2) ,

{
cG3 + cG4 κ3‖λA‖∞ + cG5

}
(κ3 + κ4)

)
< 1 (21)

have furthermore that the constant C in (20) can be chosen linear in T : C = C̃
(∥∥λA

∥∥
∞ ,
∥∥λB

∥∥
∞
)
T .

ifying (21) requires an explicit estimate on
∥∥λA

∥∥
∞. Although we will obtain in Section 3, Theo-

3.10 that
∥∥λA

∥∥
∞ < ∞, deriving an explicit upper bound for this quantity seems to be difficult.

netheless, this can easily be achieved in the model of Example 2.5 assuming (13), under non optimal
ditions: since ΦB→A ≤ 1, population A is stochastically bounded by a linear Hawkes process with
mory kernel αh1, that is subcritical if κ1 := α ‖h1‖L1 < 1, we obtain immediately the uniform a
ori bound

∥∥λA
∥∥
∞ ≤

µA
1−κ1

(see Lemma 23 of [24]). In that case, as the quantities cFj , c
G
j , 1 6 j 6 5

explicit, the latter condition simplifies into

max

({
1 +
‖ΦB→A‖L µA

1− κ1

}
(κ1 + κ2) , 2 (κ3 + κ4)

)
< 1.

Proposition 2.9 is proven in Section 7.3.
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Long time dynamics of the mean-field limit

We are now interested in the behavior as t → ∞ of the macroscopic intensities λAt := d
dtm

A
t and

:= d
dtm

B
t , where (mA

t ,m
B
t ) solves (18). We specify here the analysis of the model described in

ample 2.5: for the choice of F and G in (12), we see from (18) that (λA, λB) solves



λAt = ΦA

(
α
∫ t

0 h1(t− u)λAu du
)

ΦB→A
(

(1− α)
∫ t

0 h2(t− u)λBu du
)
,

λBt = ΦA→B
(
α
∫ t

0 h3(t− u)λAu du
)

+ ΦB

(
(1− α)

∫ t
0 h4(t− u)λBu du

)
.

(22)

ne supposes further that (13) is verified, (22) becomes



λAt =

(
µA + α

∫ t
0 h1(t− u)λAu du

)
ΦB→A

(
(1− α)

∫ t
0 h2(t− u)λBu du

)
,

λBt = ΦA→B
(
α
∫ t

0 h3(t− u)λAu du
)

+ µB + (1− α)
∫ t

0 h4(t− u)λBu du.
(23)

Proposition 2.8, there is a unique solution (λA, λB) in C([0, T ], (R+)
2
) to the system (22): existence

rovided by (λAt , λ
B
t ) := (m′At ,m

′B
t ) where (mA,mB) solves (18) and uniqueness holds since for any

ution (λA, λB), the pairwise (mA
t ,m

B
t ) :=

(∫ t
0 λ

A
s ds,

∫ t
0 λ

B
s ds

)
is the unique solution to (18).

To simplify notations below, set

κ1 := α ‖h1‖1 , κ2 := (1− α) ‖h2‖1 , κ3 := α ‖h3‖1 , κ4 = (1− α) ‖h4‖1 . (24)

ppears that the longtime behavior of system (22) (and of its particular case (23)) depends strongly on
connectivity between populations A and B: crucial criteria are the absence/presence of inhibition

m B to A (κ2 = 0 or κ2 > 0) and the absence/presence of retroaction from A to B (κ3 = 0 or
> 0). The analysis of the three simpler cases where the system is not fully-connected (one among κ2

κ3 is zero) is detailed in Section 3.2 below. Some features are commonly observed in all three cases,
we have chosen a separate exposition for purpose of clarity. The more complicated case with full
nectivity (that is κ2 > 0 and κ3 > 0) reveals richer dynamical patterns and is analyzed separately
Section 3.3.

. Hypotheses and summary of main results
In addition to Assumptions 2.2, we require the following:

sumption 3.1. Suppose F and G are given by Example 2.5. Suppose also that ΦB→A is non-
reasing with ΦB→A(x)→ 0 as x→∞ and, without loss of generality, that ΦB→A(0) = 1. Similarly,
pose that ΦA→B is nondecreasing with ΦA→B(0) = 0 and ΦA→B(x) → +∞ as x → ∞. Finally,
ume that

hi(u) ≥ 0, and hi(u) −−−→
u→∞

0, u ≥ 0, i = 1, . . . , 4. (25)

We summarize in Table 1 below the main convergence results that we obtain in all cases with or
hout inhibition and retroaction. We focus on the case µA > 0, µB > 0 and κ4 < 1 (B isolated is
critical) in the case of Example 2.5-(13) with ΦA→B(x) = x for simplicity. We refer to the results
ow for more general and precise statements.

. Decoupled cases
We analyze in this section the long-time behavior of (22) and (23) in the simpler cases where κ2 = 0
κ3 = 0.
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etroaction
Inhibition B 6→ A (κ2 = 0) B → A (κ2 > 0)

κ1 < 1 κ1 > 1 κ1ΦB→A
(
κ2µB
1−κ4

)
< 1 κ1ΦB→A

(

A 6→ B (κ3 = 0) `A = µA
1−κ1

`A =∞ `A =
µAΦB→A

(
κ2µB
1−κ4

)

1−κ1ΦB→A
(
κ2µB
1−κ4

) `A

`B = µB
1−κ4

`B = µB
1−κ4

`B = µB
1−κ4

`B =

A→ B (κ3 > 0) `A = µA
1−κ1

`A =∞ Th. 3.10: sufficient conditions for c

`B = 1
1−κ4

(
µB + κ3µA

1−κ1

)
`B =∞ `B = Ψ2 (Ψ1(`B)) and `A = Ψ

le 1: Summary of the convergence result that we obtain for (`A, `B) := limt→∞
(
λAt , λ

B
t

)
in the case of Example 2.5-

). Notation A → B stands for A has a retroactive effect on B and A 6→ B stands for the absence of retroaction,
A and B 6→ A are interpreted similarly. The results are stated for simplicity in the case when µA > 0, µB > 0 and

< 1 (B isolated subcritical) with ΦA→B(x) = x. All precise statements and comments on this results may be found
w in Proposition 3.2, 3.3, 3.5 and Theorem 3.10, see (28) and (29) for the definitions of Ψ1 and Ψ2.

.1. The fully decoupled case
Suppose that κ2 = κ3 = 0, there is no inhibition and no retroaction. The dynamics of (22)
omehow trivial since populations A and B behave independently from one another. Nonetheless
sider this case as a control model for the other cases.

oposition 3.2. Suppose that Assumptions 2.2 and 3.1 are satisfied with κ2 = κ3 = 0. If ‖ΦA‖L κ1 <
resp. ‖ΦB‖L κ4 < 1), then population A (resp. B) is subcritical: supt≥0 λ

A
t <∞ (resp. supt≥0 λ

B
t <

. Moreover, in the linear case (23),

1. if κ1 < 1 (resp. κ4 < 1), then population A (resp. B) is subcritical and λAt −−−→
t→∞

µA
1−κ1

(resp.

λBt −−−→
t→∞

µB
1−κ4

),

2. if κ1 > 1 and µA > 0 (resp. κ4 > 1 and µB > 0), then population A (resp. B) is supercritical
and λAt −−−→

t→∞
+∞ (resp. λBt −−−→

t→∞
+∞).

of of Proposition 3.2. This case is an immediate consequence of [24], Th. 10 and 11. Note also that
s result can be retrieved easily from the estimates given in Section 8 below.

.2. The case with inhibition and no retroaction
Suppose that κ2 > 0 and κ3 = 0: there is inhibition from B to A but no retroaction from A to B.
this case, population B behaves independently from A.

oposition 3.3. Suppose that Assumptions 2.2 and 3.1 are satisfied with κ2 > 0 and κ3 = 0. If
B‖L κ4 < 1, then population B is subcritical: supt≥0 λ

B
t <∞. In the particular case of (23),

1. If κ4 < 1, then population B is subcritical: λBt −−−→
t→∞

µB
1−κ4

. Moreover,

(a) if κ1ΦB→A
(
κ2µB
1−κ4

)
< 1, then population A is subcritical and λAt −−−→

t→∞
µAΦB→A

(
κ2µB
1−κ4

)

1−κ1ΦB→A
(
κ2µB
1−κ4

) ,

(b) if κ1ΦB→A
(
κ2µB
1−κ4

)
> 1 and µA > 0, then population A is supercritical: λAt −−−→

t→∞
+∞.
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2. If κ4 > 1 and µB > 0: population B is supercritical and λBt −−−→
t→∞

+∞. Regardless of the values

of µA, κ1, κ2 > 0, we have that λAt −−−→
t→∞

0.

Proposition 3.3 reveals a first effect of inhibition: when κ2 = 0, (no inhibition, Proposition 3.2) the
ical parameter for κ1 is κ isolated

1,c := 1. With a subcritical inhibition (κ4 < 1), the critical parameter

κ1 becomes (since ΦB→A ≤ 1) κ inhib
1,c := 1/ΦB→A

(
κ2µB
1−κ4

)
≥ κ isolated

1,c , the inequality being strict

en ΦB→A strictly decreases. Note that κ inhib
1,c increases as either the intrinsic activity of population

ncreases (µB increases), or population B gets closer to criticality (κ4 ↗ 1), or in presence of a longer
mory effect of population B onto population A (κ2 increases).

mark 3.4. This allows in particular for regimes where κ inhib
1,c > κ1 > κ isolated

1,c = 1: in absence of
ibition, population A may be supercritical, but inhibition brings back population A into subcriticality.
is result reflects biological observations: epilepsy is a chronic condition characterized by recurrent
zures. Episodes of seizures, involving abnormal synchronous firing of large groups of neurons [39],
stitute an actual example of population A becoming supercritical when recurrent inhibition from
ulation B is altered or suppressed. This situation is all the more spectacular when population B is
ercritical (κ4 > 1): supercritical inhibition simply kills the dynamics of A.

Proof of Proposition 3.3 is given in Section 8.1.2.

.3. The case with retroaction and no inhibition
Suppose κ2 = 0 and κ3 > 0: there is no inhibition from B to A but presence of a retroaction from
o B. In this case, population A behaves independently from B and has a sole excitatory influence
B.

oposition 3.5. Suppose that Assumptions 2.2 and 3.1 are satisfied with κ2 = 0 and κ3 > 0. If
A‖L κ1 < 1, then population A is subcritical: supt≥0 λ

A
t < ∞. Moreover, in the particular case of

),

1. If κ1 < 1, then population A is subcritical: λAt −−−→
t→∞

µA
1−κ1

. Moreover,

(a) if κ4 < 1, then population B is subcritical and λBt −−−→
t→∞

1
1−κ4

ΦA→B
(
κ3µA
1−κ1

)
+ µB

1−κ4
,

(b) if κ4 > 1 and µB > 0, then population B is supercritical: λBt −−−→
t→∞

+∞.

2. If κ1 > 1 and µA > 0: both populations A and B are supercritical, λAt −−−→
t→∞

+∞ and λBt −−−→
t→∞

+∞.

As anticipated, whenever A is supercritical, so is population B whatever its own intrinsic behavior.
position 3.5 is proven in Section 8.1.3.

. The fully-coupled case
Consider now the more interesting case with full connectivity, i.e. κ2 > 0 and κ3 > 0: both
ibition from B to A and retroaction from A to B are present. We first propose a general result for
del (22) in Theorem 3.6 and then specialize to the linear Model (23).
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.1. A general result of subcriticality
eorem 3.6. Consider Model (22) satisfying Assumptions 2.2 and 3.1 with κ2κ3 > 0. Then, the
owing holds true:

1. Whatever the values of κi, i = 1, . . . , 4, λAt does not tend to +∞ as t→∞.

2. If λBt −−−→
t→∞

+∞, it holds that λAt −−−→
t→∞

0.

We retrieve the same phenomenon described in Remark 3.4 in an even more universal way: in the
ime of full connectivity κ2 > 0 and κ3 > 0, population A cannot be supercritical, even for arbitrary
ge values of κ1 (possibly larger than 1, when population A, isolated from B, is supercritical). Note
t Theorem 3.6 only states a weak form of subcriticality: we only prove that lim inft→∞ λAt <∞. In
whole generality of the hypotheses of Theorem 3.6, one cannot rule out the possibility of having
supt→∞ λ

A
t = +∞, although this has not been observed numerically.

Proof of Theorem 3.6 is given in Section 8.2.1.

.2. Specifying to the linear model
We now provide more precise estimates in the case of the linear Model (23). The large time
mptotic of (23) depends crucially on the behavior of the population B. The critical parameter here
4: κ4 < 1 (resp. κ4 > 1) means that population B, isolated from population A, is subcritical (resp.
ercritical). Let us mention briefly the easiest second case κ4 > 1:

oposition 3.7. Consider Model (23) satisfying Assumptions 2.2 and 3.1 with κ2 > 0 and κ3 > 0.
pose also that µB > 0 and that population B, in isolation, is supercritical, i.e. κ4 > 1. Then, the
owing is true: λBt −−−→

t→∞
+∞ and λAt −−−→

t→∞
0.

Proposition 3.7 is a straightforward consequence of Theorem 3.6: one has simply to check that
−−−→
t→∞

+∞ in this case. This follows directly from λBt ≥ µB + (1− α)
∫ t

0 h4(t− u)λBu du (recall that

→B ≥ 0). Details are given in Section 8.2.1 for the sake of completeness.

