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Stochastic Reaction and Diffusion Systems in Molecular Communications:
Recent Results and Open Problems

Malcolm Egan, Bayram Cevdet Akdeniz and Bao Quoc Tang

Abstract

Chemical reactions and diffusion are two basic mechanisms governing the dynamics of molecules in a fluid.

As such, they play a critical role in molecular communication for channel modeling, design of detection rules,

implementation of molecular circuits for computation, and modeling interactions with external biochemical

systems. For finite numbers of information-carrying molecules, stochastic models naturally arise with the

simplest example given by the Wiener process, often known as Brownian motion. Nevertheless, the Wiener

process fails to be accurate when external forces, friction, and chemical reactions are present. Recently, there

have been several contributions that tailor molecular communication systems to these more challenging chan-

nel conditions. In this paper, we first overview a general family of stochastic models of reaction and diffusion

systems, including both Langevin diffusion and the reaction-diffusion master equation. These models form a

basis for the use of these models as molecular communication channels, from which modulation and detection

schemes can be developed. We survey recent results on the design of these schemes, with a focus on a recently

developed approach which is robust to a wide range of channel models, known as equilibrium signaling. We

then turn to the implementation of these detection schemes and related parameter estimation problems via

stochastic molecular circuits, based on stochastic chemical reaction networks. Finally, interactions between

molecular communication systems and stochastic biological systems as well as open problems are discussed.

Our overarching goal is to highlight how the consideration of general stochastic models of reaction and dif-

fusion can be utilized in order to widen the application of molecular communications both within engineered

systems, and also as motivation for advances in the mathematical characterization of these models.
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1. Introduction1

A basic feature of a wide range of biochemical systems is the presence of chemical signals, which can be2

viewed as facilitating information exchange, or communication. A prototypical example is quorum sensing3

[1], where bacteria cells coordinate their behavior based on local estimates of the quantity of proteins emitted4

by each cell into a common fluid environment. Other examples include inter-cell communication via calcium5

signaling [2] or in the development of the fruit fly Drosophila melanogaster via protein gradients [3].6

In 2005, the notion of molecular communications for synthetic or artificial devices was introduced in [4]. In7

contrast to chemical signals in natural biological systems, artificial molecular communication was developed8

in order to support communication between nanoscale devices, which may act as sensors or actuators. The9

potential applications of this idea in areas from healthcare to the environment has motivated a large body10

of literature over the intervening 15 years, including the monograph [5].11

It was quickly realized that a key challenge in molecular communications is uncertainty or randomness12

in the motion of the molecules comprising the chemical signal. Often, the motion of information-carrying13
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molecules is driven by diffusion or convection within a fluid, and these molecules are larger than the other14

molecules comprising the fluid; that is, they are colloidal. It is well known from statistical physics that the15

motion of colloidal molecules depends on many factors including the composition of the fluid, the possibility16

of chemical reactions, the presence of external forces, molecular degradation, the presence of obstacles, and17

the structure of the fluid boundary [6].18

One of the simplest stochastic models for molecular motion is the Wiener process, with non-interacting19

information carrying molecules, which lies in the general family of Smoluchowski equations that in turn lie20

in the family of Langevin diffusions [6, 7]. One advantage of this approach is that, under certain conditions,21

one can obtain explicit solutions, which are desirable for the design of modulation and detection schemes.22

Indeed, using the Wiener process model, there has been extensive work developing novel modulation and23

detection schemes, as well as parameter estimation and channel coding (e.g., [8, 9, 10, 11]). Techniques from24

information theory have also provided insights into the fundamental performance limits of these schemes25

(e.g., [12, 13, 14]). Various boundary conditions have also been investigated in order to model reflection or26

absorption, which can capture the effect of certain kinds of chemical reactions (e.g., [15]).27

Nevertheless, the Wiener process does not capture all environments relevant for molecular communica-28

tions, for example, the presence of external forces or general forms of chemical reactions between molecules in29

the system. For such cases, more general stochastic reaction-diffusion systems provide a powerful framework30

to develop implementations of fundamental signal processing algorithms and model biochemical systems.31

Naturally, the additional complexity of these models makes it almost impossible to have any closed form32

solutions. Instead, recent mathematical advances in the characterization of reaction-diffusion systems (e.g.,33

[16]) play a key role in obtaining accurate and tractable approximations.34

1.1. Main Contributions35

This paper reviews recent contributions addressing these issues by introducing sophisticated stochastic36

models for the motion of information-carrying molecules and also exploiting these models for computation.37

We start by reviewing two key families of stochastic models: Langevin diffusion and the reaction-diffusion38

master equation (RDME). The former model, in the form of the Smoluchowski equation, can be used to39

describe motion of a single molecule or multiple non-interacting molecules. In particular, for the Smolu-40

chowski equation, when the external force is induced by a bounded scalar potential, a closed form expression41

is available for the equilibrium solution, which makes it straightforward to obtain the asymptotic statistics42

of the system. We also briefly describe the Euler-Maruyama method [17] to obtain realizations of sample43

paths (i.e., the realization of the trajectory for a single molecule) for the Smoluchowski equation. However,44

in general situations, where chemical reactions are either dominant or non-negligible, the Langevin diffusion45

model is not an accurate description for the dynamics of the system.46

A first alternative is the chemical master equation (CME), a stochastic description of chemical reactions,47

whose (large time) behavior has been developed using tools from chemical reaction network theory [18].48
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More precisely, when the chemical reaction network satisfies condition known as complex balance, then a49

stationary distribution can be determined explicitly using the complex balanced equilibrium. To capture50

both diffusion and chemical reactions, a second alternative called the reaction-diffusion master equation51

should be considered. The complexity of this model makes it more challenging to apply it to molecular52

communication. Nevertheless, there is a remarkable—but not, in general, completely rigorous—connection53

between this model and deterministic reaction-diffusion systems in the form of limit theorems [19, 20]. The54

qualitative and quantitative behavior of such deterministic reaction-diffusion systems have recently witnessed55

significant advances in the mathematics literature [16]. This opens up the opportunity to utilize these recent56

results in molecular communication, and, at the same time, requires new rigorous, analytical studies of the57

relationship between deterministic reaction-diffusion systems and their stochastic counterpart.58

Figure 1: An overview of the stochastic models of reaction and diffusion considered in this paper. Models lower down in the

hierarchy are special cases of models higher up.

