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ABSTRACT

A modal model, hitherto used to predict electromagnetic
and ultrasonic surface waves, is employed in deriving an
effective impedance for a grooved acoustically hard sur-
face. This is inserted in the classical theory for propagation
from a point source above an impedance plane to predict
point-to-point propagation above regularly spaced grooves
with rectangular cross sections. Predictions of excess at-
tenuation (EA) spectra obtained in this manner compare
closely with those obtained by a numerical method (BEM)
but take a fraction of the time. The modal method is ex-
tended to predict EA spectra above metasurfaces consist-
ing of repeated arrays of variable depth grooves with dif-
ferent depths of a low flow resistivity porous material in
each groove. The porous infill is predicted to reduce the
negative EA peaks associated with quarter wavelength res-
onances in the grooves. By applying the modal model ef-
fective impedance theory, porous-infill groove arrays have
been designed to yield wideband excess attenuation spectra
with potential for reducing noise from surface transport.

1. INTRODUCTION

Outdoor propagation of sound from a point or line source
over a rough ground where the incident wavelengths are
larger than or comparable with the dimensions of the
roughness involves both scattering and coherent reflection.
The coherent component of the ground reflection interferes
constructively and destructively with sound travelling di-
rectly from source to receiver. Many theories have been
published to predict the scattering behaviour of particular
forms of periodic structure beginning with Rayleigh for si-
nusoidal surfaces [22] and latterly those such as multiple
scattering or boss theory [23, 31, 32] and modal decompo-
sitions [1–3, 19, 24–26, 28] which solve for the scattered
field. Recently there has been interest in deliberately pro-
filing the ground surface in a periodic manner to cause de-
structive interference in a frequency range useful for re-
ducing noise from surface transport sources [14, 21, 30].

Propagation over such surfaces can be predicted by nu-
merical methods such as the Boundary Element Method
(BEM) in the frequency domain and by Finite Difference
Time Domain and Pseudo-Spectral Time Domain. How-
ever, these methods are rather computationally demand-
ing. The computational demands can be reduced signifi-
cantly if the rough surface can be represented by an effec-
tive impedance plane rather than having to input the detail

of the surface topography. This has been done empirically
for a surface composed from regularly spaced low parallel
walls based on laboratory measurements [30]. But com-
putational requirements are reduced even further, and the
effective impedance approach made more general if the ef-
fective impedance can be expressed analytically, since this
can be used in a classical theory for predicting point-to-
point propagation over an impedance plane [17,18,20,27].
This paper uses a modal method adapted from electromag-
netic theory [1] to derive an effective impedance near graz-
ing incidence. A classical theory for point-to-point propa-
gation is outlined in section 2. The modal model for the to-
tal field above a periodic system of variable depth grooves
incorporating porous layers is described briefly in Section
3 along with the derivation of a corresponding effective
impedance. Section 4 presents predictions of excess atten-
uation spectra for source and receiver at 0.1 m height and
separated by 2 m above three types of periodic surfaces
involving rectangular grooves, identical acoustically-hard
grooves, grooves with different depths intended to intro-
duce a phase gradient during reflection and a ‘metasurface’
composed from grooves with different depths containing
different thicknesses of a rigid-porous material. Excess at-
tenuation spectra calculated using the modal model’s ef-
fective impedance are shown to compare favourably with
those obtained using the more computationally expensive
BEM and the ‘metasurface’ is predicted to result in a broad
band attenuation.

2. POINT-TO-POINT ACOUSTIC PROPAGATION
ABOVE A GROUND PLANE

Many outdoor acoustics problems involving transport
noise may be modelled as a point source and receiver in
space, above a ground plane of the form shown in Fig. 1.
Where one wishes to calculate the magnitude of the sound
reaching the receiver, usually a populated area, from a nui-
sance noise source such as a road, industrial facility or air-
port. The intervening ground is modelled as an effective
impedance [14,17,18] and the sound reaching the receiver
is the addition of the component directly from the source
along path Ri and that specularly reflected from the ho-
mogeneous ground surface following the path RB + RA.
The sound from the source incident upon the ground with
angle θ will be reflected by a factor given by a reflection
coefficient Γ, which may be chosen to suit each applica-
tion and is a function of the effective impedance of the
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Figure 1. Point-to-point acoustic propagation model.

ground surface Zeff . For this study the reflection coef-
ficient of Chien and Soroka [12] for a spherical spreading
source and denoted ΓS will be used. The generally applied
method of expressing the results is in the form of excess-
attenuation (EA) as shown in (1) for spherical spreading.
It is a measure of the effect of the ground surface relative
to a given reference, such as the free-field or another refer-
ence ground surface. This allows noise attenuating ground
surfaces to be objectively evaluated relative to a control
surface.