From now on, we restrict to the case κ4 < 1. Before stating the main result of this paragraph, we
roduce some notations. We are interested here in a priori bounds concerning

{
`A := lim inft→∞ λAt ∈ [0,∞], ¯̀

A := lim supt→∞ λ
A
t ∈ [0,∞],

`B := lim inft→∞ λBt ∈ [0,∞], ¯̀
B := lim supt→∞ λ

B
t ∈ [0,∞].

(26)

fixed κ1, κ2, define the interval

Iκ1,κ2 := {x ≥ 0, κ1ΦB→A (κ2x) < 1} . (27)

der Assumption 3.1, Iκ1,κ2 = [0,+∞) if κ1 < 1 and if κ1 ≥ 1 Iκ1,κ2 = (x∗κ1,κ2
,+∞) for some

,κ2
> 0. Define the following functions

Ψ1 := x ∈ Iκ1,κ2 7→
µAΦB→A (κ2x)

1− κ1ΦB→A (κ2x)
, (28)

Ψ2 := x ≥ 0 7→ µB
1− κ4

+
ΦA→B (κ3x)

1− κ4
, (29)

well as

Φ := Ψ2 ◦Ψ1 :x ∈ Iκ1,κ2 7→
1

1− κ4

(
µB + ΦA→B

(
κ3µAΦB→A (κ2x)

1− κ1ΦB→A (κ2x)

))
. (30)
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mma 3.8. The function Φ given by (30) is continuous, nonincreasing and has a unique fixed-point
Iκ1,κ2. This fixed-point satisfies

µB
1− κ4

≤ `. (31)

of of Lemma 3.8. It is a direct consequence of Assumption 3.1, since Ψ1 is nonincreasing and Ψ2 is
decreasing. If κ1 ≥ 1, Φ(x) −−−−−−→

x→x∗κ1,κ2

+∞, as lim+∞ΦA→B = +∞. Since ΦA→B ≥ 0, the a priori

nd (31) is straightforward.

Finally, define the following domain

UΦ :=

{
(u, v) ∈ (Iκ1,κ2)2 , Φ(v) ≤ u ≤ ` ≤ v ≤ Φ(u),

µB
1− κ4

≤ u
}
. (32)

e set UΦ is nonempty, as (`, `) ∈ UΦ, by (31).

sumption 3.9. The set UΦ is a singleton: UΦ = {(`, `)} .

Hereafter in Proposition 5.1 we provide sufficient conditions for Assumption 3.9 as well as examples
Section 5 where these are satisfied. The main convergence result of this paragraph is the following:

eorem 3.10. Consider Model (23) satisfying Assumptions 2.2 and 3.1 with κ2 > 0, κ3 > 0, κ4 < 1
µA > 0. Then the following is true:

1. Population B is subcritical: supt≥0 λ
B
t <∞ and one has the a priori bounds (recall the definition

of Iκ1,κ2 in (27)):
`B ≥

µB
1− κ4

and ¯̀
B ∈ Iκ1,κ2 . (33)

2. If λAt converges as t→∞ to `A, then λBt converges as well, to `B = Ψ2(`A) where Ψ2 is given in
(29).

3. Suppose furthermore that Assumption 3.9 is true. Then there is an equivalence between

(a) `B verifies
`B ∈ Iκ1,κ2 (34)

(b) λBt as a finite limit as t→∞.

If this is true, the limit limt→∞ λBt := `B = ` where ` is the fixed-point of Φ given by (30).
Moreover, supt≥0 λ

A
t <∞ (population A is subcritical) and λAt −−−→

t→∞
`A := Ψ1(`B).

Proof of Theorem 3.10 is given in Section 8.2.2. Note that the arguments leading to Theorem 3.10
the fully coupled case κ2κ3 > 0 can easily be adapted to the decoupled cases κ2κ3 = 0 mentioned
lier (with a considerably simpler analysis in these cases).
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.3. Remarks on the main convergence result
Theorem 3.10 comes with two hypotheses: firstly, Assumption 3.9 for which we give sufficient
ditions in Proposition 5.1 and is verified for several examples in Section 5, and secondly, a technical
riori estimate (34) on `B. Several remarks concerning these two hypotheses are necessary: firstly,
m `B ≥ µB

1−κ4
and the fact ΦB→A is nonincreasing, we obtain immediately that (34) is satisfied under

following sufficient condition:

κ1ΦB→A

(
µBκ2

1− κ4

)
< 1. (35)

is condition is the same subcriticality condition met in Proposition 3.3. We retrieve the phenomenon
ntioned in Remark 3.4: inhibition has a tendency to quench supercriticality of population A. Nu-
rical results however suggest that the convergence of Theorem 3.10 may remain true (and hence
is (34)) even though (35) is violated (see Figure 2 below). Remark also that the situation when
/∈ Iκ1,κ2 would imply, by (33), `B < ¯̀

B and thus correspond to a case where neither λB nor λA

verge, but oscillate. Giving some necessary and sufficient condition for (34) (and in particular giv-
some sufficient condition for `B /∈ Iκ1,κ2 , hence proving the existence of oscillations for (23)) would
uire to have some precise a priori upper bounds on `B, that we do not have for the moment (what
easily get is a lower bound on `B, not an upper bound). We give in Figure 4 a numerical example
`B /∈ Iκ1,κ2 , in a case when ΦB→A is not convex.

A crucial observation of the proof of Theorem 3.10 is that, under (34), we always have

(`B,
¯̀
B) ∈ UΦ. (36)

is fact, which does not rely on Assumption 3.9, is of independent interest, especially in cases where
do not have convergence. In presence of oscillations for (23) (see Section 6 for further details), (36)
vides lower and upper bounds on the size of the limit cycle. A first consequence of (36) is that
enever λB(t) converges as t → ∞, `B = ¯̀

B so that (recall the definition (32) of UΦ) necessarily
= ¯̀

B = `. This, together with the previous remark that `B /∈ Iκ1,κ2 would lead to oscillations, tells
that Theorem 3.10 gives a complete picture of the possible limit for (λAt , λ

B
t ): if one among (λAt , λ

B
t )

verges as t→∞, both do, and their limit are necessarily given by `A = Ψ1(`B) and `B = `, unique
d-point of Φ in (30).
Furthermore, we understand from (36) the point of Assumption 3.9: it gives immediately the
vergence of λB. In this respect, one may find that Assumption 3.9 is quite strong: but it is trivially
ified in the uncoupled cases κ2κ4 = 0, as the function Φ is then constant, and it is satisfied for
eral nontrivial examples in the fully coupled case (see Section 5 below). However, we have numerical
dence (see Figure 3) that Assumption 3.9 is in fact not necessary for the convergence of (λA, λB).
this context, finding a general necessary and sufficient condition for convergence of (λA, λB) seems
be a tricky question.

mark 3.11. From Theorem 3.6: under hypotheses of full connectivity, population A cannot be
ercritical (in the sense of lim inft→∞ λAt <∞), regardless the parameters of the model. Theorem 3.10
vides a stronger version of this statement: supt≥0 λ

A
t < ∞, although we do not provide an explicit

trol on supt≥0 λ
A
t (explicit estimates are only on lim supt→∞ λ

A
t ). Recall however what we have said

Remark 2.10: using ΦB→A ≤ 1, population A is bounded by a linear Hawkes process with memory
nel αh1. Therefore, in the particular case of κ1 < 1 (which is in particular stricter than (35)), we
e directly that supt≥0 λ

A
t ≤ µA

1−κ1
(see Lemma 23 of [24]). Deriving similarly an explicit bound in the

eral case (for example under (35) only) is unclear.
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Fluctuations results and a test of inhibition

In this section, we are interested in fluctuation results corresponding to the convergence given in
position 2.9 and the derivation of corresponding statistical tests for inhibition.

. Hierarchy of intensities under inhibition and/or retroaction
We restrict to the framework of Model (23) satisfying Assumptions 2.2 and 3.1. Suppose also that
sumption 3.9 as well as (35) are satisfied.
The previous analysis shows that under these hypotheses convergence of λAt as t→∞ holds in all
es (i.e. both when κ2κ3 = 0 and when κ2κ3 > 0). Recall that Assumption 3.9 holds trivially in the
oupled cases κ2κ3 = 0 since Φ defined in (30) is then constant (and in such cases, the conditions
< 1 and (35) for subcriticality are sharp).

The first main observation of this paragraph is that there is a natural ordering between the different
its limt→∞ λAt , depending on the presence or absence of inhibition and retroaction: when A is isolated
= 0), we obtain from Proposition 3.2 that

λAt −−−→
t→∞

µA
1− κ1

:= `
(I)
A .

en inhibition from B → A is added, without feedback from A→ B (κ2 > 0, κ3 = 0), the conclusion
Proposition 3.3 is

λAt −−−→
t→∞

µAΦB→A
(
κ2µB
1−κ4

)

1− κ1ΦB→A
(
κ2µB
1−κ4

) := `
(II)
A .

ally, in the fully coupled case κ2κ3 > 0, one obtains from Theorem 3.10 that

λAt −−−→
t→∞

µAΦB→A (κ2`)

1− κ1ΦB→A (κ2`)
:= `

(III)
A ,

` the unique fixed-point to the function Φ given in (30). Using that ΦB→A is non increasing and
nded by 1 together with (31), for κ3 > 0, the following natural order between the previous limits
ds true

`
(I)
A > `

(II)
A > `

(III)
A . (37)

te that one has `(III)A = `
(III)
A (κ1, κ2, κ3, κ4) −−−→

κ3→0
`
(II)
A .

. Central limit results
We take advantage of the strict ordering observed in (37) in order to experimentally test the pres-
e/absence of inhibition in a neuronal network modeled by (23). For (37) to be useful, the convergence
ults seen before must be accompanied with fluctuation results. Fluctuation theorems for Hawkes
cesses (both in large population N → ∞ and in large time t → ∞) have already been considered
the literature [24, 26] and some of the existing results directly apply to our case: for instance, in
setting of Example 2.5 and (13) with κ1 < 1, κ4 < 1 and κ2 = 0 (resp. κ3 = 0), Theorem 10 of
] provides Gaussian limits for the quantities

(√
mA
t

(
Zi,A

mAt
− 1
))

i∈IA
(resp.

(√
mB
t (Z

i,B

mBt
− 1)

)
i∈IB ),

en (t,N) → (∞,∞) and where IA (resp. IB) is a subset of {1, . . . , NA} (resp. {NA + 1 . . . , N})
(mA,mB) is the solution of (18). Note nonetheless that the proof in [24] appears to be specific to
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case of linear Hawkes processes so that its direct application to our model with full connectivity is
btful. In this direction, we also mention here a recent functional fluctuation result [34] concerning
pirical activity of mean-field Hawkes processes.
An existing result more useful to our concern may be found in [26], Th. 2, where a central limit the-
m for K macroscopic populations of interacting nonlinear Hawkes processes is proven. In particular,
loser look to the proof of Theorem 2 of [26] permits to realize that it does not rely on the specific
pe of the intensities of the underlying Hawkes processes but only on the existence of a propagation
chaos estimates similar to Proposition 2.9. This result can easily transpose to our setting:

oposition 4.1 (Ditlevsen, Löcherbach, [26], Th. 2). Consider Model (23) satisfying Assumptions 2.2,
3.9, either in the uncoupled cases κ2κ3 = 0 or with full coupling κ2κ3 > 0. Require also that

max

({
1 +
‖ΦB→A‖L µA

1− κ1

}
(κ1 + κ2) , 2 (κ3 + κ4)

)
< 1 (38)

en, for any subsets IAkA ⊂ {1, . . . , NA} and IBkB ⊂ {NA + 1, . . . , N} of fixed cardinality kA and kB
dependent of N)

(√
mA
t

(
Zi,At
mA
t

− 1

)
,
√
mB
t

(
Zj,Bt
mB
t

− 1

))

i∈IAkA , j∈I
B
kB

d−−−−−−−−→
(t,N)→(∞,∞),

t
N
→0

N (0, IkA+kB ). (39)

tch of proof. Note that condition (38) implies in particular that κ1 < 1 and κ4 < 1 so that (35)
true. Hence, we are in a situation where both populations A and B are subcritical. This is a
aightforward consequence of [26], Th 2: it suffices to note that in all cases, mA

t /t and mB
t /t are

nded away from 0 and ∞ (recall Propositions 3.2 and 3.3 and Theorem 3.10). Condition (38)
ures that the constant appearing in Proposition 2.9 does not increase faster than Ct, for a positive
stant C (see Remark 2.10). Putting everything together one has simply to follow the lines of [26],
2 to conclude.