After laying out the underlying theoretical models, which are summarized in Fig. 1 we then overview59

their application in three contexts relevant for signal processing in molecular communication:60

(i) Modulation and Detection: In order to design reliable modulation and detection algorithms, it is61

necessary to characterize the statistics for the quantity of molecules observed by a receiver. In this62

case, stochastic models provide the basis for analysis of these statistics.63

(ii) Statistical Inference: For low complexity synthetic devices, molecular circuits—where computation64

is performed via chemical reactions—are a highly desirable means of implementing algorithms for65

statistical inference (e.g., the detection schemes in (i) or parameter estimation). Stochastic models,66

particularly stochastic chemical reaction systems, form a useful basis for designing these molecular67
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circuits.68

(iii) Modeling Biochemical Environments: In realistic molecular communication systems, information-69

carrying molecules may interact with other biochemical processes in the environment. These processes70

may themselves be governed by stochastic models, and therefore it is a key issue to understand how the71

dynamics of the information-carrying molecules interact with the dynamics of such external processes.72

We then discuss selected open problems when the channel, inference or the environment is modeled via73

stochastic reaction-diffusion systems. We highlight both engineering challenges and mathematical problems74

arising from system design.75

1.2. Related Surveys76

In recent years there have been a number of surveys on various aspects of molecular communication,77

ranging from channel models to applications in biology, medicine, and nanonetworking. An incomplete list78

of these surveys is summarized in Table 1.79

Table 1: Summaries of Surveys on Molecular Communication

Topic References

General Survey [21]

Applications in Medicine [22, 23, 24]

Applications in Biology [11, 10, 25, 26]

Applications in Nanonetworking [27, 28, 29]

Channel Models [30]

Information Theoretic Limits [14, 13]

Modulation and Equalization [8, 9, 31]

Synaptic Communication [32]

The vast majority of the existing surveys have focused on applications. A key novel aspect of this survey80

is its focus on methodology. In particular, in the first part of this survey, we overview a general family81

of stochastic models incorporating diffusion, external forces, and chemical reactions. This also contrasts82

with the surveys in [30, 13], which either emphasize deterministic channel models or a restricted family of83

Langevin diffusions. The other distinguishing aspect of this survey is in the second part, which overviews84

applications of stochastic models of chemical reactions and diffusion to inference via biological circuits and85

lab-on-a-chip devices, as well as the impact of external biochemical processes.86

1.3. Organization87

The paper is organized as follows. In Sec. 2, we overview stochastic models based on Langevin diffusion,88

while Sec. 3 is devoted to chemical master equations and reaction-diffusion master equations. In Sec. 4,89
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we overview modulation and detection schemes applicable in general Smoluchowski and RDME models. In90

Sec. 5, we highlight methods for implementing statistical inference algorithms via stochastic models, which91

forms a basis for the construction of biological circuits. In Sec. 6, we overview recent work modeling the92

interaction between molecular communication systems and external biochemical processes. Sec. 7 outlines93

open problems and Sec. 8 concludes.94

1.4. Notation95

The notation in this paper is summarized in Table 2.96

Table 2: Notation.

Variable Definition Variable Definition

N Number of voxels in the system. F(x) external force

γ(x) Drag parameter in Langevin dif-

fusion.

m mass of a molecule

σ(x) Covariance matrix of the random

perturbation in Langevin diffu-

sion.

x(t) location of a particle at time t

S1,S2 Chemical species. E[·] Expectation operator.

Mi(t) State vector of voxel i in time t. ∇f Gradient of a function f : Rd →

R.

κlij Diffusive jump rate. ∇ · f Divergence of a vector field f :

Rd → Rd.

ali, l = 1, 2. Reaction rate constants. ∂t Partial derivative with respect to

t.

νl,k Quantity of each species l pro-

duced or removed in reaction k.

∂xx Second partial derivative with re-

spect to x.

NRx j(t) Number of Sj molecules in the ∇2f(x)

receiver at time t. = ∇ · ∇f(x) Laplacian of a function f : Rd →

R.

Ts Communication time interval. VVox volume of a voxel

∆ Number of transmitted

molecules for each bit 1 trans-

mission.

