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Evidence for 40–41 km of dextral slip on the southern Death 
Valley fault: Implications for the Eastern California shear zone 
and extensional tectonics
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ABSTRACT
Recognition of a pair of pre-Neogene markers together with analysis of published data 

indicate ∼40 km of dextral slip across the southern Death Valley fault zone, California, USA. 
Stratigraphic overlaps on fault rocks indicate much of the dextral slip predates the late Mio-
cene, placing a significant fraction of the dextral slip in the same time window as regional 
extension and challenging interpretations that the modern strike-slip system became active 
post–6–3 Ma. However, these results are consistent with regional evidence that dextral trans-
tension began by ca. 12 Ma.

INTRODUCTION
Death Valley (California, USA) is the arche-

typical pull-apart basin (Burchfiel and Stewart, 
1966), yet there is controversy on slip estimates 
for the bounding strike-slip faults. Discrepan-
cies in strike-slip motion are partially due to 
complex deformation in a distributed trans-
tensional system that evolved over the last 
∼12 m.y. (e.g., Serpa and Pavlis, 1996; Snow 
and Wernicke, 2000; Renik and Christie-Blick, 
2013), but scarcity of markers has handicapped 
resolution of slip.

We present results from detailed mapping 
in the Noble Hills (Fig. 1) where the southern 
Death Valley fault system (SDVF) is well ex-
posed and show that these exposures closely 
match an exposure in the Owlshead Mountains 
∼40 km to the northwest. We then compare this 
result to previous estimates and assess the im-
plications of this conclusion.

REGIONAL GEOLOGIC SETTING AND 
THE SLIP ESTIMATE PROBLEM

The Death Valley region has been a center-
piece for Neogene extensional/transtensional 
tectonic studies in the southern United States 
Cordillera. Stewart (1967, 1983) and Wernicke 
et al. (1988) emphasized that there is a rich 
pre-Neogene record that can be exploited to 
reconstruct this late Cenozoic history. This re-
cord includes stratigraphic markers, Mesozoic 
contractional structures, and Neogene depos-

its. Both stratigraphic variations and Mesozoic 
structures trend northeast at nearly right angles 
to Neogene structures (Fig. 1), potentially pro-
viding high-resolution piercing lines to constrain 
reconstructions (Wernicke et al., 1988).

Stewart (1967) first attempted to reconstruct 
the Neogene system using stratigraphic markers 
to infer strike-slip offsets of ∼80 km across the 
Death Valley region. Wright and Troxel (1967) 
countered this interpretation using stratigraphic 
details in Death Valley to estimate dextral off-
set of less than 10 km on SDVF. This low slip 
estimate stands in marked contrast to relative-
ly robust, large slip estimates for the northern 
Death Valley fault (NDVF) system. These in-
clude Stewart’s (1967, 1983) estimate, and that 
by Snow and Wernicke (1989, 2000), who pro-
posed a displacement of 68 ± 4 km. More re-
cent efforts by Renik and Christie-Blick (2013) 
emphasized differential slip along the fault but 
estimated <50 km across what is now Death 
Valley proper.

The low slip estimate (<10–35 km) for the 
SDVF has tended to persist in many recon-
structions through hypotheses that either trans-
fer slip onto other strike-slip structures (e.g., 
Wright et al., 1991; Serpa and Pavlis, 1996) and/
or onto the extensional complex and transro-
tational structures (e.g., Wernicke et al., 1988, 
1989; Serpa and Pavlis, 1996; Snow and Wer-
nicke, 2000), with different interpretations of 
timing on the SDVF. This distinction has led 

to hypotheses that the Death Valley pull-apart 
basin is a young (6 Ma to <3 Ma) superposition 
on an extensional system (e.g., Stewart, 1983; 
Norton, 2011).

GEOLOGY OF THE SOUTHERN 
DEATH VALLEY FAULT ZONE IN THE 
NOBLE HILLS

Recent work by Trullenque et al. (2018) and 
Klee et al. (2020) using high-resolution digi-
tal mapping techniques similar to that of Pavlis 
et al. (2010) in the vicinity of the SDVF-Garlock 
intersection, together with previous mapping, 
provides strong evidence that the low slip esti-
mate for the SDVF is incorrect.

Studies in the Noble Hills have focused 
on Neogene rocks exposed along the SDVF 
(Brady, 1984; Brady and Troxel, 1999; Butler 
et al., 1988; Niles, 2016). Those studies demon-
strated that Quaternary deformation of the Noble 
Hills is dominated by the complex interactions 
of the sinistral Garlock fault and the dextral 
SDVF, which produce contractional structures 
in an area otherwise dominated by extensional 
tectonics.