.1. Discussion on the statistical significance of the CLT
Here we discuss the practical significance of (39). Denote by ` the limit intensity of either popu-
ion A or B appearing in the convergence results of Propositions 3.2, 3.3 and Theorem 3.10. An
imator ̂̀N,T for this quantity may be given through the following approximations:

` ≈
T→∞

λT ≈
N→∞

Zit
T

:= ̂̀
N,T , 1 6 i 6 N.

erefore, ̂̀N,T can be computed from the observation of one neuron (recall that in the mean field limit,
rons within the same population are interchangeable) in a N -particle system of Hawkes processes
erved in a large time T . From a statistical viewpoint, a statement as in (39) cannot be exploited
ectly as the unknown parameter ` does not explicitly appear and secondly the normalization of Zit
mt is unknown. Replacing

Zit
mt

by Zit
m̂t

where m̂t = Zi
′
t for i 6= i′ for instance or m̂t = 2(Zit−Zit

2

) is not
isfactory as information on ` will not emerge. Instead, what is required here (for instance to derive
ting procedures and confidence intervals) is a result of the form

√
T
(
̂̀
N,T − `

)
d−−−−−−−−−→

(T,N)→(∞,∞)
K for

e distribution K.
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The simple case of an isolated subcritical population A with linear intensity (Model (23) and
position 3.2, with κ2 = 0) is of particular interest in order to build the test considered in the next
agraph. In this case, ` = µA

1−κ1
, for κ1 = α‖h1‖1 < 1 and the following decomposition holds

√
T
(
̂̀
N,T − `

)
=

√
mT

T

√
mT

(
ZiT
mT
− 1

)
+
√
T

(
mT

T
− µA

1− κ1

)
:=

√
mT

T
IN,T (1) + IT (2).

m (39) (see also Theorem 10 of [24]), it immediately follows that IN,T (1)
d−→ N (0, 1) as (T,N) →

,∞), TN → 0. Controlling the deterministic term I2(T ) requires to evaluate the rate at which mT /T
verges to its limit µA/(1 − κ1). This has been studied, in the linear case, in Lemma 5 of [2] which
lies that IT (2) = o(1) if

∫∞
0

√
th(t)dt < ∞. Then, assuming

∫∞
0

√
th(t)dt < ∞ and using that

position 3.2 implies that mT
T −−−−→T→∞

`, we derive

√
T
(
̂̀
N,T − `

)
d−−−−−−−−→

(T,N)→(∞,∞)
T
N
→0

N (0, `) and

√
T

̂̀
N,T

(
̂̀
N,T − `

)
d−−−−−−−−→

(T,N)→(∞,∞)
T
N
→0

N (0, 1) . (40)

.2. A test of inhibition
Neurophysiologists studying synaptic function routinely isolate one type of synaptic coupling with
cific compounds (very often toxins synthesized by plants, bacteria, spiders, etc. [39]). Using pi-
toxin or bicuculline (two plant toxins) they can for instance suppress inhibition, that is, force our
nel h2 to become uniformly zero. Based on (40), we can then propose the following procedure in
er to test if inhibition on a population A is present. In a experimental preparation, neurons from the
opulation can be continuously recorded in three successive conditions: control (no toxin applied);
ibition blocked (with picrotoxin or bicuculline); ’wash’ (the physiologists’ term to designate a return
the control condition after removal of a toxin). Collecting for a duration T the activities of the
rons of population A and estimate their intensities with ̂̀ControlN,T , ̂̀ToxinN,T and ̂̀Wash

N,T respectively.
Denote by (`Control, `Toxin) the true intensities of population A with and without inhibition blocked.
opulation B has no effect onto population A, one should have `Control = `Toxin, otherwise following
) one should observe `Control > `Toxin. This suggests to consider the following testing procedure:

{
H0 : Population B has no inhibitive effect on population A,
H1 : Population B has an inhibitive effect on population A,

equivalently
{
H0 : `Control = `Toxin,

H1 : `Control > `Toxin.
(41)

nsider the test statistics RN,T = ̂̀Control
N,T − ̂̀ToxinN,T , where ̂̀ControlN,T and ̂̀ToxinN,T are independent. Using

) and that under H0 it holds `Control = `Toxin, we write:

√
T (̂̀ControlN,T − ̂̀ToxinN,T ) =

√
T (̂̀ControlN,T − `Control)−

√
T (̂̀ToxinN,T − `Toxin)

d, H0−−−−−−−−→
(T,N)→(∞,∞)

T
N
→0

N (0, 2`),



5

fro

Th

wh
com
con

of
Ind
cor
sho
tru
abo
rep
firs
com
we
com
the
the
is c

5.

tha
par
and
(an
on
ΦA

Inf
ass
EXAMPLES IN THE FULLY-COUPLED SUBCRITICAL LINEAR CASE 19

m which we derive
√

T

̂̀Control
N,T + ̂̀ToxinN,T

(̂̀ControlN,T − ̂̀ToxinN,T )
d, H0−−−−−−−−→

(T,N)→(∞,∞)
T
N
→0

N (0, 1).

erefore, we get a test for the set of assumptions (41) with asymptotic level a ∈ (0, 1)

Ψ
(a)
N,T = 1{̂̀ControlN,T −̂̀ToxinN,T >sa} where sa =

√
̂̀Control
N,T + ̂̀ToxinN,T

T
q1−a
N (0,1),

ere qrN (0,1) the quantile of order r of the distribution N (0, 1). Note that under H1 the same de-
position holds if one adds the additional diverging term

√
T (`Control − `Toxin) that ensures the

sistency of the test Ψ
(a)
N,T .

To complete this Section, we numerically evaluate the observed level of the test for different values
N and large T : that is the probability to reject H0 whereas there is no inhibition from B to A.
eed, to rely on this procedure in practice one needs to check that for the values of (T,N) that
respond to biological data the level of the test is close to the asymptotic level a. We perform a
rt simulation study considering a network without inhibition from B to A (the null hypothesis is
e), µA = 1 and a L1 norm for h1 of 0.45. The chosen parameters result in a spiking activity slightly
ve 1.8 spikes per time unit for the neurons of population A in the mean-field limit. We run 1000
licates with N neurons in population A. Each of these replicates was 250 time units long. The
t 100 time units were discarded (to ’forget’ the initial state), the next 25 time units were used to
pute ̂̀ControlN,25 (Sec. 4.2.1), the next 100 time units were discarded again and the last 25 time units

re used to compute ̂̀ToxinN,25 . The test statistic introduced is then obtained and its absolute value was
pared to a threshold value of 1.96 (a = 0.05). The reported 95% confidence interval for accepting
null hypothesis (being below threshold) were computed using Wilson’s method [8]. The results are
following and suggest that even for moderate values of N and T = 25 the effective level of the test
lose to the asymptotic one.

N 50 100 200 500 1000
Observed level 0.949 0.951 0.951 0.944 0.957

Confidence Interval [0.936, 0.963] [0.938, 0.964] [0.938, 0.964] [0.929, 0.958] [0.945, 0.970]

Examples in the fully-coupled subcritical linear case

We place ourselves here in the context of Theorem 3.10 concerning Model (23). Recall in particular
t we assume full connectivity κ2κ3 > 0 with population B subcritical: κ4 < 1. The aim of this
agraph is twofold: first, to give general sufficient conditions for Assumption 3.9 used in Theorem 3.10
second, to give instances of kernels ΦA→B and ΦB→A that fulfil the hypotheses of Theorem 3.10

d this for which the convergence result described in Theorem 3.10 is valid). Focus will be made
particular choices of inhibition kernels ΦB→A: in all the examples below, we have simply chosen
→B(x) = x. To simplify notations in the sequel, define the following parameters

a :=
µBκ2

1− κ4
and b :=

κ2κ3

1− κ4
. (42)

ormally, the parameter a measures the influence of population B onto population A whereas b
esses the impact of the coupling between both populations.



5

5.1

UΦ

Pr

Re

or

Pro
tog
wh
tha

An
and
giv
pro

So
giv

5.2
EXAMPLES IN THE FULLY-COUPLED SUBCRITICAL LINEAR CASE 20

. Verifying Assumption 3.9
First, we provide general sufficient conditions for Assumption 3.9. Recall the definitions of Φ and
in (30) and (32).

oposition 5.1. Suppose that Assumption 3.1 is satisfied together with κ4 < 1. Then,

1. General sufficient conditions: Assumption 3.9 is true under one of the following conditions:

(a) Φ is a contraction on Iκ1,κ2 ∩
[
µB

1−κ4
,+∞

)
:

|Φ(x)− Φ(y)| < |x− y| , x 6= y. (43)

(b) Φ2 := Φ ◦ Φ has a unique fixed-point in Iκ1,κ2 ∩
[
µB

1−κ4
,+∞

)
.

2. Suppose now that Φ is strictly decreasing (that is the case when e.g. ΦA→B and ΦB→A are strictly
increasing and decreasing respectively). Then Assumption 3.9 is satisfied if and only if

u < Φ ◦ Φ(u), on
(

max

(
x∗κ1,κ2

,
µB

1− κ4

)
, `

)
. (44)

mark 5.2. Condition (44) is true in particular if Φ◦Φ is strictly concave on
(

max
(
x∗κ1,κ2

, µB
1−κ4

)
, `
)

if Φ is differentiable in `, |Φ′(`)| ≤ 1 and Φ2 is strictly convex on
(

max
(
x∗κ1,κ2

, µB
1−κ4

)
, `
)
.

of of Proposition 5.1. The case 1a. is a straightforward consequence of the definition of UΦ in (32)
ether with (43). Turn now to case 1b.: suppose that Φ is such that Φ2 has a unique fixed-point,
ich is necessarily `. From the definition (32) of UΦ and the fact that Φ is nonincreasing it follows
t, for any (u, v) ∈ UΦ,

Φ2(u) ≤ Φ (v) ≤ u ≤ ` ≤ v ≤ Φ (u) ≤ Φ2(v).

immediate recursion from the latter inequality shows that
(
Φ2n(u)

)
n≥0

is (positive) non-increasing
hence converges to a fixed-point of Φ2, which by uniqueness is `. Thus, ` ≤ Φ2n(u) ≤ u ≤ `, which

es in particular u = ` and since ` ≤ v ≤ Φ(u) = Φ (`) = `, this gives the result. Turn now to the
of when Φ strictly decreases: the domain UΦ boils down to

UΦ :=

{
max

(
x∗κ1,κ2

,
µB

1− κ4

)
≤ u ≤ `, Φ−1(u) ≤ v ≤ Φ(u)

}
. (45)

that Assumption 3.9 is satisfied if and only if Φ−1(u) > Φ(u) on
(

max
(
x∗κ1,κ2

, µB
1−κ4

)
, `
)
, which

es the result.

. Polynomial inhibition
Let β, τ > 0 and consider in this paragraph

ΦB→A(x) =
1

1 + τxβ
and ΦA→B(x) = x, x ≥ 0. (46)



5

Th

wh

Pr
κ2κ

the

the
com

Re
bey
no

rev
and

Pro
is e
1 −
As
(Φ

the

G(
EXAMPLES IN THE FULLY-COUPLED SUBCRITICAL LINEAR CASE 21

en the function Φ writes

Φ(x) =
a

κ2
+

µAb

κ2

(
1− κ1 + τ (κ2x)β

) , x ∈ Iκ1,κ2 , (47)

ere the domain Iκ1,κ2 is given by

Iκ1,κ2 =





[0,+∞) if κ1 < 1,
(
x∗κ1,κ2

,+∞
)

=
(

1
κ2

(
κ1−1
τ

) 1
β ,+∞

)
if κ1 ≥ 1.

oposition 5.3. Consider Model (23) with ΦB→A and ΦA→B given by (46), satisfying κ4 < 1,
3 > 0, µA > 0, κ1 < 1 + τaβ and Assumptions 2.2 and (25). Then, in the following cases:

1. when β ∈ (0, 1],

2. when β > 1:

(a) if κ1 < 1, at least when τ is sufficiently small (weak inhibition) or when τ is sufficiently
large (strong inhibition).

(b) if κ1 ≥ 1, at least when τ is sufficiently large (strong inhibition),

conclusions of Theorem 3.10 are valid, i.e. (λAt , λ
B
t ) −−−→

t→∞
(`A, `B) :=

(
µA

1−κ1+τ(κ2`)
β , `
)
, where ` is

unique fixed-point of Φ given by (47) on
[
µB

1−κ4
,+∞

)
. In the case β = 1, `B = ` can be explicitly

puted as

` =
−(1− κ1 − τa) +

(
(1− κ1 − τa)2 + 4τ ((1− κ1)a+ µAb)

) 1
2

2τκ2
. (48)

mark 5.4. We stress the fact that, from a numerical point of view, convergence is actually valid
ond the hypotheses of Proposition 5.3, especially in cases when the hypothesis (35) κ1 < 1 + τaβ is
longer valid, see Figure 2.
Note that β ∈ [0, 1] if and only if ΦB→A (and hence Φ itself) is convex. The case β > 1 seems to
eal richer dynamical patterns, especially in the regime where β � 1, where (46) is of sigmoid type
approaches (for fixed τ) the indicator function 1[0,1] as β →∞, see Section 6 for further details.

of of Proposition 5.3. Note that the subcriticality condition (35) writes here κ1 < 1 + τaβ , which
quivalent to µB

1−κ4
≥ x∗κ1,κ2

and hence (34) is true. Suppose first β ∈ (0, 1] and define ρ(x) :=

κ1 + τxβ . We show that Φ ◦ Φ is concave, from which we derive by Proposition 5.1 point 2 that
sumption 3.9 is valid (see Remark 5.2). Showing that Φ ◦Φ is concave is equivalent to showing that
◦ Φ)′ is decreasing. Simple computations show that

(Φ ◦ Φ)′(x) = µ2 ρ
′(κ2x)

ρ2(κ2x)

ρ′
(
a+ µAb

ρ(κ2x)

)

ρ2
(
a+ µAb

ρ(κ2x)

) ,

refore (Φ ◦ Φ)′ has the same monotonicity as F (y)G(y), y > a, where F (y) := ρ′(y)
ρ2(y)

is positive and

y) :=
ρ′
(
a+ µ

ρ(y)

)

ρ2
(
a+ µ

ρ(y)

) is positive, where we set µ = µAb. A sufficient condition for H to be decreasing is
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t F ′
F + G′

G < 0. First, tedious computations enable to write for y > a,

H(y) : = yρ(y)

(
F ′(y)

F (y)
+
G′(y)

G(y)

)
,

= (β − 1)ρ(y)− τβyβ

2 +

µ

aρ(y) + µ
(β − 1)− 2β

µ

aρ(y) + µ

τ
(
a+ µ

ρ(y)

)β

ρ
(
a+ µ

ρ(y)

)


 ,

= T1(y) + T2(y)

ere

T1(y) : = −(1− β)

(
ρ(y) +

βµτyβ

aρ(y) + 1

)
,

T2(y) : = −2τβyβ


1 +

µ

aρ(y) + µ
(β − 1)− β µ

aρ(y) + µ

τ
(
a+ µ

ρ(y)

)β

ρ
(
a+ µ

ρ(y)

)


 .