Smn Binary sequence with length n in

which m bits are 1

Dl(x) Spatially dependent diffusion co-

efficient for substance Sl

d Spatial dimension of the system
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2. Langevin Diffusion97

A basic source of randomness in the motion of colloidal molecules in a fluid is diffusion. Before turning98

to more complex models relevant for molecular communications, we first review the dynamics of a single99

molecule in a domain Ω ⊆ R3. The basic theory of diffusion for a single colloidal molecule was first developed100

by Einstein [33] in order to characterize Brownian motion and developed further by Smoluchowski [34] and101

Langevin [35].102

2.1. Dynamics of a Single Molecule103

Let d ∈ {1, 2, 3} be the dimension of the system. The general form of the motion of a single molecule

can be described by the differential equation, obtained via Newton’s second law,

m
d2x

dt2
= −γ(x)

dx

dt
+ F(x) + σ(x)ξ(t), (1)

where m is the mass of the molecule, x(t) ∈ Rd is the particle’s location at time t, γ(x)dx
dt ∈ Rd corresponds104

to viscous drag, F(x) ∈ Rd is an external force (also known as convection), and σ(x)ξ(t) ∈ Rd is a random105

perturbation due to collisions of the colloidal particle with the molecules comprising the fluid with σ(x) ∈106

Rd×d. Due to the randomness, (1) forms a stochastic differential equation, with solution depending on the107

statistical structure of the random perturbation.108

The term F(x) corresponds to external forces. For example, in [36], flow is induced by a pressure gradient,109

known as Poiseuille flow. A common scenario, arising when electrostatic or gravitational fields act on the110

molecule, is that F(x) = ∇V (x), where V is known as a scalar potential. A widely used example in molecular111

communications [13] is V (x) = v0 + a · x, v0 ∈ R,a ∈ R3, where the force acting on the particle in each112

dimension is given by ai, i = 1, 2, 3, commonly known as drift. Another common choice is the quadratic113

potential, which in one dimension is given by V (x) = ax2, a ∈ R considered in [37], arising when electrostatic114

steering is present [38]. A further example occurs in the presence of acoustic tweezers [39].115

The random perturbation ξ(t), is assumed to satisfy the following basic properties [6]:116

(i) ξ(t) is independent of the location x;117

(ii) E[ξ(t)] = 0;118

(iii) E[ξ(t)ξ(t′)T] = Iδ(t− t′),119

where I is the identity matrix and δ(·) is the Dirac delta function. On the other hand, σ(x) ∈ Rd×d is a120

deterministic matrix, which can introduce location dependent variations in correlation and variance of the121

random fluctuations. Often, it is assumed that σ(x) = σ(x)I, which means that the spatial components122

of the random perturbation are uncorrelated, potentially with location-dependent variance, often known as123

spatially inhomogeneous diffusion. In the vast majority of work on molecular communications and classical124

statistical mechanics, the term σ(x) = σ is independent of the location; however, this assumption can fail to125

hold in inhomogeneous fluid media [40].126
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Making sense of the differential equation in (1) requires a non-standard calculus, often in the form of the

Itô calculus [7]. Roughly speaking, the starting point is to rewrite (1) as a stochastic integral equation. A

rigorous definition of the random perturbation ξ(t) can be obtained via the Wiener process W(t) as [6]

W(t) =

∫ t

0

ξ(t′)dt′. (2)

In particular, the Wiener process is a continuous-time stochastic process, which can be viewed as a random127

function, satisfying128

(i) W(0) = 0;129

(ii) W(t2)−W(t1) is independent of W(t4)−W(t3), with [t1, t2] ∩ [t3, t4] = ∅;130

(iii) W(t2)−W(t1) is multivariate Gaussian with covariance matrix (t2 − t1)I;131

(iv) W(t) has continuous sample paths (i.e., realizations of (W(t), 0 ≤ T ) are continuous) almost surely.132

For further properties of the Wiener process and its role in Langevin diffusion, we refer the reader to [6, 7].133

An important special case of (1) arises when drag forces dominate inertial forces, which yields

γ(x)
dx

dt
= F(x) + σ(x)ξ(t), (3)

where σ(x) = σ(x)I, known as the Smoluchowski equation. This situation often arises in molecular commu-

nications due to the fact that inertial forces are due to the mass of the particles, which are typically small.

Associated with the Smoluchowski equation in (3) is a Fokker-Planck equation, which describes how the

probability density function of the molecule’s location evolves over time. For the Smoluchowski equation,

the corresponding Fokker-Planck equation is given by [41]

∂

∂t
p(x, t|x0, t0) = ∇2(D(x)p(x, t|x0, t0))−∇ ·

(
F(x)

γ(x)
p(x, t|x0, t0)

)
, (4)

where p(x, t|x0, t0) is the probability density function for the location of the molecule at time t, given an134

initial location x0 at time t0, and D(x) = σ(x)2

2γ(x)2 is the diffusion coefficient. Note that both the Smoluchowski135

equation in (3) and the Fokker-Planck equation in (4) are equivalent descriptions of the system dynamics.136

This formulation allows for the diffusion coefficient to be spatially inhomogeneous; i.e., the diffusion coefficient137

depends on the location x ∈ Rd.138

In the special case where there are no external forces and the diffusion coefficient is constant, the Fokker-

Planck equation for Brownian motion (commonly called Fick’s second law) is obtained as [41]

∂

∂t
p(x, t|x0, t0) = D∇2p(x, t|x0, t0), (5)

where D = σ2

2γ2 is the spatially homogeneous diffusion coefficient, independent of the location x, correspond-139

ing to constant coefficients σ, γ.140

Solutions to the Fokker-Planck equations in (4) and (5) depend on boundary conditions. In the case of141

an infinite domain, conditions on the decay p(x, t|x0, t0) → 0 as ‖x‖ → ∞ are imposed; for more details,142
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see [42]. In the case of finite domains (corresponding to finite volumes), which are common in the context143

of molecular communications, standard boundary conditions are reflective, reaction, Robin, or periodic.144

Each of the boundary conditions represents a different physical behavior of molecules at the boundary.145

We illustrate in Figure 2 such behavior for the simple case of the diffusion equation in one-dimension146