In our work, we concentrated on deforma-
tion in a structural high within the Noble Hills 
(Fig. 2B). This effort revealed that this pre-Neo-
gene basement complex was intensely deformed 
by brittle deformation at low temperatures (Klee 
et al., 2020). The complex is composed of Pro-
terozoic gneiss and the nonconformably overly-
ing Crystal Springs Formation, and both were 
intruded by Mesozoic granite. The complex is 
cut by arrays of faults that range from discrete 
slip surfaces to broad cataclastic shear zones 
up to 100 m across. Near-vertical faults are 
dominant with ubiquitous dextral shear sense 
indicators, both at the margins of the structural 
high as well as on faults interior to the structural 
high. Our studies support the conclusion of Niles 
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(2016), who noted that the Neogene section is 
depositional on granite at the northern tip of 
the basement high (Fig. S1 in the Supplemental 
 Material1), but the margins are strike-slip faults 
that overprint the unconformity. These observa-

tions indicate that significant faulting postdates 
the Neogene nonconformity, but that significant 
motion had also occurred well before deposition 
of the Neogene cover. The overlapping rocks 
have not been directly dated, but Niles (2016) 
showed that they were no younger than ca. 
3.5 Ma. Based on lithology and stratigraphic 
position, Brady and Troxel (1999) correlated the 
unit with the Owlhole Spring Formation dated 
at 6–8 Ma, an estimate we accept here.

At map scale (Fig. 2B), we observed that to 
the southeast, the distinctive cataclastic granites 
of the bedrock high can be traced into a broad 
fault zone well inboard of the Avawatz Moun-
tains front. This cataclastic zone is clearly part of 
the SDVF but merges with cataclastic rocks (fr in 
Fig. 2B) developed along the eastern trace of the 
Garlock/Mule Springs fault (Brady, 1984). This 
geometry shows that the SDVF sensu stricto lies 
east of this intersection, and, therefore, rocks to 
the east of the line labeled Fault A in Figure 2B 
have been transported by most, or all, of the dex-
tral motion on the SDVF. This fault block con-
tains north-facing units that are truncated against 
the fault, including, from southeast to northwest: 
exposure of coarse-grained Mesozoic granite; 
Proterozoic basement; and the Crystal Springs 
Formation with its characteristic Mesoproterozo-
ic mafic intrusions. The Crystal Springs Forma-
tion strikes ENE and dips uniformly through this 
section at moderate to steep angles of 50°–90°. 
Across the fault to the west (Fig. 3), the Avawatz 
Mountains contain very different rocks, includ-
ing Triassic diorite, minor younger granites, and 
roof pendants of Proterozoic to Mesozoic rocks 
engulfed in diorite (Brady, 1984; Spencer, 1990; 
Pavlis et al., 1998).

This fault block at the Avawatz Mountains 
front is significant because it is similar to an 
exposure at the northeast tip of the Owlshead 
Mountains, just west of the SDVF (Figs. 1 and 
2A). The match between these two exposures 
is striking (see arrows for reference in Fig. 2): 
(1) the basic orientation and facing of the 
basement–Crystals Springs assemblage match 
across the fault, and (2) the positions of the 
granite intrusions into basement also match 
closely. In the Owlshead locality, the orienta-
tion of the rocks is demonstrably pre–ca. 14 Ma, 
as signified by a nearly flat-lying unconformity 
(Fig. 2A). Although only Quaternary deposits 
provide an equivalent constraint at the Avawatz 
Mountains front (Fig. 2B), it is likely the bed-
ding has not been rotated significantly because 
bedding is nearly perpendicular to likely rota-
tion axes from young contraction. Using the 
offset positions of either the basement-cover 
contact (base of the Crystal Springs Forma-
tion) or the granite-basement contact (arrows 
in Figs. 2A and 2B) indicates a net dextral offset 
of 40.5 km (straight-line distance) to 41.5 km 
(along-fault distance).

Further support for this offset marker pair 
is provided by the geology of the Noble Hills 
bedrock high. Because of structural position, 
these rocks must be a slice picked up some-
where along the fault trace, with less net slip 
than the total fault slip. Lithologically, howev-
er, the slice is closely akin to the offset mark-
ers: Crystal Springs Formation, basement, and 
granite, albeit with a much higher percentage 
of granite. Examination of the geology along 
the SDVF trace (Fig. 3A) suggests the slice was 

1Supplemental Material. Supplemental figure of 
the Noble Hills. Please visit https://doi.org/10.1130/
GEOL.S.14120396 to access the supplemental material, 
and contact editing@geosociety.org with any questions.

Figure 1. Regional map of the Death Valley–northeast Mojave Desert region, California, USA. 
Major Pliocene–Pleistocene strike-slip and thrust faults are shown but normal faults are omit-
ted for clarity. GIS—geographic information system.
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derived from along the Owlshead Mountains 
front, but close to Crystal Springs Formation 
exposures, because roof pendants farther south 
are all high-grade marbles (m in Fig. 3A). Simi-
larly, it cannot be locally derived basement from 
the Avawatz Mountains because all rocks west 
of the SDVF and south of the Garlock fault are 
dominated by mafic granitoids (e.g., Spencer, 
1990; Brady, 1984; Pavlis et al., 1998).