β 6 1, we immediately have that T1 6 0. To control the second term T2, we write it as follows,
ng the definition of ρ,

T2(y) = −2τβyβ
µ

aρ(y) + µ


1 +

aρ(y)

µ
+ (β − 1)− β

ρ
(
a+ µ

ρ(y)

)
+ κ1 − 1

ρ
(
a+ µ

ρ(y)

)


 ,

= −2τβyβ
µ

aρ(y) + µ


aρ(y)

µ
+ β

1− κ1

ρ
(
a+ µ

ρ(y)

)


 ,

= −2τβyβ
µ

aρ(y) + µ

1

ρ
(
a+ µ

ρ(y)

)
(
aρ(y)

µ
ρ

(
a+

µ

ρ(y)

)
+ β(1− κ1)

)
.

te that T2 6 0 holds true whenever κ1 6 1 but requires an additional justification if κ1 ∈]1, 1 + τaβ[.
that, we study the function T3(y) := aρ(y)

µ ρ
(
a+ µ

ρ(y)

)
+ β(1−κ1), y > a, which, as ρ is increasing

µ > 0, has the same monotonicity as the function g : z 7→ zρ
(
a+ 1

z

)
, z > 0. Using that κ1 < 1+τaβ

β 6 1, it holds that

(z) =
1

zβ

(
zβ(1− κ1) + τ(1 + az)β−1(1− β + az)

)
> τ

zβ

(
−(az)β + (1 + az)β−1(1− β + az)

)
> 0.

ollows that g and T3 are increasing and that T3 attains its minimum at y = a. We conclude using
t for all y > a and κ1 < 1 + τaβ

T3(y) > T3(a) =
aρ(a)

µ
ρ

(
a+

µ

ρ(a)

)
+ β(1− κ1) > aρ(a)

µ

(
−τaβ + τ

(
a+

µ

ρ(a)

)β)
− βτaβ

= τ
aρ(a)1−β

µ

(
(aρ(a) + µ)β − (aρ(a))β − β(aρ(a))β−1

)
> 0
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z 7→ (z + µ)β − zβ − βzβ−1 is increasing (as β 6 1 and µ > 0) and is positive if z = 0. Gathering
rything together, we conclude that T2 is negative, therefore H is negative and Φ ◦ Φ is concave.
sumption 3.9 is fulfilled and the conclusions of Theorem 3.10 are valid.
Turn now to the case β > 1: we have Φ′(x) = −µAb τβ(κ2x)β−1

(1−κ1+τ(κ2x)β)
2 , so that for x ∈

[
µB

1−κ4
, `
)
,

(x)| ≤ µAbβ(κ2`)
β−1τ

(1−κ1+τaβ)
2 . Suppose first that κ1 < 1. Note that since ` ≥ µB

1−κ4
, one obtains from (47) the

owing a priori bound on `: ` ≤ a
κ2

+ µAb

κ2(1−κ1+τaβ)
, quantity that remains bounded as τ → 0 and

∞. Putting everything together, this yields that sup
x∈
[
µB

1−κ4
,`
) |Φ′(x)| can be made strictly smaller

n 1 provided τ → 0 or τ → ∞. In these regimes, Φ is a contraction and Assumption 3.9 holds,
Proposition 5.1, which gives the result. The same argument works in the case κ1 ≥ 1, considering
only the limit of strong inhibition τ →∞. Computing the fixed-point ` in the case β = 1 is basic

lysis from (47).
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ure 1: Trajectories of the mean-field (λA, λB) and their microscopic counterparts (λAN , λ
B
N ), when hi = 1[0,θi] for the

del (46) for α = 0.8, β = 1, κ1 = 1.5, κ2 = 0.5, κ3 = 1, κ4 = 0.5, µA = 10, µB = 1, τ = 1, on [0, T ] with T = 50: the
ditions of Proposition 5.3 are satisfied (note in particular that 1 < κ1 < 1 + τa = 2). The limit of (λA, λB) match
ir theoretical counterparts (recall (48)) `B ≈ 7.844 and `A = Ψ1(`B) ≈ 2.922.
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ure 2: Trajectories of the mean-field (λA, λB) and their microscopic counterparts (λAN , λ
B
N ), when hi = 1[0,θi] for the

del (46) for the same parameters as Figure 1, except for κ1 where now κ1 = 4, so that condition (35) no longer holds.
still observe convergence to the correct theoretical value (and (34) is nonetheless true).

. Exponential inhibition
Consider in this paragraph the case (τ > 0)

ΦB→A(x) = exp (−τx) and ΦA→B(x) = x, x ≥ 0. (49)

e function Φ rewrites in this case as

Φ(x) =
a

κ2
+

bµA exp (−τκ2x)

κ2 (1− κ1 exp (−τκ2x))
(50)

ned on

Iκ1,κ2 =

{
[0,+∞) if κ1 < 1,(

ln(κ1)
τκ2

,+∞
)

if κ1 > 1.

e sufficient subcriticality condition (35) becomes here

κ1e
−τa < 1. (51)



6

Pr
κ2κ

are

by

Pro

If κ
is g

In
of

Sec

In

of |
and

Re
ore
Φ ◦
Th
is c

6.

in S
pro
(ev
val

num
pos
TOWARDS OSCILLATIONS: INHIBITION THROUGH A SIGMOIDAL KERNEL 25

oposition 5.5. Consider Model (23) with ΦB→A and ΦA→B given by (49), satisfying κ4 < 1,
3 > 0, µA > 0, κ1e

−τa < 1 and Assumptions 2.2 and (25). Then, the conclusions of Theorem 3.10
valid, i.e. (λAt , λ

B
t ) −−−→

t→∞
(`A, `B) :=

(
µAe

−τκ2`

1−κ1e−τκ2`
, `
)
, where ` is the unique fixed-point of Φ given

(50) on
[
µB

1−κ4
,+∞

)
, at least in the following cases:

1. when κ1 < 1, at least when τ > 0 is sufficiently small (weak inhibition) and when τ is sufficiently
large (strong inhibition),

2. when κ1 ≥ 1, at least when τ > τ∗, for some τ∗ >
ln(κ1)
a > 0 depending on the parameters of the

system (strong inhibition).

of of Proposition 5.5. The derivative of Φ on Iκ1,κ2 ∩
[
µB

1−κ4
,+∞

)
writes Φ′(x) = −bµAτ exp(−τκ2x)

(1−κ1 exp(−τκ2x))2 .

1 < 1, Iκ1,κ2 = [0,+∞), the maximum of x 7→ |Φ′(x)| on
[
µB

1−κ4
,+∞

)
is attained for x = µB

1−κ4
and

iven by

r(τ) :=
bµAτ exp(−τa)

(1− κ1 exp(−τa))2 (52)

particular, r(τ) < 1 as τ → 0 and τ → +∞, imply that Φ is a contraction, and hence Item 2
Proposition 5.1 is true. More precisely, since r(τ) ≤ bµAτ

(1−κ1)2 , r(τ) < 1 as least when τ < (1−κ1)2

bµA
.

ondly, since r(τ) ≤ 2bµA
ea(1−κ1)2 exp

(
− τa

2

)
, r(τ) < 1 at least when 2

a ln
(

2bµA
ea(1−κ1)2

)
< τ .

the case κ1 > 1, suppose that (51) holds, so that µB
1−κ4

> ln(κ1)
τκ2

= x∗κ1,κ2
. Once again, the maximum

Φ′(x)| on Iκ1,κ2 ∩
[
µB

1−κ4
,+∞

)
is attained for x = µB

1−κ4
and given by (52), which goes to 0 as τ →∞

hence r(τ) < 1 for some τ∗ >
ln(κ1)
a .

mark 5.6. As already underlined, Assumption 3.9 is only sufficient for the convergence of The-
m 3.10, not necessary: in the exponential case of Section 5.3, Figure 3 shows a situation where
Φ(u) < u for u < ` (and hence UΦ is nontrivial). Nonetheless, convergence of (λA, λB) still occurs.
e conjecture one may draw here is that convergence mentioned in Theorem 3.10 holds as long as Φ
onvex, although we do not have a proof of this statement.

Towards oscillations: inhibition through a sigmoidal kernel

Consider again the Model (23) with full connectivity κ2κ3 > 0. In most of the examples considered
ection 5, ΦB→A (and hence Φ itself) is convex. As already said, although we do not have a rigorous
of, we do not expect anything else but convergence of the intensities (λA, λB) in the convex case
en for large values of κ1 where (35) no longer holds or in cases when Assumption 3.9 is no longer
id, recall Figure 3).
The case where ΦB→A is of sigmoid type (hence no longer convex) is more intriguing. In the
erical examples below, the following two examples will be considered: for fixed R > 0 and β > 0 a
sibly large parameter,

ΦB→A(x) =
1

1 +
(
x
R

)β , (53)

ΦB→A(x) =
1

2
− 1

π
arctan (β (x−R)) . (54)
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) Graph of Φ ◦ Φ, where Φ is given by (50). Here,
≈ 7.567 and Φ ◦ Φ(u) < u for u ≤ `: Assumption 3.9
es not hold.
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(b) Trajectories of the mean-field (λA, λB) and their micro-
scopic counterparts (λAN , λ

B
N ).

ure 3: The case of Model (49) with hi = 1[0,θi] and α = 0.8, κ1 = 0.95, κ2 = 1, κ3 = 1, κ4 = 0.5, µA = 10, µB = 1,
0.2, on [0, T ] with T = 50. Note that κ1 < 1 so that (34) is satisfied. The intensities converge (Figure 3b) whereas
umption 3.9 does not hold (Figure 3a): Assumption 3.9 is sufficient for convergence, not necessary.

e kernel (53) is the same example as (46) (take τ = 1/Rβ). Both are smooth approximations as
∞ of the indicator function

ΦB→A(x) = 1[0,R](x). (55)

wever, there is every reasons to believe that the main features developed in this section should not
end specifically on the choice of the sigmoid kernel, as long as it is sufficiently close to (55). In
s paragraph we illustrate, both with non-rigorous intuition and numerical examples that the lack of
vexity of ΦB→A is likely to induce oscillations for the solution (λA, λB) to (23) (recall Remark 3.4).
e existence of limit cycles for (23) is only made explicit based on numerical simulations. A rigorous
of is lacking and will be the object of a future work.

. The case of an indicator
In order to give some intuition about the possible emergence of limit cycles for (23), replace for the
ment the kernels ΦB→A in (53) or (54) by their common limit (55) as β → ∞. Obviously, none of
rigorous results developed in the previous sections should apply (at least easily) to the case (55), as
s kernel is not even continuous. Even the well-posedness of the particle system (6) or its mean-field
it (16)-(17) is unclear in this case, not to mention the analysis made in Section 3 to derive the limit
he mean-field system as t→∞. This being said, suppose anyway that one would be able to consider
) as a proper candidate for the inhibition kernel ΦB→A. We place ourselves in the framework where
is large and µB small (possibly even 0). In ’real life’, our µA and µB account for the following two
tures: i) the weaker one, the intrinsic properties of the neurons (that make them more or less prone
spike spontaneously) [39]; ii) the stronger one, the excitatory inputs from the other brain regions
her neocortical area and mostly thalamic inputs [5, 51]). There is strong anatomical evidence that
latter are stronger onto excitatory neurons than onto inhibitory ones (reviewed in [51]), justifying
relevance of considering µA � µB.
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The intuition for the emergence of oscillations is the following: considering (23) at t ≈ 0, as
� µB ≈ 0, the intensity of population A (resp. B) should be high (resp. small). Then, in
sence of feedback from A onto B (κ3 > 0), the spiking activity of population A propagates to
ulation B so that the intensity of B increases. But the higher the activity of B is, the larger
(t) := (1 − α)

∫ t
0 h2(t − u)λBu du (that is the term within the inhibition kernel ΦB→A(·) in the first

ation of (23)) becomes. Once XB(t) has reached the threshold R > 0 of (55), the activity of A
s killed (recall that κ2 > 0). Hence, supposing for instance that the memory kernel h3 has compact
port with length θ3, after a time θ3, population B will no longer feel the influence of population A:
ensity of B will go back to µB ≈ 0. Thus, XB(t) crosses back the threshold R: population A goes
k to its normal high activity, and so on: oscillations should appear.
For this to happen, the threshold R should not be too large, otherwise the term XB(t) will not be
e to reach R. We can actually pursue the intuition given by (55) in deriving informally a phase
nsition. Suppose again that the formalism developed in Section 3.3 is valid for (55) (which is not).
te first that the subcriticality condition (35) simply boils down here to

κ1 < 1 (56)

t is population A alone is subcritical. The fixed-point function Φ becomes

Φ(x) =
a

κ2
+

µAb

κ2(1− κ1)
1[0,R](κ2x). (57)

call that the whole point of Section 3.3 is to compute the fixed-point of Φ. Straightforward compu-
ions enable to distinguish two cases:

• Either R−a
b ≥ µA

1−κ1
: Then Φ has a unique fixed-point ` = a

κ2
+ µAb

κ2(1−κ1) (which should be the
limit of λB if the results of Section 3.3 would apply to (55)). In this case, the limit of λA should
be `A = Ψ1(`) =

µA1[0,R](κ2`)

1−κ11[0,R](κ2`)
= µA

1−κ1
.