∂tp(x, t) = D∂xxp(x, t) for x ∈ Ω := (0, 1), D > 0, subject to either (a): Homogeneous Dirichlet boundary147

condition p(0, t) = p(1, t) = 0, (b): Homogeneous Neumann boundary condition p′(0, t) = p′(1, t) = 0,148

(c): Periodic boundary condition p(0, t) = p(1, t), or (d): Robin boundary condition p′(1, t) = kp(1, t) and149

−p′(0, t) = kp(0, t) for some k > 0.150

For the general Fokker-Planck equation (4) in a bounded domain Ω ⊂ Rd with boundary ∂Ω, the boundary

conditions in the case of reflective boundaries (or the Neumann boundary condition) are given by

n̂(x) · j(x, t|x0, t0) := n̂(x) ·
[
∇(D(x)p(x, t|x0, t0))− F(x)

γ(x)
p(x, t|x0, t0)

]
= 0, x ∈ ∂Ω, (6)

where n̂(x) is the unit outward normal vector on ∂Ω. The term j(x, t|x0, t0) is known as the flux, and

therefore (6) is interpreted as there is zero flux at the boundary. Another boundary condition is known as

the homogeneous Dirichlet boundary condition, where

p(x, t|x0, t0) = 0, x ∈ ∂Ω, (7)

which corresponds to the scenario where every particle is consumed at the boundary ∂Ω. It is also possible to

combine the boundary conditions to yield the radiation boundary condition (or Robin boundary condition)

n̂(x) · j(x, t|x0, t0) = kp(x, t|x0, t0), x ∈ ∂Ω, (8)

where k ∈ [0,∞). The fourth boundary condition that is often imposed is known as the periodic boundary

condition, in case Ω is a bounded interval in R or a high dimensional torus Td. In one dimensional system

defined on Ω = [0, b], it reads as

p(0, t|x0, t0) = p(b, t|x0, t0) ∀t > 0. (9)

In general, there do not exist closed-form expressions for p(x, t|x0, t0) solving (4) under general boundary151

conditions. In special cases, such as for (5) subject to various boundary conditions, results can be found in152

[41, 43, 15, 44].153

2.2. Multiple Non-Interacting Molecules154

Recall the Smoluchowski model in (3). A basic question is what are the statistics for how many molecules155

are present in a given compact subdomain Ω′ of Ω ⊂ Rd at a given time? As will be discussed further in156

Section 4, this question is critical for receiver design in molecular communication. Suppose that all molecules157

are non-interacting ; that is, their positions evolve independently. Physically, this means that the colloidal158

molecules do not collide with each other, or exert forces (e.g., electrostatic) on each other.159
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Figure 2: Solutions at time t = 2 for diffusion equation ∂tp(x, t) = D∂xxp(x, t), x ∈ Ω = (0, 1), D = 0.01 subject to different

boundary conditions. For the homogeneous Dirichlet boundary condition, there are no molecules at the boundary for all time.

For the homogeneous Neumann boundary condition, the flux of molecules at the boundary, in this case it is simply the slope

of the solution state, is zero. For the periodic boundary condition, the number of molecules at the left and right boundary are

always identical. Finally, for Robin boundary condition, the flux at the boundary is proportional to probability density of the

molecule, i.e. the slope is steeper if the probability density is larger.

Let Xi(t) ∈ {0, 1}, i = 1, . . . ,W indicate whether or not molecule i lies in the subdomain Ω′ at time t.

The total number of molecules in Ω′ at time t is then given by

Xtot(t) =

W∑
i=1

Xi(t), (10)

where W is the total number of molecules in Ω. Since the Xi(t) are independent by virtue of the absence of

interactions, for W sufficiently large, the distribution of Xtot(t) may be approximated via the central limit

theorem [45]. In particular, a useful approximation for the distribution of Xtot(t) is given by

X̃tot(t) ∼ N (WpΩ′ ,WpΩ′), (11)

where N (µ, σ2) corresponds to the Gaussian distribution, with mean µ and variance σ2. The term pΩ′160

denotes the probability a given colloidal molecule lies in Ω′ at time t. In general computing pΩ′ requires161

the solution of the Smoluchowski equation in (3) or the Fokker-Planck equation in (4), which do not have a162
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closed-form expressions for general functional forms of the external forces and boundary conditions.163

For t sufficiently large, the Smoluchowski equation can admit simple behavior. This arises when an

equilibrium solution exists, which means that pΩ′ converges to a quantity independent of the time t. Although

the existence of an equilibrium solution must be postulated, as in the work of Einstein and Langevin, a

sufficient condition in one-dimensional systems is the fluctuation-dissipation condition [42, 46], which is

given by

∂

∂x
D(x) = F (x)(γ(x)−1 −D(x)β), x ∈ Ω, (12)

where β = 1
kBT

, where kB is Boltzmann’s constant and T is the temperature of the system. For two and

three-dimensional systems, see [42]. In the special case that the diffusion coefficient D(x) = D, x ∈ Ω, then

the fluctuation-dissipation condition corresponds to the Einstein relation; namely,

D =
1

γβ
. (13)

Under the fluctuation-dissipation condition, the Fokker-Planck equation in (4) can be written as [42]

∂

∂t
p(x, t|x0, t0) =

∂

∂x

(
D(x)

∂

∂x
p(x, t|x0, t0)

)
− ∂

∂x
βF (x)D(x)p(x, t|x0, t0). (14)

For a detailed derivation, we refer the reader to [42, Eq. 4.17].164

If the external force is determined by a scalar potential function U , the force satisfies F = −∂U∂x and U

is bounded in [bl, br] and infinite elsewhere, then the equilibrium solution to the Fokker-Planck equation in