EAdB =

20 log

(∣∣∣∣1 +
ΓS exp (ik (RA +RB))/ (4π (RA +RB))

exp (ikRi)/ (4πRi)

∣∣∣∣)
(1)

The point-to-point model of Fig. 1 assumes that the ground
is homogeneous and reflection is purely specular given by
the combination of the incident ’i’ and ground reflected ’r’
components thus,

ptot(xR, zR) = pi + pr (2)

However, in the presence of a scattering ground surface
where the features are comparable in size to the incident
wavelength, such as those under consideration in this work,
an additional scattered ’sct’ component is present and so
the field at the receiver becomes,

ptot(xR, zR) = pi + pr + psct (3)

A method for efficiently determining an approximation to
the scattered field and incorporating this into Zeff follows
henceforth.

3. DERIVING AN EFFECTIVE IMPEDANCE FOR
RECTANGULARLY GROOVED SURFACES

3.1 A modal model for singularly grooved periodic
surfaces

A solution to the problem of calculating the electromag-
netic field above a perfectly reflecting rectangular grooved
periodic surface structure, as defined by the pitch d, aper-
ture a and depth h as in Fig. 2, was presented by Hes-
sel etal. [1] and laterly applied by Kelders etal. [2, 3] to
acoustics to study the ultrasonic surface waves supported
by such structures. The method has recently been extended
by the authors [4] to approximate the grooved surface as an
effective ground plane impedance to allow point-to-point

acoustic propagation problems involving these structures
to be efficiently modelled. In order to apply the point-to-

Figure 2. Rectangular groove definition and resulting scat-
tered field.

point model of Fig. 1 to a rectangularly grooved surface,
it is required that the surface be represented as an approx-
imate impedance which in turn, necessitates the solution
of the scattered field, for which the modal model will be
employed.

The modal model relies upon the simplifying assump-
tions that the grooved surface is acoustically hard and ex-
tends infinitely in all horizontal dimensions which for the
2-dimensional case with which this paper in concerned,
leads to infinite spatial periodicity in the x-axis (see Fig. 2)
and spatial invariance in y. Excitation is by homogeneous
plane wave within an ideal inviscid medium, with a given
angle of incidence θ and propagation constant k in the x-z
plane. A brief appraisal of the modal model kernel is given
here with an assumed exp(−iωt) time convention, but ref-
erence is made to literature for a comprehensive deriva-
tion [1–4].

The domain of the 2d problem may be considered as
two separate half spaces within the x-z plane, the free field
upper space for z > 0 and the lower groove space where
z < 0. Both spaces exhibit infinite periodicity in x ow-
ing to the infinite extents of the periodic grooved struc-
ture combined with homogenous plane wave excitation.
This constrains the propagation characteristics of each half
space region to that of an infinite set of m and n discrete
modes for the upper and lower half spaces respectively,
with complex amplitudes weightings of V̂m (upper space
quantities are denoted by hat) and Vn. Where the V̂m and
Vn sets are mutually related by the inner product relation-
ships of,

V̂m =
∑
n

Vn〈en, ∗êm〉

Vn =
∑
m

V̂m〈en, êm〉
(4)

Where V̂0 = V̂ i0 + V̂ r0 and the incident wave amplitude
V̂ i0 is given as initial conditions of the problem and most
conveniently given the value of 1. As the problem is posed
in terms of z-direction velocity vz and acoustic pressure
p, then impedance relationships which relate the acoustic
pressure to vz for each free-space modem, is as below and
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Zc is the characteristic impedance of the ideal inviscid air
medium.