DISCUSSION
Additional Evidence for ∼40 km of Offset

Brady (1984) and Brady and Troxel (1999) 
showed that conglomerates west of the SDVF 
(THH in Fig. 3A) had clasts with no known 
source directly to the east, across the fault. 
Rather, the clasts had close affinity with rocks 
now exposed to the south and east in the Hal-
loran Hills (Figs. 1 and 3). This marker is blunt, 
but restoration of 40 km of the slip on the SDVF 
would place these Neogene sediments directly 
southwest of their interpreted source (Fig. 3C). 
Similarly, Butler et al. (1988) tied Neogene 
gravels in the Noble Hills to an Owlshead Moun-
tain source (labeled G in Fig. 3), leading to an 
estimate of ∼35 km of offset on the fault. Ben-
nie W. Troxel (deceased) later questioned the 
conclusion based on field details (unpublished 
field observations by B. Troxel and T. Pavlis), 
and Caskey et al. (2010) and Niles (2016) ques-
tioned other details. Nonetheless, Butler et al.’s 
(1988) conclusion is fully consistent with our 
slip estimate here.

Farther north, Serpa and Pavlis (1996) used 
the northern limit of Mesozoic plutonism as a 
marker for reconstruction, which, together with 
a similar marker, indicated that the northern 
limit of subjacent granitoids is consistent with 
30–40 km of slip (Fig. 3). Similarly, Luckow 
et al. (2005) and Canalda (2009) suggested that 
middle Miocene volcanics in Wingate Wash 
(Fig. 1) were dextrally offset from volcanic 
rocks near Ibex Pass (Fig. 1). This correlation 
is a coarse marker because the volcanics cover 
large areas on either side of the SDVF, but if the 
northern limit of known exposures is mapped 
(Fig. 3A), the resultant offset is also ∼40 km. 
Note, that an outlier of these volcanics lies well 
north of our line in the Amargosa Chaos (blue 
asterisk in Fig. 3), and this issue is considered 
further below.

Finally, Stewart (1967) mapped multiple 
stratigraphic trends that indicate ∼80 km of 
dextral displacement across the southern Death 
Valley region (Fig. 3). We note here that the 
main evidence for the low slip interpretation 
on the SDVF is the analysis of the Neoprotero-
zoic section by Wright and Troxel (1967). Their 
work showed multiple stratigraphic pinch-outs 
extending WSW from the Kingston Range to 
the Ibex Hills (Fig. 1) and then northwestward 
through the Amargosa Chaos to the Panamint 
Mountains (Fig. 3A). Note, however, that the 

A

B

C

Figure 2. Geologic maps of the area of offset markers proposed in this study (California, 
USA): (A) geologic map modified from Pavlis et al. (2012) with some additions in the southeast 
corner; (B) geologic map from this study; (C) map showing proposed restoration of slip on 
the southern Death Valley fault (SDVF). UTM—Universal Transverse Mercator; NAD83—North 
American Datum 1983.
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Amargosa Chaos and its Neogene cover (Ama-
rgosa Chaos basin of Topping, 1993) are de-
tached and displaced to the northwest along a 
low-angle normal fault system (Amargosa fault). 
Thus, these displaced rocks are not a meaning-
ful marker constraining strike-slip motion on 
the SDVF because they were carried along a 
separate fault system. Indeed, if the Amargosa 
Chaos rocks are excluded from the Wright and 
Troxel (1967) map (Fig. 3), these markers are 
similar to the northern limit of the Neogene vol-
canic rocks. This observation also explains the 
seeming outlier of Neogene volcanics at the base 
of the Amargosa Chaos basin (blue asterisk in 
Fig. 3) because they were displaced along with 
underlying rocks.

Figure 3C shows a simple restoration of 
40 km of slip on both the SDVF and the Ama-
rgosa fault system. This restores the northern 
limit of early Miocene volcanics and the Pah-
rump Group pinch-outs of Wright and Troxel 
(1967) to their equivalent positions in the Ibex 

Hills (Fig. 3C), and pre-extensional markers oth-
er than Stewart’s restore to within 1–5 km—a 
close correlation given the crude positions for 
some of these markers. The offset gravels recog-
nized by Butler et al. (1988) over-restore in this 
reconstruction (G in Fig. 3), which is expected 
for a syntectonic deposit. A feature that is not 
taken into account in Figure 3C is the well-doc-
umented transrotation south of the Garlock fault 
(e.g., Schermer et al., 1996). Slip estimates that 
constrain the transrotation vary (e.g., Schermer 
et al., 1996; Pavlis et al., 1998) but predict rota-
tions less than the paleomagnetic data. Nonethe-
less, contraction at the ends of the transrotational 
blocks is well documented (Fig. 1), including the 
faults at the eastern Avawatz Mountains front, 
which accounts for gaps in our reconstruction 
(Fig. 3C). Similarly, rock avalanche deposits 
in the Amargosa Chaos basin (pink asterisk in 
Fig. 3C) do not restore close to their Kings-
ton Range source, indicating extensional and/
or strike-slip faults to the east have displaced 

these markers as well as Stewart’s markers. Ad-
ditional work is needed to fully integrate our slip 
estimate with these known issues.