• Either R−a
b < µA

1−κ1
: in this case, there is no fixed-point for Φ. But the main conclusion of

Theorem 3.10 that any possible limit for λB is necessarily given by ` fixed-point of Φ. Hence, if
one believes in the conclusion of Theorem 3.10 for (55), we would necessarily have `B < ¯̀

B: this
is the regime where one expects oscillations.

course, once again, this phase transition is only formal, as (55) does enter into the hypotheses used
the paper. What is more, this formal argument is not stable by perturbation: if one replaces (55) by
continuous sigmoid function with the same threshold R, Theorem 3.10 does apply in this case and
as always a fixed-point and the formal argument above becomes meaningless. It appears nonetheless
t this formal phase transition is actually meaningful and visible in simulations in the sigmoid case,
Section 6.2.1.

. The case of a sigmoid kernel
Having in mind the intuition provided by the previous paragraph, let us go back to the case where
→A is defined as a smooth Lipschitz sigmoid function, such as in (53) of (54). Here, every results of
present paper apply. In view of Theorem 3.10, there are only two ways to capture oscillations:
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1. either to ensure that (34) no longer holds, i.e. situations where κ1 � 1 so that (with the notations
of the previous sections, recall (27))

`B < x∗κ1,κ2
< ¯̀

B. (58)

This corresponds to a situation where population A, in isolation from B would be highly su-
percritical (but still subcritical with inhibition and retroaction, see Theorem 3.6). The technical
difficulty is that we lack some a priori upper bounds on `B in order to give some rigorous sufficient
conditions for (58). We give nonetheless a numerical illustration of this case in Figure 4.
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ure 4: Trajectories of the mean-field (λA, λB) and their microscopic counterparts (λAN , λ
B
N ), when ΦB→A is given by

), with R = 1, β = 20, hi = 1[0,θi], α = 0.8, κ1 = 5, κ2 = κ3 = κ4 = 0.5, µA = 7 and µB = 0, on [0, T ] with T = 50.
e that κ1ΦB→A (κ2`B) ≈ 4.81 > 1 so that (34) does not hold: we have oscillations.

2. or either in situations where (34) is valid (e.g. by supposing (35); note that in simulations
below, we take κ1 < 1 so that (34) is verified immediately), but where Assumption 3.9 no longer
holds (recall that Assumption 3.9 is sufficient for convergence, not necessary, but oscillations
necessarily occur when Assumption 3.9 is not true). The difficulty (already met in the proof of
Proposition 5.3) is that checking Assumption 3.9 requires nontrivial algebraic estimates that may
be, in general, out of reach from any rigorous treatment. Therefore, we only check Assumption 3.9
numerically here.
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.1. Phase transition and emergence of oscillations
The first observation of this paragraph is that the phase transition derived formally in the previous
tion is (numerically) accurate: take hi = 1[0,θi], θi > 0, i = 1, . . . , 4, α = 0.8 and for simplicity
= 0.5 for i = 1, . . . , 4 and µB = 0. Consider β in (53) (or in (54)) sufficiently large so that ΦB→A is
se enough to the indicator function (55) (in pratice, interesting dynamical features already appears
β ≈ 10). With these parameters, the phase transition described in Section 6.1 simply boils down
R ≥ µA or R < µA. The corresponding simulations are displayed in Figures 5 and 6 below, made
the choice of (53) with β = 1000 and R = 1: for µA = 0.99, observe numerically in Figure 5
t UΦ is trivial (Assumption 3.9 is true) and therefore Theorem 3.10 applies: we have convergence
(λA, λB). On the contrary, for µA = 1.01, UΦ is no longer reduced to (`, `) (Assumption 3.9 is not
id) and oscillations appear (Figure 6). Being close the bifurcation point µcA = 1, we interpret the
dom excursions of (λAN , λ

B
N ) away from their theoretical curves observed in Figures 5b and 6b as

cts of finite N . The influence of the finite size effects on the longtime dynamics is an interesting
stion that is beyond the scope of the present paper and will the object of a future work. Note that
se oscillations are all the more effective when µA gets larger, see Figure 7. This phase transition
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Verifying the hypotheses of Theorem 3.10: represen-
ion of Φ (in blue) and Φ−1 (in red) on the interval
`). We see here that Φ < Φ−1 so that, by (44), UΦ is
vial so that Assumption 3.9 is true. Here κ1 < 1 and
) is trivial.
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(b) Trajectories of the mean-field (λA, λB) and their micro-
scopic counterparts (λAN , λ

B
N ).

ure 5: The case ΦB→A given by (53), with R = 1, β = 1000, hi = 1[0,θi], α = 0.8, κ1 = κ2 = κ3 = κ4 = 0.5 and
= 0. Here we take µA = 0.99. The conclusions of Theorem 3.10 hold in this case (Figure 5a) and we have convergence
he intensities as t→∞ (Figure 5b).

s not intrinsically depend on the specific choice of the sigmoid kernel ΦB→A. Replacing (53) by (54)
ds to similar patterns, even for smaller values of β, see Figure 8. However the precision of the phase
nsition around µcA := R degrades as β is not too large.

.2. The role of memory kernels in oscillations
The point we want to raise here is the importance of the choice of the memory kernels hi in the
ergence of oscillations. Previous simulations were made with compactly supported hi = 1[0,θi].

eral other choices for the hi can be made, such as e.g. exponential hi(u) = e
− u
θi or Erlang kernels
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Representation of Φ (in blue) and Φ−1 (in red) on
interval (0, `). We see here that UΦ is nontrivial

call (45)): Assumption 3.9 no longer holds.
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(b) Trajectories of the mean-field (λA, λB) and their micro-
scopic counterparts (λAN , λ

B
N ).

ure 6: The case ΦB→A given by (53), with R = 1, β = 1000, hi = 1[0,θi], α = 0.8, κ1 = κ2 = κ3 = κ4 = 0.5 and
= 0. Here we take µA = 1.01. Assumption 3.9 is no longer valid (Figure 6a) and we observe oscillations (Figure 6b).

u) = e
− u
θi
un

n! [27]. This last choice of exponential kernels has the nice ability to transform the
volution equation governing the mean-field intensity λ(t) of a single population of Hawkes processes
o an ODE governing the mean activity X(t) =

∫ t
0 e
− t−s

θ λ(s)ds (see e.g. [27] for further details).
e same procedure can be applied here: set hi(u) = e

− u
θi , i = 1, . . . , 4 and write X1(t) := α

∫ t
0 h1(t−

A(s)ds,X2(t) := (1−α)
∫ t

0 h2(t−s)λB(s)ds,X3(t) := α
∫ t

0 h3(t−s)λA(s)ds,X4(t) := (1−α)
∫ t

0 h4(t−
B(s)ds, one easily sees that the vector (X1, X2, X3, X4) solves the system of coupled ODEs





d
dtX1(t) = − 1

θ1
X1(t) + α (µA +X1(t)) ΦB→A (X2(t)) ,

d
dtX2(t) = − 1

θ2
X2(t) + (1− α) (µB +X3(t) +X4(t)) ,

d
dtX3(t) = − 1

θ3
X3(t) + α (µA +X1(t)) ΦB→A (X2(t)) ,

d
dtX4(t) = − 1

θ4
X4(t) + (1− α) (µB +X3(t) +X4(t)) .

(59)

netheless, no oscillations have been numerically observed for (59): for the same set of parameters,
it cycles that are present in the compact case hi = 1[0,θi] disappear with exponential kernels, replaced
damped oscillations. To be more precise, oscillations disappear whenever both h2 and h3 are
onential. We interpret this situation as follows: for the intuition described in Section 6.1 to work,
s necessary for population B that it forgets rapidly the influence of population A or that inhibition
B onto A has finite memory, that is one among h2 or h3 has compact support. Concerning h3,
influence of population A onto B is made through X3 = α

∫ t
0 h3(t − s)λA(s)ds which consists in

egrating on the whole history of population A. Therefore, if h3 has infinite support, X3 conserves
influence of nontrivial activity of A for arbitrary long times and even if the activity of A may
etimes vanish, it may not be sufficient for a significant decrease in the feedback from A to B. The
e argument applies for h2: if h2 has long memory, X2 keeps the trace of periods when activity of

was significant, therefore X2 cannot go back to its initial state where µB ≈ 0.
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ure 7: Trajectories of the mean-field (λA, λB) and their microscopic counterparts (λAN , λ
B
N ), when ΦB→A is given by

), with R = 1, β = 1000, hi = 1[0,θi], α = 0.8, κ1 = κ2 = κ3 = κ4 = 0.5, µA = 3 and µB = 0, on [0, T ] with T = 30.

Proofs of well-posedness results and propagation of chaos

We prove here the results of Section 2.1.

. Well-posedness of the particle system
We prove Proposition 2.7. Similarly to the proof of Proposition 2.1 [21], we proceed by an inductive
nning procedure on the Poisson point processes

(
(πi)i=1,...,N

)
.

tialization. Define Λi0 := F (0, 0) if 1 6 i 6 NA and Λi0 := G(0, 0), if NA + 1 6 i 6 N and

U
(i)
1 := inf

{
u > 0,

∫

(0,u]

∫

(0,Λi0]
πi(ds, dz) > 0

}
, i = 1, . . . , N

well as
U1 := min(U

(i)
1 , i = 1, . . . , N). (60)

ch U
(i)
1 for i = 1, . . . , N , is the first atom of an homogeneous Poisson process with parameter Λi0.

nce, almost surely, U (i)
1 and thus U1 is strictly positive and finite. Moreover, by independence of
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N ), when ΦB→A is given by

), with R = 1, β = 10, hi = 1[0,θi], α = 0.8, κ1 = 0.5, κ2 = 1, κ3 = 0.1, κ4 = 1.0, µA = 25 and µB = 0, on [0, T ] with
50.

Poisson point processes
(

(πi)i=1,...,N

)
, the variables U (i)

1 , i = 1, . . . , N are almost surely distinct so
t

I1 :=
{
i ∈ {1, . . . , N} , U (i)

1 = U1

}
(61)

lmost surely defined without ambiguity. Since any solution to (6) has constant intensities F (0, 0)
G(0, 0) until the first atom, the above construction yields that U1 given by (60) is necessarily the

t atom of (Zit)i=1,...,N and that it concerns the process Zi for i = I1.

ursion. Suppose we have constructed 0 < U1 < . . . < Uk and (I1, . . . , Ik) ∈ {1, . . . , N}k such that
the event {Uk <∞}, 0 < U1 < . . . < Uk are the k first atoms of the aggregated process

Z =

N∑

i=1

Zi (62)
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for all j = 1, . . . , k, Ij is the index in {1, . . . , N} responsible for the jth atom. Let

Z
(k)
A :=

∑

j=1,...,k,
Ij∈{1,...,NA}

δUj and Z(k)
B :=

∑

j=1,...,k,
Ij∈{NA+1,...,N}

δUj

the point measures corresponding to atoms which concern population A and B respectively. Define

ΛAk (t) := F

(
1

N

∫

(0,Uk]
h1(t− s)dZ(k)

A,s,
1

N

∫

(0,Uk]
h2(t− s)dZ(k)

B,s

)
,

ΛBk (t) := G

(
1

N

∫

(0,Uk]
h3(t− s)dZ(k)

A,s,
1

N

∫

(0,Uk]
h4(t− s)dZ(k)

B,s

)

well as

U
(i)
k+1 := inf

{
u > 0,

∫

(Uk,u]

∫

(0,ΛAk (s)]
πi(ds, dz) > 0

}
, i = 1, . . . , NA,

U
(i)
k+1 := inf

{
u > 0,

∫

(Uk,u]

∫

(0,ΛBk (s)]
πi(ds, dz) > 0

}
, i = NA + 1, . . . , N

fine finally Uk+1 := min
(
U

(i)
k+1, i = 1, . . . , N

)
. For ε > 0, denote by

RAε :=
{

(s, z), s ∈ (Uk, Uk + ε], z ∈ (0,ΛAk (s)]
}
,

RBε :=
{

(s, z), s ∈ (Uk, Uk + ε], z ∈ (0,ΛBk (s)]
}

all i = 1, . . . , NA, conditionally on FUk , πi(RAε ) follows a Poisson law with parameter
∫ Uk+ε
Uk

ΛAk (t)dt,
that

P
(
πi(RAε ) <∞

)
= E

(
P

(∫ Uk+ε

Uk

ΛAk (t)dt <∞|FUk
))

.

en, using (9) and Fubini Theorem
∫ Uk+ε

Uk

ΛAk (t)dt ≤ cF2 ε+
cF1
N
{‖h1‖1 + ‖h2‖1} k <∞.