Ẑm =
Zck

k̂zm

Ẑim = −Ẑrm = −Ẑ0

(5)

where the z-axis propagation constant k̂zm for the free-
space mode m given by,

k̂zm =

√
k2 −

(
k sin θ +

2mπ

d

)2

(6)

The propagation geometry of the free-field modes are
given solely by θ and the periodicity of the grating d with
the mode function em for each discrete mode m being de-
fined on z = 0 as,

êm = d−0.5 exp

(
i

[
k sin θ +

2mπ

d

]
x

)
(7)

Each groove is assumed to behave as an acoustically hard
walled and bottomed waveguide which defines the modes
which may exist within it and the modal characteristics that
this will present at the aperture of each groove at z = 0.
This is dependent upon the groove aperture a and given
by the mode function en within the extents of the groove
aperture |x| ≤ a/2 at z = 0.

en>0 =

√
2

a
cos
([nπ

a

] [
x+

a

2

])
e0 =

√
1

a
cos
([nπ

a

] [
x+

a

2

]) (8)

With each n mode possessing the z-axis propagation con-
stant kzn within the groove of,

kzn = ±
√
k2 −

(nπ
a

)2
(9)

The impedance at the aperture of the groove Zn, due to
the combination of the incident and reflected component
from the bottom of the groove is given by the well known
relationship,

Zn = −iZck
kzn

cot (kznh) (10)

The modal model solution is obtained by truncating n to
N and m to ±M equating the two mode systems in terms
of vertical velocity vz at their boundary z = 0 and solving
the following system of N × N equations to yield the set
of Vn modal amplitudes for the groove space.∑
n†

Vn†

(∑
m

[
Ẑm〈en†, ∗êm〉〈en, êm〉

]
− δn†n Zn

)
=− 2Ẑi0V̂

i
0 〈en, ê0〉

(11)

Expanding (3), the homogenous plane wave pressure field
ptot is therefore given by the summation of all modes thus,

ptot(xR, zR) =Ẑi0V̂
i
0 ê0 exp

(
−ik̂z0z

)
+Ẑr0 V̂

r
0 ê0 exp

(
ik̂z0z

)
+
∑
m6=0

ẐmV̂mêm exp
(
ik̂zmz

) (12)

3.2 Multiple groove periodic surfaces with porous
layers

The modal model is extended for structures with multiple
grooves within each period, having individual dimensions
and a porous layer of depth l occupying the lower portion
of each groove, as shown in Fig. 3. Such structures are fre-

Figure 3. Multiple grooved periodic surface with porous
layers.

quently termed in recent literature as metasurfaces or phase
gradient structures [5–11]. The model is similar to that
of single groove but the parameters become 2-dimensional
with the addition of the index q, relating to the q’th groove
within each period from q = 0 to q = K where K + 1
is the number of grooves per grating period d. As the ge-
ometry of the scattered field depends only upon the pitch
of the grating structure, d in Fig. 3, then the definitions for
the free-space modal field of (5) (6) (7) remain unchanged
save for the addition of the index q.

The vz boundary condition of the groove space at z = 0,
however, is more complex, becoming the concatenation of
all K + 1 groove elements as in (13).

vz(x, 0) =

[
N∑
n=0

V0,ne0,n

]x=d0
x=0

‖

[
N∑
n=0

V1,ne1,n

]x=d0+d1
x=d0

‖ ...

[
N∑
n=0

VK,neK,n

]x=d
x=d0+d1+...dK−1

(13)

To ensure continuity, each eq,n mode function will have x-
extents from 0 to dwith a zero value outside of the aperture
aq . Within the aperture aq , the function will be that of (8),
retaining the same normalisation to aperture width aq , due
to the length padding to d being zero valued. The definition
of eq,n for the multiple featured grating, evaluated in the
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region x = 0 to x = d, becomes,

eq,n>0 =

δe

√
2

aq
cos

[nπ
aq

]x−∑
j<q

dj +
dq − aq

2


eq,0 =δe

√
1

aq

δe =

1 x ≥
∑
j<q dj +

dq−aq
2

1 x ≤
∑
j≤q dj −

dq−aq
2

0 else

 j ∈ Z+

(14)
The resulting system of equations, which is solved numer-
ically as a K (N ×N) matrix, becomes,