(4) is given by [41, Sec. 5.2]

p∞(x) = Ze−βU(x), x ∈ R (15)

where Z =

(
br∫
bl

e−βU(x)dx

)−1

is the normalizing constant. For d ∈ {2, 3} and a potential U(x), x ∈ Rd, a

similar result holds; namely,

p∞(x) = Z̃e−βU(x), x ∈ Rd, (16)

where Z̃ is the appropriate normalizing constant.165

Note that scalar potentials are ubiquitous; for example, arising from electrostatic and gravitational fields.166

We also highlight that the equilibrium solution p∞ in (15) is remarkable in the sense that it only depends167

on β and the potential U . That is, given these parameters, it is straightforward to obtain the asymptotic168

statistics of the system. This is true even if the diffusion coefficient is spatially inhomogeneous. We note169

that for higher-dimensional systems, a similar equilibrium solution to (15) also holds [41].170

2.3. Simulation171

In order to obtain realizations of the sample paths for the Smoluchowski equation in (3), a standard172

approach is known as the Euler-Maruyama method [17]. Let a(t,x) ≡
F(x)

γ(x)
, b(t,x) ≡

σ(x)

γ(x)
, and ∆Wn173
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be a realization drawn from N (0,∆tI). The Euler-Maruyama method is detailed in Algorithm 1, which is174

analogous to the Euler method for deterministic partial differential equations. Boundary conditions can be175

treated via the methods in [47].176

Algorithm 1 The Euler–Maruyama Method

1: INPUT: a(t,x), b(t,x), number of iterations N .

2: Initialize: x(0)

3: For n = 1 : N

4: tn = tn−1 + ∆t

5: xn+1 = xn + a(tn,xn)∆t+ b(tn,xn)∆Wn

3. Stochastic Reaction-Diffusion Models177

In the previous section, we overviewed Langevin models for diffusion and convection with a single178

molecule. In this section, we turn to the scenario where multiple molecules are present. In the case that no179

chemical reactions are present, this can be achieved via the Langevin models in combination with a central180

limit theorem or law of rare events. On the other hand, when chemical reactions are present, interactions181

between molecules must be considered. To this end, we first consider the case of well-mixed volumes where182

the chemical reactions can be exactly represented by the chemical reaction master equation. The relation of183

this stochastic description and deterministic reaction systems arising from chemical reaction network theory184

is also discussed. For systems with high heterogeneity, the occurrence of both reactions and diffusion are185

well captured by reaction-diffusion master equations (RDME). Note that the current setting of the RDME186

does not capture advection.187

3.1. The Chemical Master Equation and Chemical Reaction Networks188

Before introducing the RDME, we first overview the case where only reactions are present in a well-

stirred container. Suppose that there are r0 chemical reactions involving s0 chemical species S1, . . . ,Ss0 .

The network of chemical reactions is given by

s0∑
i=1

νikSi →
s0∑
i=1

ν′ikSi, k = 1, . . . , r0, (17)

where νik, ν
′
ik ∈ Z≥0 are stoichiometric coefficients. For each k ∈ {1, . . . , r0}, the k-th reaction in (17)

means that a complex consisting of νik molecules of Si, i = 1, . . . , s0, will produce, via reaction, a complex

consisting of ν′ik molecules of Si, i = 1, . . . , s0. We denote by νk = [ν1k, . . . , νs0k]T and ν′k = [ν′1k, . . . , ν
′
s0k

]T

the (column) vectors of stoichiometric coefficients. As an illustration, suppose that the chemical species

S1,S2,S3 are present and reaction k is of the form

S1 + 2S2 → S3,
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then ν1k = 1, ν2k = 2, ν3k = 0 and ν′1k = 0, ν′2k = 0, ν′3k = 1. With this notation, the reaction systems (17)189

can be compactly expressed as190

νk → ν′k, k = 1, . . . , r0. (18)

At time t, the number of molecules for each species is described by a component of the random vector

X(t) = (X1(t), . . . ,Xs0(t)) ∈ Zs0≥0. To account for the fact that reactions require individual molecules to be

in close proximity, the rate that the k-th reaction occurs when the quantity of molecules for each species is

given by x is denoted by λk(x), called the propensity. If the k-th reaction occurs at time t, the new state is

then

X(t) = X(t−) + ν′k − νk, (19)

where t− is an infinitesimal time before t and X(t−) is the state of the system just before the reaction191

occurs.192

The number of times the k-th reaction occurs by time t is given by the counting process [48]

Rk(t) = Yk

(∫ t

0

λk(X(s))ds

)
, (20)

where the Yk, k = 1, . . . , r0 are independent unit rate Poisson processes. As such, the state of the system at

time t is given by

X(t) = X(0) +

r0∑
k=1

Rk(t)(ν′k − νk), (21)

which describes the dynamics of a stochastic chemical reaction system. The associated Kolmogorov forward193

equation is called the chemical master equation and is given by194

dP (x, t)

dt
=

r0∑
k=1

(λk(x− νk)P (x− νk, t)− λk(x)P (x, t)) , (22)

where P (x, t) is the probability of the state being x ∈ Zs0≥0 at time t, and λk(x) is the propensity function for195

k-th reaction, which can be roughly interpreted as the probability per unit time that reaction k will occur196

given the system is in state x [49].197

As for the Smoluchowski equation, the evolution of the probability distribution function for the chemical198

master equation does not provide solutions in closed-form. It is therefore desirable to characterize equilibrium199

solutions, when they exist. It turns out that the conditions an equilibrium distribution exists is closely linked200

to the properties of an underlying deterministic chemical reaction system.201

To illustrate the deterministic chemical reaction network framework (distinct from the above stochastic202

models) with a common example, we begin with the ubiquitous reversible1 enzyme-activated chemical reac-203

tion network. This network consists of four chemical species: the enzyme E; the substrate S; the intermediate204