nce, almost surely for all i = 1, . . . , NA, πi(RAε ) < ∞ and the same reasoning applies to πi(RBε )

all i = NA + 1, . . . , N . This gives that almost surely for all i = 1, . . . , N , U (i)
k+1 > Uk and thus

1 > Uk. Again by independence of the (πi)i=1,...,N , the U
(i)
k+1, i = 1, . . . , N are all distinct and

1 :=
{
i ∈ {1, . . . , N} , U (i)

k+1 = Uk+1

}
is uniquely defined. By definition (6), the above construction

lds that Uk+1 is necessarily the kth atom of (Zit)i=1,...,N and that it concerns the process Zi for
Ik+1. This completes the proof of the existence of a pathwise unique Hawkes process as defined in
. We now establish absence of explosion of this process.
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chastic domination. Introduce the following linear processes:

Zi,lint =

∫ t

0

∫ ∞

0
1
z6λi,lins

πi(ds, dz), i = 1, . . . , N, (63)

ere (recall (9))

i,lin
s = λA,lin

s := cF1


 1

N

NA∑

j=1

∫ s−

0

|h1(s− u)|dZj,lin
u +

1

N

N∑

j=NA+1

∫ s−

0

|h2(s− u)|dZj,lin
u


+ cF2 , 1 6 i 6 NA,

i,lin
s = λB,lin

s := cG1


 1

N

NA∑

j=1

∫ s−

0

|h3(s− u)|dZj,lin
u +

1

N

N∑

j=NA+1

∫ s−

0

|h4(s− u)|dZj,lin
u


+ cG2 , NA + 1 6 i 6

(64)

istence and pathwise uniqueness of a process
(
Zi,lin

)
i=1,...,N

such that
∑N

i=1 E
[
supt∈[0,T ] Z

i,lin
t

]
<∞

all T > 0 is a direct consequence of well-known existing results (see e.g. [24]).
We prove here that the point processes Zi, i = 1, . . . , N are stochastically dominated by Zi,lin, i =
. . , N given in (63). More precisely, we show that for all i = 1, . . . , N , each atom of Zi is also an
m of Zi,lin. We proceed by recursion: we claim that (recall (7))

{
λAt ≤ λA,lint ,

λBt ≤ λB,lint ,
t ∈ (0, U1]. (65)

eed, by construction of Zi, i = 1, . . . , N , there are no atoms before U1 so that, for t ∈ (0, U1),
= F (0, 0) ≤ cF2 ≤ λA,lint and λBt = G(0, 0) ≤ cG2 ≤ λB,lint . Suppose that I1 ∈ {1, . . . , NA} (recall the
nition of I1 in (61)), the other case I1 ∈ {NA + 1, . . . , N} is treated similarly. By definition of U1,
re exists an atom (U1, z) of πI1 with 0 ≤ z ≤ λAU1

so that by (65), 0 ≤ z ≤ λA,linU1
so that by (63), U1

lso an atom of Z lin
I1
.

Suppose now that U1, . . . , Uk (which are by definition atoms of ZI1 , . . . , ZIk respectively) are also
ms of Z lin

I1
, . . . , Z lin

Ik
. In particular, for t ∈ [Uk, Uk+1), recalling

λAt = ΛAk (t) ≤ cF1

{
1

N

∫

(0,Uk]
|h1(t− s)|dZ(k)

A,s +
1

N

∫

(0,Uk]
|h2(t− s)|dZ(k)

B,s

}
+ cF2 ≤ λA,lint ,

ere we used (9) and the fact that the number of atoms among U1, . . . , Uk that concern population
resp. B) is the same for both processes (Zi)i=1,...,N and (Zi,lin)i=1,...,N . The same reasoning proves
t λBt ≤ λB,lint for t ∈ [Uk, Uk+1). Hence, this proves again that Uk+1 (which is an atom of ZIk+1

) is
o an atom of Z lin

Ik+1
, which proves the claim.

sence of explosion. A direct consequence of the previous claim is that since Zi,lint is a.s. not explosive
each i, so is Zit .
Uniqueness of a trajectory follows from the inductive procedure. This concludes the proof of Propo-
on 2.7.

. Proof of well-posedness of the mean-field limit
We prove here Proposition 2.8.
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.1. Well-posedness of (18)
Consider first the dynamics of the mean-value (mA

t ,m
B
t ) given by (18). Let us begin with an a

ori estimate: for any solution (mA,mB) that is C1 on [0, T ] (if it exists), such a solution satisfies, for
:= (mA

t )′, λBt := (mB
t )′,




λAt = F

(
α
∫ t

0 h1(t− u)λAu du, (1− α)
∫ t

0 h2(t− u)λBu du
)
,

λBt = G
(
α
∫ t

0 h3(t− u)λAu du, (1− α)
∫ t

0 h4(t− u)λBu du
)
.

particular λAu ≥ 0 and λBu ≥ 0 for all u ∈ [0, T ]. Using (9), we obtain that, for t ∈ [0, T ]

λAt ≤ cF2 + cF1

{
α

∫ t

0
|h1(t− v)|λAv dv + (1− α)

∫ t

0
|h2(t− v)|λBv dv

}
,

λBt ≤ cG2 + cG1

{
α

∫ t

0
|h3(t− v)|λAv dv + (1− α)

∫ t

0
|h4(t− v)|λBv dv

}
.

summation, we obtain, for Λ(t) := λAt + λBt , that for some constant C > 0 (recall the definition of
in (8)),

Λ(t) ≤ C
(

1 +

∫ t

0
H(t− v)Λ(v)dv

)
. (66)

application of [24], Lemma 23 (i) leads to the following a priori bound: there exists of a constant
> 0, depending on T, F,G and H such that

sup
t∈[0,T ]

{
λAt + λBt

}
= sup

t∈[0,T ]

{
(mA

t )′ + (mB
t )′
}
≤ C0. (67)

We now turn to the proof of uniqueness of a solution to (18): consider two solutions (mA,mB)

(m̃A, m̃B). Set (vA(t), vB(t)) :=
(∫ t

0

∣∣d(mA
u − m̃A

u )
∣∣ ,
∫ t

0

∣∣d(mB
u − m̃B

u )
∣∣
)
and v(t) := vA(t) + vB(t).

en,

vA(t) =

∫ t

0

∣∣d(mA
u − m̃A

u )
∣∣ ≤

∫ t

0

∣∣∣∣F
(
α

∫ u

0
h1(u− v)dmA

v , (1− α)

∫ u

0
h2(u− v)dmB

v

)

− F
(
α

∫ u

0
h1(u− v)dmA

v , (1− α)

∫ u

0
h2(u− v)dm̃B

v

) ∣∣∣∣du

+

∫ t

0

∣∣∣∣F
(
α

∫ u

0
h1(u− v)dmA

v , (1− α)

∫ u

0
h2(u− v)dm̃B

v

)

− F
(
α

∫ u

0
h1(u− v)dm̃A

v , (1− α)

∫ u

0
h2(u− v)dm̃B

v

) ∣∣∣∣du

ing (10) and (11), we obtain

vA(t) ≤ (1− α)

∫ t

0

(
cF4 α

∫ u

0
|h1(u− v)|dmA

v + cF5

) ∣∣∣∣
∫ u

0
h2(u− v)(dmB

v − dm̃B
v )

∣∣∣∣du

+ cF3 α

∫ t

0

∣∣∣∣
∫ u

0
h1(u− v)(dmA

v − dm̃A
v )

∣∣∣∣du.
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ing here the uniform bound (67) to control the first term above, we obtain

vA(t) ≤ (1− α)
(
cF4 αC0 ‖h1‖1,T + cF5

)∫ t

0
|h2(t− u)|vB(u)du+ cF3 α

∫ t

0
|h1(t− u)|vA(u)du. (68)

ilarly, we obtain

vB(t) ≤ (1− α)(αcG4 C0‖h3‖1,T + cG5 )

∫ t

0
|h4(t− u)|vB(u)du+ αcG3

∫ t

0
|h3(t− u)|vB(u)du. (69)

thering (68) and (69) and applying Gronwall’s inequality (recall [24], Lemma 23, (i)) gives uniqueness
a solution to (18).
We now turn to the existence part. We follow here closely the argument of [24], Lemmas 23 and 24:
sider the sequence (m0

A,m
0
B) ≡ (0, 0) and for n ≥ 0,




mA,n+1
t =

∫ t
0 F

(
α
∫ s

0 h1(s− u)dmA,n
u , (1− α)

∫ s
0 h2(s− u)dmB,n

u

)
ds,

mB,n+1
t =

∫ t
0 G

(
α
∫ s

0 h3(s− u)dmA,n
u , (1− α)

∫ s
0 h4(s− u)dmB,n

u

)
ds,

ing (9) we obtain that

mA,n+1
t ≤ cF2 t+ cF1

{
α

∫ t

0
|h1(t− u)|mA,n

u du+ (1− α)

∫ t

0
|h2(t− u)|mB,n

u du

}
,

mB,n+1
t ≤ cG2 t+ cG1

{
α

∫ t

0
|h3(t− u)|mA,n

u du+ (1− α)

∫ t

0
|h4(t− u)|mB,n

u du

}
,

that Mn(t) := mA,n
t +mB,n

t satisfies, for some constant C > 0

Mn+1(t) ≤ Ct+ C

∫ t

0
H(t− u)Mn(u)du.

plying [24], Lemma 23, (iii), we obtain that supt∈[0,T ] supn≥0M
n(t) is bounded by some constant

> 0. Using this uniform estimate and the hypotheses on F and G gives, in a similar way to the
queness part, that for δnt :=

∫ t
0

∣∣∣d(mA,n+1
u −mA,n

u )
∣∣∣+
∫ t

0

∣∣∣d(mB,n+1
u −mB,n

u )
∣∣∣,

δn+1
t ≤ C

∫ t

0
H(t− u)δnudu. (70)

[24], Lemma 23, (ii), this gives that
∑

n≥0 δ
n
t <∞, which implies the existence of a locally bounded

jectory (mA
t ,m

B
t ) such that limn→∞

∫ t
0

∣∣∣d(mA
u −mA,n

u )
∣∣∣ +

∫ t
0

∣∣∣d(mB
u −mB,n

u )
∣∣∣ = 0. This provides

stence of a solution to (18). It remains to check that it is C1. We easily see that (mn
A,m

n
B) is C1,

induction, with a bound on supu∈[0,T ]

∣∣∣(mA,n
u )′

∣∣∣+
∣∣∣(mB,n

u )′
∣∣∣ that is uniform in n. Using this uniform

nd and the properties of F and G, we directly see that ((mA,n,)′, (mB,n)′) is Cauchy for the uniform
vergence on [0, T ], which gives the desired conclusion.
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.2. Well-posedness of the mean-field process
Now turn to the mean-field limit (16)-(17). Suppose that such a process (Z̄At , Z̄

B
t ) exists. Then,

ing expectation in (16)-(17), we see that (E(Z̄At ),E(Z̄Bt )) solves (18) and is thus uniquely defined,
Proposition 2.8. Hence, any solution to (16)-(17) solves necessarily




Z̄At =

∫ t
0

∫∞
0 1z6F(α

∫ s
0 h1(s−u)dmAu ,(1−α)

∫ s
0 h2(s−u)dmBu )πA(ds, dz),

Z̄Bt =
∫ t

0

∫∞
0 1z6G(α

∫ s
0 h3(s−u)dmAu ,(1−α)

∫ s
0 h4(s−u)dmB,u)πB(ds,dz),

(71)

ich gives uniqueness. Concerning existence, consider the solution (Z̄At , Z̄
B
t ) to (71). Then (E(Z̄At ),E(Z̄

ifies {
E
(
Z̄At
)

=
∫ t

0 F
(
α
∫ s

0 h1(s− u)dmA
u , (1− α)

∫ s
0 h2(s− u)dmB

u

)
ds,

E(Z̄Bt ) =
∫ t

0

{
G
(
α
∫ s

0 h3(s− u)dmA
u , (1− α)

∫ s
0 h4(s− u)dmB

u

)}
ds,

that (E(Z̄At ),E(Z̄Bt )) = (mA
t ,m

B
t ) since (mA,mB) solves (18). This gives existence and Proposi-

n 2.8 is proven.

. Proof of propagation of chaos
We prove here Proposition 2.9. Denote by

Λ
(A,1)
N,t :=

1

N

∑

16j6NA

∫ t−

0
h1(t− u)dZju, Λ

(B,2)
N,t :=

1

N

∑

NA+16j6N

∫ t−

0
h2(t− u)dZju,

Λ
(A,3)
N,t :=

1

N

∑

16j6NA

∫ t−

0
h3(t− u)dZju, Λ

(B,4)
N,t :=

1

N

∑

NA+16j6N

∫ t−

0
h4(t− u)dZju,

that (6) becomes




Zit =
∫ t

0

∫∞
0 1

z6F
(

Λ
(A,1)
n,s ,Λ

(B,2)
N,s

)πi(ds, dz), 1 6 i 6 NA,

Zit =
∫ t

0

∫∞
0 1

z6G
(

Λ
(A,3)
N,s ,Λ

(B,4)
N,s

)πi(ds, dz), NA + 1 6 i 6 N.

note also by

Λ
(A,1)
t := α

∫ t

0
h1(t− u)dE(Z̄Au ), Λ

(B,2)
t := (1− α)

∫ t

0
h2(t− u)dE

(
Z̄Bu
)
,

Λ
(A,3)
t := α

∫ t

0
h3(t− u)dE

(
Z̄Au
)
, Λ

(B,4)
t := (1− α)

∫ t

0
h4(t− u)dE

(
Z̄Bu
)
,

that the limiting system (16)-(17) becomes




Z̄At =
∫ t

0

∫∞
0 1

z6F
(

Λ
(A,1)
s ,Λ

(B,2)
s

)πA(ds, dz),

Z̄Bt =
∫ t

0

∫∞
0 1

z6G
(

Λ
(A,3)
s ,Λ

(B,4)
s

)πB(ds,dz).