∑
q†

∑
n†

Vq†,n†(∑
m

[
Ẑm〈eq†,n†, ∗êm〉〈eq,n, êm〉

]
− δq†,n†q,n Zq,n

)
=− 2Ẑi0V̂

i
0 〈eq,n, ê0〉

δq†,n†q,n =

[
1 a = a†, q = q†
0 else

]
(15)

Adding a porous element to the lower portion of each
groove will alter the impedance at the aperture and hence
may be implemented by modifying only the Zq,n term
in (15), leaving the rest of the model unchanged. The
impedance at the groove aperture will be given by the
combination of the incident wave and that reflected from
the air/porous material boundary at z = −hq , which in
turn depends upon the impedance that the porous layer
presents, ZL, at the boundary. The reflection coefficient
at the boundary is given by (16), where the usual angle
of incidence dependence is omitted because the system of
equations for this model are already posed in terms of the
surface normal vz .

γ = −1− (1/ZL(q, n))

1 + (1/ZL(q, n))
(16)

The surface impedance ZL at z = −hq , is calculated us-
ing an appropriate effective impedance model for a hard-
backed porous layer [14, 15, 17, 18] while being mindful
of the corresponding assertions the chosen model makes
about the physical properties of the material. If a locally
reacting model is chosen all propagation within the layer
is assumed to be plane-wave and perpendicular to the sur-
face, so ZL will not be dependent upon the angle with
which the groove mode is incident upon the air/porous ma-
terial boundary θn. Non-locally reacting impedance mod-
els able to support transverse modes will have a depen-
dence upon θn, thus ZL will be a function of θn. The resul-
tant impedance across the aperture for the q’th groove and
mode n posed in terms of vz , is given by the interaction of
the down-going and reflected up-going modal components

within the groove thus,

Zq,n =
Zck

kq,n

(−1 + γ exp (ikq,n2hq))

1 + γ exp (ikq,n2hq)
(17)

Using (14)(16)(17) and the unaltered equations of 3.1 in
(15), then solving numerically the resulting matrix, yields
the solution of the plane wave field above the multiple fea-
tured grooved surface of Fig. 3. For the case of a single
groove (K = 0) and a zero porous layer depth, the multi-
ple (3.2) and single grooved (3.1) models are equivalent.

3.3 Deriving an effective impedance from the
homogeneous modal model field

In this section the modal model solution to the homoge-
neous plane wave field will be used to deduce an effective
impedance Zeff for the periodically grooved surface. This
approach is advantageous over simply taking the plane
wave field directly, which is not appropriate for fields in-
volving line or point source excitation. Firstly, Zeff is
approximately wave type independent allowing direct ap-
plication to the point-to-point model with a line or point
source. Furthermore, the plane wave summation does not
generally exhibit a surface wave, but it is implicit in Zeff
as a property of the surface itself, so will be apparent upon
application to a spherical or cylindrical reflection coeffi-
cient ΓS [12, 16].

The plane wave field at the (x, z) receiver location R,
defined in Fig. 1, is given by the accumulation of the free-
space modes as in (12). To improve similarity with prac-
tical outdoor acoustic problems, a geometric scheme is in-
troduced [4] to limit the extent of the grooved surface to be-
tween the points x1 and x2 defined in Fig. 4. Modes which

Figure 4. Rectangular groove definition and resulting scat-
tered field.

would not geometrically intersect the receiver are omitted
form the summation of (12). Evanescent modes possessing
an imaginary kzm are also omitted because they are surface
modes present only to solve the boundary conditions in the
presence of the homogeneous incident plane wave, not a
true surface wave [19]. With reference to Fig. 4, this is
achieved by defining the following Kronecker delta funci-
ton thus,

δθ1θ2 (θm) =

1 θ2 ≥ θm ≥ θ1
0 =(θm) > 0
0 else

 (18)
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Applying this to (12) to ensure that modes which do not
satisfy (18) are not included in the field, leads to the revised
field summation of,

ptot(xR, zR) =Ẑi0V̂
i
0 ê0 exp

(
−ik̂z0z

)
+Ẑr0 V̂

r
0 ê0 exp

(
ik̂z0z

)
+
∑
m 6=0

δθ1θ2 (θm)ẐmV̂mêm exp
(
ik̂zmz

)
(19)

Although x1 and x2 may be set arbitrarily, they will be
assumed henceforth to coincide horizontally with xS and
xR respectively so that the grating structure occupies the
space between the source and receiver.