1To distinguish with irreversible enzyme reactions where there is no reverse reaction from the product back to the complex;

i.e. kb = 0 in (23)
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complex ES; and the product P. The set of chemical species in this example is then SE = {E,S,ES,P}. In205

this system, there are four chemical reactions206

E + S
k1
�
k2

ES
kcat
�
kb

E + P, (23)

where k1, k2, kcat, kb are positive reaction rate constants indicating the rate of the corresponding chemical207

reactions.208

Denote by RE the set of all reactions in (23), and KE = {k1, k2, kcat, kb} the set of reaction rate209

constants. The tuple (SE ,RE ,KE) is called a chemical reaction network. In order to characterize this210

network, it is also necessary to consider suitable chemical kinetics (e.g., mass-action or Michaelis-Menten).211

Let [E](t), [S](t), [ES](t), [P](t) denote the concentration of each chemical species at time t. Under the standard212

assumption of mass-action kinetics [48], the concentrations of each species in the enzyme-activated system213

are governed by the following deterministic system of ordinary differential equations214

d[E](t)

dt
= −k1[E](t)[S](t)− kb[E](t)[P](t) + k2[ES](t) + kcat[ES](t)

d[S](t)

dt
= −k1[E](t)[S](t) + k2[ES](t)

d[ES](t)

dt
= k1[E](t)[S](t) + kb[E](t)[P](t)− k2[ES](t)− kcat[ES](t)

d[P](t)

dt
= −kb[E](t)[P](t) + kcat[ES](t),

(24)

with non-negative initial conditions [E](0) = E0, [S](0) = S0, [ES](0) = ES0, and [P](0) = P0.215

A general chemical reaction system, of which the example above is a special case, which is a chemical216

reaction network along with the corresponding reaction rate coefficients is defined as follows.217

Definition 3.1. A chemical reaction system is the tuple (S,R,K) consisting of a set of chemical species218

S = {S1, . . . ,Ss0}, a set of reactions R = {ν → ν′, ν,ν′ ∈ Zs0≥0}, and the rate function K : R → R+.219

For general chemical reaction systems, the dynamics can be described as follows. Let z(t) ∈ Rs0 be

the vector consisting of concentrations of each chemical species at time t. Under mass-action kinetics, the

chemical reaction system is then governed by

ż(t) =
∑

ν→ν′∈R
kν→ν′z(t)ν(ν′ − ν), (25)

where z(t)ν = z1(t)ν1z2(t)ν2 · · · zs0(t)νs0 and kν→ν′ is the reaction rate constant associated to the reaction220

ν → ν′ ∈ R, where the notation ν → ν′ is understood as in (18).221

A key property of chemical reaction networks is whether or not they admit a deterministic steady-state222

concentration; that is, for each species, the concentration converges to positive value as time t → ∞. It is223

important to note that these steady-states are not guaranteed to be unique nor even to exist. In fact, a long-224

standing open problem in the theory of chemical reaction networks is conditions under which the deterministic225

steady-state exists and the positive equilibrium is the only attracting point, known as the global attractor226

conjecture [50]. One such condition requires the notion of complex balanced chemical reaction systems.227
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Definition 3.2. A deterministic chemical reaction system (S,R,K) is said to be complex balanced if and

only if there exists a point α ∈ Rs0>0 such that∑
ν→ν′∈R

kν→ν′α
ν(ν′ − ν) =

∑
ν′′→ν∈R

kν′′→να
ν′′(ν − ν′′). (26)

Such a point α is called a positive complex balanced equilibrium.228

One can show that the enzyme reaction system in (24) is complex balanced, since at equilibrium the reaction229

rate of each forward reaction is equal to the reaction rate of the corresponding backward reaction.230

Returning to stochastic chemical reaction systems (20), an analogous question is whether a stationary

distribution exists; that is, whether there existing a limiting distribution π satisfying

π(m) = lim
t→∞

Pr (X(t) = x|X(0) = x0) . (27)

For a wide range of stochastic chemical reaction systems, the stationary distribution can be characterized;231

e.g., the following result in [51, Theorem 4.3].232

Theorem 3.1. Let {S,R,K} be a weakly reversible2 deterministic chemical reaction system with rate con-

stants K. Suppose that the deterministically modeled system is complex balanced with equilibrium concentra-

tion c ∈ Rs0>0. Then, the stochastic system has a product form stationary distribution

π(x) = M
cx

x!
, x ∈ Zs0≥0, (28)

where M > 0 is a normalizing constant, and x! = x1!x2! · · ·xs0 !.233

For the case of two species reversible reaction S1 � S2, an application of Theorem 3.1 shows that the234

distribution of the number of molecules from a given species is binomially distributed [51].235

The time scale at which a stochastic chemical reaction system approaches an equilibrium state is highly236

dependent on environmental conditions (e.g., temperature) which affect reaction propensities and the initial237

quantity of each chemical species. One can obtain a reasonable estimate of the equilibriation time from the238

underlying deterministic chemical reaction network. For example, for certain enzyme reactions arising in239

bacterial chemotaxis, the equilibriation time is on the order of 0.2 s [52].240

In the context of molecular communications, the chemical master equation has been used in [53] in order241

to model ligand-receptor binding. As will be detailed in Sec. 5, stochastic chemical reaction systems play a242

useful role in computation for signal processing.243

3.2. Reaction-Diffusion Master Equation244

Having defined stochastic chemical reaction systems, we now introduce, in addition, the presence of245

diffusion. While stochastic reaction-diffusion systems can be defined for high order chemical reactions, for246