((Z̄i,A)i=1,...,NA , (Z̄
i,B)i=NA+1,...,N ) be the coupling driven by the same Poisson point processes πi,

1, . . . , N as for (6). With a slight abuse of notations, we use the same Z̄i for Z̄i,A or Z̄i,B depending
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wether i = 1, . . . , NA or i = NA+1, . . . , N . For all i = 1, . . . , N , denote by ∆i
N (t) :=

∫ t
0

∣∣d
(
Ziu − Z̄iu

)∣∣
total variation distance between processes Zi and Z̄i and δiN (t) := E

[
∆i
N (t)

]
. Note that by

hangeability within populations A and B respectively, one has δiN (t) := δAN (t) for i = 1, . . . , NA

sp. δiN (t) := δBN (t) for i = NA+1, . . . , N). The point below is to control δN (t) := max
(
δAN (t), δBN (t)

)
.

stly, for i = 1, . . . , NA:

∆i
N (t) =

∫ t

0

∣∣∣∣
∫ ∞

0
1
z≤F

(
Λ

(A,1)
n,s ,Λ

(B,2)
N,s

) − 1
z≤F

(
Λ

(A,1)
s ,Λ

(B,2)
s

)
∣∣∣∣πi(ds,dz)

that

δAN (t) ≤
∫ t

0
E
[∣∣∣F

(
Λ

(A,1)
N,s ,Λ

(B,2)
N,s

)
− F

(
Λ(A,1)
s ,Λ

(B,2)
N,s

)∣∣∣
]

ds (72)

+

∫ t

0
E
[∣∣∣F

(
Λ(A,1)
s ,Λ

(B,2)
N,s

)
− F

(
Λ(A,1)
s ,Λ(B,2)

s

)∣∣∣
]

ds. (73)

ing (10) in (72) and (11) in (73), we obtain

δAN (t) ≤ cF3
∫ t

0
E
[∣∣∣Λ(A,1)

N,s − Λ(A,1)
s

∣∣∣
]

ds+

∫ t

0

(
cF4 |Λ(A,1)

s |+ cF5

)
E
[∣∣∣Λ(B,2)

N,s − Λ(B,2)
s

∣∣∣
]

ds. (74)

ncentrate on the first term in the sum above: one has
∫ t

0
E
[∣∣∣Λ(A,1)

N,s − Λ(A,1)
s

∣∣∣
]

ds ≤
∫ t

0
E



∣∣∣∣∣∣

1

N

∑

16j6NA

∫ s−

0
h1(s− u)(dZju − dZ̄ju)

∣∣∣∣∣∣


ds

+

∫ t

0
E



∣∣∣∣∣∣

1

N

∑

16j6NA

∫ s−

0
h1(s− u)dZ̄ju − α

∫ s

0
h1(s− u)dE(Z̄Au )

∣∣∣∣∣∣


ds,

that, for Xj(s) :=
∫ s−

0 h1(s− u)dZ̄ju,

t

E
[∣∣∣Λ(A,1)

N,s − Λ(A,1)
s

∣∣∣
]

ds ≤ NA

N

∫ t

0
|h1(t− u)|δAN (u)du+

∫ t

0
E



∣∣∣∣∣∣

1

N

∑

16j6NA
(Xj(s)−E [Xj(s)])

∣∣∣∣∣∣


ds

+

∣∣∣∣α−
NA

N

∣∣∣∣
∫ t

0

∫ s

0
|h1(s− u)|dE(Z̄Au )ds,

(75)

ere for the first bound in (75), we used the integration by parts formula
∫ t

0

∫ s−
0 |h1(s− u)| d∆N,uds =

|h1(t− s)|∆N,sds (see Lemma 22 in [24]) as well as exchangeability within population A. For the
ond bound, Xj(s), j = 1, . . . , NA is a collection of i.i.d. random variables, with V ar [Xj(s)] =
h1(s− u)2λAu du, so that the Cauchy-Schwarz inequality leads to

∫ t

0
E



∣∣∣∣∣∣

1

N

∑

16j6NA
(Xj(s)−E [Xj(s)])

∣∣∣∣∣∣


ds ≤ N

1
2
A

N

∫ t

0

(∫ s

0
h1(s− u)2λAu du

) 1
2

ds,

≤
√
α ‖h1‖2 t

∥∥λA
∥∥ 1

2
∞,t√

N
,
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ng NA
N ≤ α. With similar arguments, since NA = bαNc, the last term in (75) is of order 1

N and

way bounded by
t‖λA‖∞,t‖h1‖1√

N
. We obtain finally that

∫ t

0
E
[∣∣∣Λ(A,1)

N,s − Λ(A,1)
s

∣∣∣
]

ds ≤
∫ t

0
|h1(t− u)|δAN (u)du+

C1(t)√
N
,

C1(t) := t
∥∥λA

∥∥ 1
2
∞,t

(√
α ‖h1‖2 +

∥∥λA
∥∥ 1

2
∞,t ‖h1‖1

)
. Note secondly that

|Λ(A,1)
s | 6α

∫ t

0
|h1(t− u)|λAu du ≤ α

∥∥λA
∥∥
∞,t ‖h1‖1,t ≤ κ1

∥∥λA
∥∥
∞,t := C2(t).

nce, proceeding similarly, we have

t

0

(
cF4 |Λ(A,1)

s |+ cF5

)
E
[∣∣∣Λ(B,2)

N,s − Λ(B,2)
s

∣∣∣
]

ds ≤ (cF4 C2(t) + cF5 )

{∫ t

0
|h2(t− u)|δBN (u)du+

C3(t)√
N

}
,

ere C3(t) := t
∥∥λB

∥∥ 1
2
∞,t

(√
1− α ‖h2‖2 +

∥∥λB
∥∥ 1

2
∞,t ‖h2‖1

)
. Collecting everything into (74), we obtain

δAN (t) ≤ C4(t)

∫ t

0
{|h1(t− u)|+ |h2(t− u)|} δN (u)du+

C5(t)√
N
,

ere C4(t) := cF3 + cF4 C2(t) + cF5 and C5(t) := cF3 C1(t) + (cF4 C2(t) + cF5 )C3(t). We now turn to the
ilar treatment of i = NA + 1, . . . , N : proceeding in the same way as before, we obtain

δBN (t) ≤ C6(t)

∫ t

0
{|h3(t− u)|+ |h4(t− u)|} δN (u)du+

C7(t)√
N
,

the constants C6(t) := cG3 + cG4 C̃2(t) + cG5 and C7(t) := cG3 C̃1(t) + (cG4 C̃2(t) + cG5 )C̃3(t) with C̃1(t) :=
A
∥∥ 1

2
∞,t

(
‖h3‖2 + cα

∥∥λA
∥∥ 1

2
∞,t ‖h3‖1

)
, C̃2(t) := κ3‖λA‖∞,t and C̃3(t) := t

∥∥λB
∥∥ 1

2
∞,t

(
‖h4‖2 + cα

∥∥λB
∥∥ 1

2
∞,

his gives finally that, for S :=
∑4

i=1 |hi|

δN (t) ≤ max(C4(t), C6(t))

∫ t

0
S(t− u)δN (u)du+

max(C5(t), C7(t))√
N

,

serving that ∆i
N (t) > supu∈[0,t] |Ziu − Z̄iu| and applying Lemma 23 of [24] gives that

sup
i=1,...,N

E

[
sup
u∈[0,t]

∣∣Zit − Z̄it
∣∣
]
≤ C(t)√

N
. (76)

pose additionally that ‖λA‖∞ <∞ and ‖λB‖∞ <∞. We see from the above calculations that in the
e the parameters satisfy max

({
cF3 + cF4 κ1

∥∥λA
∥∥
∞ + cF5

}
(κ1 + κ2) ,

{
cG3 + cG4 κ3‖λA‖∞ + cG5

}
(κ3 + κ4

ne obtains the following linear bound supi=1,...,N E
[
supu∈[0,t]

∣∣Zit − Z̄it
∣∣
]
≤ Ct√

N
for some C indepen-

t of t. This concludes the proof of Proposition 2.9.
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Proofs for the longtime dynamics

We prove here the results of Section 3. Recall that we consider the system (22) under Assump-
n 3.1. Recall notations (26). For t ≥ 0, introduce uA(t) := sups≥t λ

A
s , uB(t) = sups≥t λ

B
s ,

t) := infs≥t λAs and vB(t) := infs≥t λBs . Both t 7→ uA(t) and t 7→ uB(t) (resp. t 7→ vA(t) and
vB(t)) are non-increasing (resp. non-decreasing), and we have that uA(t) −−−→

t→∞
¯̀
A, uB(t) −−−→

t→∞
¯̀
B,

t) −−−→
t→∞

`A and vB(t) −−−→
t→∞

`B.

. Some a priori estimates and first proofs

.1. General estimates
mark 8.1. We state a bound that is constantly used in the following: for any kernel h ≥ 0 and
ction λ ≥ 0, for v(s) := infu≥s λ(u) and any s ≥ 0,

∫ s

0
h(s− u)λ(u)du ≥ v(s/2)

∫ s

s/2
h(s− u)du = v(s/2)

∫ s/2

0
h(u)du.

A first a priori estimate is given by Proposition 8.2:

oposition 8.2. Consider Model (22) under Assumption 3.1. Then, the following inequalities on
`B,

¯̀
B ∈ [0,+∞] are true:

`B ≥ ΦA→B (`Aκ3) , (77)
¯̀
B ≤ ΦB(0) + ‖ΦB‖L ¯̀

Bκ4 + ΦA→B
(
¯̀
Aκ3

)
. (78)

reover, in the particular case of the Model (23) (recall (13)), we have

`B ≥ µB + `Bκ4 + ΦA→B (`Aκ3) , (79)
`A ≥ (µA + κ1`A) ΦB→A

(
¯̀
Bκ2

)
. (80)

mark 8.3. Note that in the case ¯̀
B = +∞, (78) is trivial. When ¯̀

B = +∞, (80) has to be
erstood as the trivial inequality `A ≥ 0, whatever the value of `A ∈ [0,+∞] (see the end of the proof
w).

of of Proposition 8.2. First we prove (77): since ΦB ≥ 0 and ΦA→B is nondecreasing, using Re-
rk 8.1 for h4 and λA, s ≥ 0, it holds

λBs ≥ ΦA→B

(
αvA(s/2)

∫ s/2

0
h3(u)du

)
.

king lim infs→∞ on both sides gives (77). The treatment of (79) in the linear case (13) is similar: it
ces to take lim infs→∞ in the following inequality: for s ≥ 0,

λBs ≥ µB + (1− α)vB(s/2)

∫ s/2

0
h4(u)du+ ΦA→B

(
αvA(s/2)

∫ s/2

0
h3(u)du

)
.
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now turn to (78): by Lipschitz-continuity of ΦB and the fact that ΦA→B is nondecreasing, for all
t ≥ 0, it holds

λBs ≤ ΦB(0) + ‖ΦB‖L
{

(1− α)

∫ t

0
h4(s− u)λBu du+ (1− α)uB(t)

∫ s−t

0
h4(u)du

}

+ ΦA→B

(
α

∫ t

0
h3(s− u)λAu du+ αuA(t)

∫ s−t

0
h3(u)du

)
.

ing now that h3(u), h4(u) −−−→
u→∞

0 and that the continuous functions λA and λB are bounded on

t], the dominated convergence theorem implies that for fixed t ≥ 0,
∫ t

0 h4(s − u)λBu du −−−→
s→∞

0 and

h3(s− u)λAu du −−−→
s→∞

0. Taking lim sups→∞ with t fixed yields

¯̀
B ≤ ΦB(0) + ‖ΦB‖L κ4uB(t) + ΦA→B (κ3uA(t)) . (81)

king t→∞ gives (78). Concerning (80), Remark 8.1 and ΦB→A is non-increasing give for s ≥ t,

λAs ≥
(
µA + αvA

(s
2

)∫ s/2

0

h1(u)du

)
ΦB→A

(
(1− α)

{∫ t

0

h2(s− u)λBu du+ uB(t)

∫ s−t

0

h2(u)du

})
. (82)

nce s 7→ λBs is continuous, it is bounded on each [0, t] for all t ≥ 0, we get that uB(t) = +∞ for
e t ≥ 0 is equivalent to uB(t) = +∞ for all t ≥ 0, itself equivalent to ¯̀

B = +∞. In this case, (82)
uces to λAs ≥ 0 and taking lim sups→∞ gives (80) in this case. Otherwise, proceeding as above, we
that for fixed t ≥ 0,

∫ t
0 h2(s− u)λBu du −−−→

s→∞
0. Taking lim infs→∞ with t fixed and then t→∞ in

previous inequality leads to (80).