Broad-Scale Implications for 
Transtensional Systems

Our findings have implications for transten-
sional mechanics as well as the plate-tectonic 
evolution of southwestern North America. The 
Death Valley area is one of the best-documented 
transtensional systems on Earth, yet uncertain-
ties in how slip is distributed among strike-slip 
versus extensional structures remain, complicat-
ing understanding of the driving process(es) for 
extension. Geodetic studies (e.g., Lifton et al., 
2013) demonstrate that Death Valley now lies 
in the core of a distributed dextral system, the 
Eastern California shear zone/Walker lane belt 
(ECSZ/WL), which takes up more than 10% of 
Pacific–North American plate motion. To the 
south, this motion is taken up primarily by tran-
srotational panels, but north of the Garlock fault, 

A

B C

Figure 3. (A) Geologic map along the southern Death Valley fault (SDVF; California, USA) with offset markers discussed in rhw text (from geo-
graphic information system files in Workman et al. [2002] merged with California geologic map: maps.conservation.ca.gov/cgs/gmc/). Figure 
is rotated with motion along the SDVF vertical. Mz—Mesozoic. (B) Simplified fault blocks from A. (C) Rigid body restoration of 40 km of slip 
on the SDVF transferred to the Black Mountains frontal fault in simple pull-apart assumption. See text for details.
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the westerly motion of the Sierra Nevada relative 
to the Mojave produces a broad, transtensional 
system (e.g., Dokka and Travis, 1990).

Ages of synextensional strata (e.g., Holm 
et al., 1994) show that modern Death Valley is 
relatively young (ca. 6 Ma), but slip histories of 
other faults allow a range of interpretations pre–
6 Ma. Studies of the NDVF/Furnace Creek fault 
show that the fault system initiated during middle 
Miocene extension (e.g., Renik and Christie-
Blick, 2013), but this link has been elusive for the 
SDVF. Our ∼40 km slip estimate for the SDVF is 
consistent with the estimate by Renik and Chris-
tie-Blick (2013) of <50 km for strike-slip motion 
at the northern margin of the basin (Renik and 
Christie-Blick, 2013), and our timing constraints 
suggest both fault systems moved throughout 
the main extensional event. This result, together 
with other recent work (e.g., Renik and Christie-
Blick, 2013; Pavlis et al., 2014), suggests a new 
family of reconstructions is needed that account 
for these new observations. When completed, 
reconstructions could be used in an integrated 
geodynamic model to evaluate the mechanics 
of interactions among pull-apart basins, regional 
extension, and transrotation.

Any geodynamic analysis of the region needs 
to consider that our result suggests that strike-
slip motion was prominent throughout the re-
gional extension, implying the system was plate 
driven, with gravitational effects being second-
ary. This conclusion is consistent with evidence 
that strike-slip motion was prominent to the 
north in the Walker Lane from 14 to 12 Ma on-
ward (e.g., Oldow et al., 2008; Busby, 2013) and 
driven by plate motion (Lee et al., 2020). This 
suggests the ECSZ/WL represents a long-lived 
plate-boundary process linked to the evolving 
transform margin. Serpa and Pavlis (1996) em-
phasized this plate-driven hypothesis with inter-
pretations that transrotation played a major role 
during the extension, and synextensional folds in 
the system were produced by distributed dextral 
shear. Our observations here suggest distributed 
shear models of this type need to be reconsid-
ered for the entire span of the extension from 
ca. 12 Ma to present.

CONCLUSIONS
New studies in southern Death Valley sug-

gest that the net dextral slip on the SDVF is 
40–41 km. Previous estimates of <10 km used 
markers that are themselves displaced by de-
tachment faults, indicating those markers are 
minimum slip estimates. Evidence showing that 
8–6 Ma Neogene sediments onlap SDVF cata-
clasites suggests that much of the dextral slip 
occurred during the main extension from 12 to 
6 Ma. This challenges interpretations that the 
Death Valley pull-apart is a post–6 Ma struc-
tural feature, but it is consistent with regional 
evidence that dextral transtension in the ECSZ/
WL belt began in the middle Miocene.
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