2A weakly reversible chemical reaction system means that for any sequence of reactions from one chemical complex to

another, there exists a reverse sequence of reactions to return to the original complex.
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1 · · · i− 1 i i+ 1 · · · N

S1

a1i
�
a2i

S2

Mi(t) = [M1
i (t),M2

i (t)]

Figure 3: RDME model. The environment is divided into N voxels whose volumes are equal and VVox. The molecules in ith voxel

at time t are represented as Mi(t) = [M1
i (t),M2

i (t)]. M(t) = [M1(t), . . . ,Mi(t), . . . ,MN (t)] is governed by a reaction-diffusion

master equation.

the purposes of exposition, we focus here on first-order reactions of the form247

S1 → S2

S2 → S1,
(29)

which have been recently considered in the context of molecular communications [54, 55, 56].248

In order to capture the effect of small quantities of each chemical species in the system, we consider a

stochastic model for the kinetics. To formally describe the scenario, we introduce the following notation.

First, we divide the domain into N small voxels, each with a volume of VVox as shown in Fig. 3. One main

idea is that each voxel, well-mixing is assumed. Let M l
i (t), l = 1, 2, i = 1, . . . , N denote the random variable

for the number of molecules of species S1 or S2 in voxel i at time t. Denote Mi(t) = [M1
i (t),M2

i (t)] as the

state vector in voxel i and the matrix consisting of all state vectors as M(t) = [M1(t), . . . ,MN (t)]. The

probability that M(t) has value m at time t conditioned on there being a quantity of molecules m0 in each

voxel at time t = 0 is then denoted by

P (m, t) = Pr(M(t) = m|M(0) = m0), (30)

where M(0) is the initial quantity of molecules of each species in each voxel.249

Remark 3.1. If there is only a single voxel i = 1, then the system corresponds to a stochastic chemical250

reaction system with unimolecular reactions where M l
1(t) corresponds to Xl(t) in (21).251

Since the reactions in (29) are unimolecular, it follows that in each reaction the number of molecules252

of the two species involved can only increase or decrease by one. Let 1li be the state where the number of253

molecules in all voxels is zero, except for species l in voxel i. That is, M(t) + 1li means that the number of254

molecules of species l in voxel i is increased by one.255

A popular model for stochastic kinetics of molecules is the reaction-diffusion master equation (RDME)256

[57], also utilized in the context of molecular communications in [56]. In this model, the diffusive jump rate–257

corresponding to the rate of the underlying Markov process and not the transition probability–is denoted by258

κlij for each individual molecule of the l-th species moving from voxel j into voxel i, with κlii = 0, i = 1, . . . , N .259

In particular, the probability per unit time that a molecule of Sl diffuses from voxel j to voxel i at time t is260

given by κlijM
l
j(t).261
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In general, κlij depends on i, j and l; that is, the probability of a molecule diffusing between two voxels262

is not spatially homogeneous (diffusive jump rates vary from voxel to voxel). The diffusive jump rate out of263

the boundary voxels is zero, which can be interpreted as a reflective boundary condition3. We remark that264

spatial inhomogeneity of diffusion does not enforce any boundary constraints (other than on the reflective265

boundary). Nevertheless, if the diffusive jump rates near the boundary of the receiver are small, the flux266

of probability for molecules of S1 into the receiver will be low. This behavior can model the impact of a267

membrane surrounding a receiver in a molecular communication system, which is more difficult for molecules268

to pass through than in the rest of the fluid.269

In the case of mass-action kinetics and first-order reactions, the probability per unit time that a molecule270

of Sl in voxel i reacts at time t is given by aliM
l
i (t) with rate constants ali. In general, the reaction rate is271

dependent on the voxel index; i.e., we allow for voxels i to have different reaction propensities. For small scale272

systems typical in molecular communications, the homogeneity in key parameters such as temperature can be273

assumed, which implies few variations in the reaction propensities within individual voxels. The net change of274

each chemical species due to the reaction with substrate Sl is expressed via the vector νl = [νl,1, νl,2] ∈ Z2
≥0,275

where νl,1 is the net gain of molecules of S1 and νl,2 is the net gain of molecules of S2. The term νl1i276

indicates that M(t) changes by νl in the i-th voxel.277

In the RDME model, the probability distribution P(m, t) evolves according to the system of differential278

equations given by279

dP (m, t)

dt
=

N∑
i=1

N∑
j=1

2∑
l=1

(
κlij(m

l
j + 1)P (m + 1lj − 1li, t)− κljiml

iP (m, t)
)

+

N∑
i=1

2∑
l=1

(
ali(m

l
i + 1)P (m− νl1i, t)− aliml

iP (m, t)
)
,

(31)

where the first triple sum corresponds to the net change in probability per unit time due to diffusion and the280

second double sum corresponds to the net increase in probability per unit time due to chemical reactions.281

We highlight that implicitly in (31), it is assumed that there is a finite, reflective boundary, no degradation282

of molecules, constant temperature, and no external forces (e.g. due to a linear potential inducing drift).283