From the field at pointR and including a phase constant
to remove the plane wave path length difference between
the incident and reflected components lPD, the plane wave
reflection coefficient ΓP of the grooved surface may be cal-
culated as follows,

ΓP =
pr(xR, zR) + psct(xR, zR)

pi(xR, zR) exp (−iklPD)
(20)

Rearranging (20) to the form of (21), yields the effective
impedance for the grooved surface, Zeff .

Zeff =
(1 + ΓP ) sec θ

1− ΓP
(21)

The grooved surface is now represented by an equivalent
impedance which is locally reacting, valid only for the an-
gle of incidence θ for which it was calculated.

4. RESULTS

Predictions from the modal model are compared with those
from a Boundary Element Method (BEM). The impedance
of the porous layer ZL, will be represented by the slit-pore
impedance model [17] as it has been shown to give good
agreement with a variety of typical outdoor ground sur-
face types [14]. A porosity of 0.5 and flow resistivity of
5.43 × 103 will be applied which is typical of a suitable
gravel filling for the size of grooves in question. Predic-
tions of Excess-attenuation spectra, referenced to the free-
field, are presented in the frequency band 100 to 2000Hz,
where much man-made nuisance noise is focused [14, 21].
In line with existing work [1, 2, 4], truncations of N = 5
andM = 25 are used within the modal model. The process
of obtaining the results from the modal model is to numer-
ically solve the system of equations (15), accumulate the
plane wave field using (19), then from this calculate Zeff
with (21) and calculate the EA spectrum using (1).

Three results are shown, a single grooved grating in
Fig. 5, a periodic structure in which each period contains
three hard bottomed grooves of different depths and no
porous layer in Fig. 6 and the same but with a porous layer
in each of the three grooves in Fig. 7. For ease of compar-
ison Fig. 8 shows the three modal plots overlaid.

It is apparent that the extended modal model agrees well
with the BEM predictions but with a significantly shorter

computation time, approximately 2 hours for Fig. 6 with
BEM versus a few minutes for the modal result.

The multiple destructive interference minima of Fig. 6
are evident due to the multiple depth grooves whereas just
a single such minimum is observed in Fig. 5 for the single
groove. Adding the porous layer then flattens the response
to a wide band attenuation of the noise level in Fig. 7.
This characteristic is desirable for noise attenuating struc-
tres and future work will attempt to lower the frequency at
which this attenuation occurs to further improve the practi-
cal applicability. Addition of the porous layer also reduces
the magnitude of the surface wave which will in part be due
to losses of the porous layer. However the slope around the
first minimum is shallowed and attenuation in this region
is less than for the non-porous layered structures.

Figure 5. Single rectangular groove, d=0.15, a=0.12,
h=0.2 (Solid=Modal (Zeff ), broken=BEM).

Figure 6. Three hard bottomed rectangular grooves
per period without porous layer, dq=[0.05,0.05,0.05],
aq=[0.04,0.04,0.04], hq=[0.2, 0.15, 0.1] (Solid=Modal
(Zeff ), broken=BEM).

5. CONCLUSIONS

Predicting the noise attenuating properties of rectangu-
larly grooved structures has traditionally been computa-
tionally expensive. An efficient modal model has been
extended and successfully applied to obtain an effective
impedance for complex rectangularly grooved ground sur-
faces. This has shown good agreement with BEM for
excess-attenuation spectra for point to point acoustic prop-
agation, but with a significantly lower computation time.
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Figure 7. Three rectangular grooves per period with
porous layer, dq=[0.05,0.05,0.05], aq=[0.04,0.04,0.04],
hq=[0.05, 0.05, 0.05], lq=[0.15, 0.1, 0.05] (Solid=Modal
(Zeff ), broken=BEM).

Figure 8. The modal model results overlaid.
(Solid=Fig. 5, dot-dashed=Fig. 6, dot=Fig. 7).

Grooved structures incorporating a porous layer have
also been successfully modelled using this method and the
benefits of such hybrid structures have been reinforced.
For a given multiple groove structure, incorporating a
porous layer has shown to give wide band attenuation at
the expense of peak attenuation at discrete frequencies.
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