Consider the following constraint (which reduces exactly to (34) in the linear Model (23))

κ1 ‖ΦA‖L ΦB→A (`Bκ2) < 1. (83)

oposition 8.4. Consider Model (22) under Assumption 3.1 and suppose (83). Then, it holds that

¯̀
A ≤

ΦA(0)ΦB→A (κ2`B)

1− κ1 ‖ΦA‖L ΦB→A (κ2`B)
. (84)

particular 0 ≤ `A ≤ ¯̀
A <∞ implying that population A is subcritical.

Now restrict to Model (23): Inequality (84) becomes, for the function Ψ1 given in (28),

¯̀
A ≤ Ψ1 (`B) , (85)

we have
`A ≥ Ψ1

(
¯̀
B

)
. (86)

of of Proposition 8.4. We first claim that, under the present hypotheses,

uA(t) <∞, t ≥ 0. (87)
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eed, recall that uA(t) := sups≥t λ
A
s and (with a slight abuse of notations) denote for t ≤ t′, uA(t, t′) =

s∈[t,t′] λ
A
s < ∞. Then, for t ≤ s ≤ t′, using Remark 8.1, the fact that ΦA is Lipschitz continuous,

→A is non-increasing and z 7→ vB(z)
∫ z

0 h2(u)du is non-decreasing, gives

≤
(

ΦA(0) + α ‖ΦA‖L
{∥∥λA

∥∥
∞,t

∫ t

0
h1(s− u)du+ uA(t, t′)

∫ s

t
h1(s− u)du

})

× ΦB→A

(
(1− α)vB

(
t

2

)∫ t
2

0
h2(u)du

)
,

≤
(

ΦA(0) + α ‖ΦA‖L
{∥∥λA

∥∥
∞,t ‖h1‖1 + uA(t, t′) ‖h1‖1

})
ΦB→A

(
(1− α)vB

(
t

2

)∫ t
2

0
h2(u)du

)
.

calling the definition of κ1 in (24)

A(t, t′) ≤
(

ΦA(0) + κ1 ‖ΦA‖L
{∥∥λA

∥∥
∞,t + uA(t, t′)

})
ΦB→A

(
(1− α)vB

(
t

2

)∫ t
2

0
h2(u)du

)
. (88)

ce ΦB→A
(
(1 − α)vB( t2)

∫ t
2

0 h2(u)du
)
−−−→
t→∞

ΦB→A (`Bκ2), there exists, by (83), some t∗, such that

t ≥ t∗, κ1 ‖ΦA‖L ΦB→A
(
(1− α)vB( t2)

∫ t
2

0 h2(u)du
)
< 1. Thus, we deduce from (88) that, for t ≥ t∗

uA(t, t′) ≤

(
ΦA(0) + ‖ΦA‖L

∥∥λA
∥∥
∞,t κ1

)
ΦB→A

(
(1− α)vB

(
t
2

) ∫ t
2

0 h2(u)du

)

1− κ1 ‖ΦA‖L ΦB→A

(
(1− α)vB

(
t
2

) ∫ t
2

0 h2(u)du

) .

ting now t′ → ∞ in the previous inequality yields that uA(t) < ∞ for all t ≥ t∗. Noting that for
[0, t∗], uA(t) ≤ max

(∥∥λA
∥∥
∞,t∗ , uA(t∗)

)
, this proves Claim (87).

We now turn to the proof of (84). Using again Remark 8.1 and the fact that ΦA is Lipschitz and
→A is non-increasing, we obtain that for all s ≥ t ≥ 0,

λAs ≤
(

ΦA(0) + ‖ΦA‖L
{
α

∫ t

0
h1(s− u)λAu du+ αuA(t)

∫ s−t

0
h1(u)du

})

× ΦB→A

(
(1− α)vB(s/2)

∫ s/2

0
h2(u)du

)
. (89)

e dominated convergence theorem and h1(u) −−−→
u→∞

0 gives
∫ t

0 h1(s − u)λAu du −−−→
s→∞

0 for any fixed

0. Taking lim sups→∞ in (89) (for fixed t), we obtain, ¯̀
A ≤ (ΦA(0) + ‖ΦA‖L κ1uA(t)) ΦB→A (`Bκ2).

is together with (87) proves in particular that ¯̀
A <∞. Taking finally t→∞, we obtain,

¯̀
A ≤

(
ΦA(0) + κ1 ‖ΦA‖L ¯̀

A

)
ΦB→A (`Bκ2) . (90)

ing (83) in (90) yields (84). In the case of Model (23) (where ‖ΦA‖L = 1), (85) is a straightforward
sequence of (84). Turning now to the proof of (86), using hypothesis (83) together with ¯̀

B ≥ `B,
obtain that κ1ΦB→A

(
¯̀
Bκ2

)
< 1, which leads to (86), using (80).

Based on the previous a priori estimates, we can first prove the convergence theorems in the not
ly coupled cases: the proof of the easy Proposition 3.2 being an immediate consequence of [24],
. 10 and 11, we do not give its proof here (and anyway, its proof may be easily adapted from the
uments that follow below, so we leave the details to the reader).
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.2. The case κ2 > 0 and κ3 = 0.
We prove here Proposition 3.3. As κ3 = 0, the dynamics of B reduces to a single Hawkes dynamics
ependent from A. Therefore, the longtime asymptotics of λBt depending on the dichotomy κ4 < 1
κ4 > 1 can easily be retrieved from (78) and (79), since ΦA→B(·κ4) ≡ 0 here (see also [24], Th. 10
11).
If κ4 < 1, we have that `B = ¯̀

B = µB
1−κ4

. Here, the condition κ1ΦB→A
(
κ2µB
1−κ4

)
< 1 precisely boils

n to (83). Therefore, the results of Proposition 8.4 are valid: population A is subcritical and, by
) and (86), we obtain that λAt −−−→

t→∞
Ψ1

(
µB

1−κ4

)
, the desired result.

Now turn to the case κ1ΦB→A
(
κ2µB
1−κ4

)
> 1: this together with (80) imply `A ≥ µA

κ1
+ ρ`A, with

κ1ΦB→A
(
κ2µB
1−κ4

)
> 1. Since µA > 0 and `A ≥ ρ`A , the only possibility is `A = +∞, which gives

t λAt −−−→
t→∞

+∞.

Consider now the case κ4 > 1 and µB > 0. Then, λBt −−−→
t→∞

+∞, as lim+∞ΦB→A = 0, condition (83)

erified and one obtains from (85) (recall that lim+∞Ψ1 = 0) that ¯̀
A = 0, which gives λAt −−−→

t→∞
0.

position 3.3 is proven.

.3. The case κ2 = 0 and κ3 > 0

We prove Proposition 3.5. The dynamics of population A follows a standard Hawkes dynamics,
lated from population B. Each estimate concerning λAt as t → ∞ hence follows from e.g. [24]. If
< 1,it holds λAt −−−→

t→∞
µA

1−κ1
. Suppose κ4 < 1, the convergence result of λBt as t → ∞ is a direct

lication of (78) and (79) using that ‖ΦB‖L = 1. The case κ4 > 1 follows also from (79): we have
≥ µB +κ4`B which gives that `B = +∞ since κ4 > 1 and µB > 0. In the case κ1 > 1, λAt −−−→

t→∞
+∞

one obtains from (77) that `B = +∞, since κ3 > 0 and lim+∞ΦA→B = +∞. Proposition 3.5 is
ven.

. Proofs in the fully-coupled case κ2κ3 > 0

We prove here the results of Section 3.3.

.1. Proofs of auxiliary results
of of the general subcriticality result (Theorem 3.6):. Proceed by contradiction and suppose that
= +∞. Since κ3 > 0 and ΦA→B(x) −−−→

x→∞
+∞ by Assumption 3.1, one deduces from (77) that

= +∞. As κ2 > 0 and ΦB→A(x) −−−→
x→∞

0, then inequality (83) is verified. Hence, the conclusions of

position 8.4 hold and 0 ≤ `A ≤ ¯̀
A <∞ which leads to a contradiction. In the case where λBt −−−→

t→∞
, (83) holds and point 2. is an immediate consequence of (84) and the fact that ΦB→A(x) −−−→

x→∞
0.

e case population B is supercritical (Proposition 3.7):. We use here (79): since ΦA→B ≥ 0, we obtain
m this inequality that both `B ≥ µB and `B ≥ κ4`B. Since µB > 0, `B > 0 and since κ4 > 1, the
y possibility is that `B = +∞, which gives the first part of the result. The second part is a direct
sequence of Theorem 3.6.

.2. Proof of the main convergence result (Theorem 3.10)
Recall that we concentrate now on Model (23) (recall (13)), satisfying Assumption 3.1, κ2 > 0 and
> 0, in case population B is subcritical (i.e. κ4 < 1). We divide the proof into several steps.
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criticality of population B and a priori estimates (item 1). As t 7→ λBt is continuous it is bounded
any compact interval, it suffices to prove that ¯̀

B <∞. Proceeding in a way similar to the proof of
position 8.4, we define for t ≤ t′, uB(t, t′) = sups∈[t,t′] λ

B
s . Then, for t ≤ s ≤ t′, it holds that

λBs ≤ µB + κ4

∥∥λB
∥∥
∞,t + κ4uB(t, t′) + ΦA→B

(
κ3

∥∥λA
∥∥
∞,t + κ3uA(t)

)
.

before, using κ4 < 1, making t′ →∞ and using (87), we obtain

uB(t) <∞, t ≥ 0. (91)

deduce immediately from (91) and (81) that ¯̀
B < ∞. Let us now prove the a priori bound `B ≥

3
. If `B = +∞, it is trivially verified and if `B < +∞, one obtains from (79) that `B ≥ µB + `Bκ4

ich gives the result.
Let us prove now that ¯̀

B ∈ Iκ1,κ2 (recall the definition of Iκ1,κ2 in (27)). Indeed, recall that,
er the present hypotheses, `A < ∞ (Theorem 3.6). Recall now the a priori bound (80): `A ≥
+ κ1`A) ΦB→A

(
¯̀
Bκ2

)
so that `A

(
1− κ1ΦB→A

(
¯̀
Bκ2

))
≥ µAκ1ΦB→A

(
¯̀
Bκ2

)
≥ 0. There are two

sibilities: either `A > 0 and the previous inequality gives κ1ΦB→A
(
¯̀
Bκ2

)
< 1, since µA > 0; either

= 0 in such a case κ1ΦB→A
(
¯̀
Bκ2

)
= 0, since µA > 0 and ¯̀

B ∈ Iκ1,κ2 holds trivially. Hence (33) is
e.

nvergence of λA implies convergence of λB (Item 2). Since ΦB(0) = µB and ‖ΦB‖L = 1, (78) and
) read here

¯̀
B ≤ Ψ2

(
¯̀
A

)
and `B ≥ Ψ2 (`A) . (92)

m 2. of Theorem 3.10 follows immediately.

m 3. of Theorem 3.10. Suppose here (34) (which is equivalent to (83) in the context of system (23)).
us first prove (36), that is (`B,

¯̀
B) ∈ UΦ (recall the definition of Φ in (30) and of UΦ in (32)).

eed, the conclusions of Proposition 8.4 hold and applying the nondrecreasing function Ψ2 (recall its
nition in (29)) to (85) and (86) and combining with (92) gives that

Φ(¯̀
B) ≤ `B and ¯̀

B ≤ Φ(`B). (93)

remains to prove that `B ≤ ` ≤ ¯̀
B. First, suppose that `B ≥ `: since Φ is nondecreasing, we

ain Φ(`B) ≤ Φ(`) = ` so that ` ≤ `B ≤ ¯̀
B ≤ Φ (`B) ≤ ` which gives that `B = ¯̀

B = `. In a
e way, if ¯̀

B ≤ `, then Φ
(
¯̀
B

)
≥ ` so that (93) gives again ` ≤ Φ(¯̀

B) ≤ `B ≤ ¯̀
B ≤ ` so that

= ¯̀
B = `. Hence, in any case, `B ≤ ` ≤ ¯̀

B is always true. This means exactly (36). If now we
pose Assumption 3.9, we obtain that `B = ¯̀

B = ` and hence the convergence of λBt as t → ∞ to
unique fixed-point ` of Φ. The fact that 0 ≤ `A ≤ ¯̀

A < ∞ follows from Proposition 8.4 and the
vergence of λAt −−−→

t→∞
`A := Ψ1(`B) from (85) and (86). This gives the implication (a)⇒ (b) of item

Conversely, if we suppose now that λBt has a finite limit as t→∞, then `B = ¯̀
B and, by (33), (34)

rue. This completes the proof of Theorem 3.10.

. About Example 2.6
A natural question is wether it would be possible to derive a similar analysis for the longtime
amics of the model with self-inhibition in Example 2.6: one nice thing about Example 2.5-(13) is
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dynamics of λB in (23) is linear and increasing in both activities of A and B. In particular, one
ble to derive through (78) (resp. (79)) a closed formula involving only two variables (¯̀

A, ¯̀
B) (resp.

, `B)). Following similar arguments, one obtains in Example 2.6

`B ≥ (µB + κ3`A) ΦB→B
(
κ4

¯̀
B

)
,

¯̀
B ≤

(
µB + κ3

¯̀
A

)
ΦB→B (κ4`B) ,

t is only formulas involving (`A, `B,
¯̀
B) or (¯̀

A, `B,
¯̀
B), so that deriving a proper algebraic framework

uring that `B = ¯̀
B appears to require more involved arguments.
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