For more details, we refer the reader to [57, 58]. A natural question is whether these assumptions can be284

relaxed. In [59], external forces were considered, with verification by numerical simulation. We postpone285

discussion of relaxing further the assumptions to Sec. 7.286

The system of ordinary differential equations in (31) corresponds to the Kolmogorov forward equation287

for a continuous-time Markov chain, that is, the evolution of the system state is Markovian. In our setting,288

due to the reversible reactions and diffusive jump rates detailed above, the Markov chain corresponding to289

the RDME is irreducible and positive recurrent. Therefore, the stationary distribution for (31) exists.290

In the context of molecular communications, the use of the RDME was initiated by [56] and developed in291

3This is expressed mathematically as homogeneous Neumann boundary conditions.
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several followup works [60, 61, 62, 63, 64, 65]. The RDME has also been considered recently in the context292

of equilibrium signaling [54, 55], which will be discussed further in Sec. 4.293

For a sufficiently large number of molecules, the stationary distribution can in some cases be approximated294

via an underlying deterministic system. This approximation theory builds on results originally due to295

Kurtz for the chemical master equation [19] and related density dependent jump Markov processes. For296

instance, in the work [20], limit theorems approximating the solution of the RDME to that of an underlying297

deterministic reaction-diffusion system have been developed for the case of a single chemical species that298

may be produced or annihilated. For the RDME in (31), it may then be expected that for a sufficiently large299

number of molecules in the system, a good approximation for the concentrations of each species is given by300

the corresponding deterministic reaction diffusion system.301

More precisely, denote by Ω ⊂ Rd, d ≥ 1, a bounded domain comprising the communication channel,302

ul(x, t), l = 1, 2 is the concentration of Sl at position x ∈ Ω and time t > 0. By applying the law of mass303

action, the deterministic reaction-diffusion system modeling the reversible reaction (29) reads as304 
∂tul −∇ · (Dl(x)∇ul) =

2∑
i=1

al,iui, x ∈ Ω, t > 0, l ∈ {1, 2},

Dl(x)∇ul · n̂ = 0, x ∈ ∂Ω, t > 0, l ∈ {1, 2},

ul(x, 0) = ul0(x), x ∈ Ω, l ∈ {1, 2},

(32)

where the self-reaction rate al,l is defined by al,l = −a3−l,l, for an appropriate choice of reaction rates al,i and305

diffusion coefficients Dl(x). The vector-valued function n̂(x) is the outer unit normal defined for x ∈ ∂Ω.306

The homogeneous Neumann boundary condition Dl(x)∇ul · n̂ = 0 corresponds to a reflective boundary307

condition, and the initial concentations are assumed non-negative.308

We remark that the unimolecular reaction (29) was chosen for the purposes of exposition. In general,309

one can consider a network of unimolecular reactions with arbitrary number of chemicals. The dynamical310

behaviour of the corresponding reaction-diffusion system has been completely characterized in [16].311

For the model studied in [20], it is possible to rigorously establish central limit theorems [66, 67], which312

facilitates the use of Gaussian approximations for the number of molecules in a given subdomain of the313

system. For the RDME in (31), a Gaussian approximation has been justified empirically in [54].314

For the purpose of molecular communications, in [68] a deterministic approximation has been used315

to approximate the expected number of molecules in a receiver in the presence of information molecule316

degrading enzymes in the fluid medium. In [69], the deterministic system has been used to model the317

expected quantity of hydrogen ions when there are reactions between hydrogen ions and acids or bases.318

Both of these deterministic models involve nonlinear reaction terms. A similar idea was introduced in319

[30, 70] exploiting a Poisson model with mean determined by an underlying deterministic reaction-diffusion320

system.321

Simulation of the RDME in (31) can be performed via the Gillespie algorithm [71], which has been322

widely used within molecular communications. Further variations are discussed in [57, 72] and in [59] which323
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incorporates the presence of drift into the RDME.324

4. Modulation and Detection for Channels Governed by Stochastic Models325

Figure 4: Communication Channel Model for equilibrium signaling. Transmitter (Tx), uses ∆ new S1 molecules to produce

information molecules S2 via S1
a1

−−→ S2 and S2
a2

−−→ S1. Once the information molecules S2 are released from the transmitter

to transmit a message, the receiver (RX) observes these molecules until the system reaches the equilibrium state.

A basic problem in molecular communications is how to encode messages to be transmitted in the state of326

a set of molecules, known as modulation. On the receiver side, the challenge is then to detect which message327

was sent given the observations by the receiving device. The problem of modulation and detection has been328

a central question since the inception of molecular communications and there is now a wide body of work,329

recently surveyed in [9]. In this section, we provide a brief review of the main approaches for modulation330

and detection, when molecular motion is governed by the RDME or Smoluchowski equation.331

The general problem of maximum a posteriori detection can be written as

m̂ = arg max
m∈M

Pr(NRx|m), (33)

where M is the finite set of possible messages and NRx is the number of molecules observed at the receiver.

More concretely, suppose that the communication system is time slotted, with time slot duration Ts. Consider

the n-th time slot. Due to the previous n− 1 transmissions, there are NTx,l(nTs), l = 1, 2 molecules of each

species Sl in the transmitter. At a time nTs + δ shortly after the beginning of the time slot, the transmitter

produces a quantity of S1 depending on the bit to be transmitted. In particular, for binary signaling with

M = {0, 1},

NTx,1(nTs + δ) =

 NTx,1(nTs) + ∆ sn = 1,

NTx,1(nTs) sn = 0,
(34)

for δ > 0 a sufficiently small period of time, and ∆ > 0 corresponding to the number of molecules emitted332

with message m = 1 (not to be confused with the state m for the RDME). Zero molecules are emitted when333

m = 0.334
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4.1. Detection in General Channels335

The key challenge in this setting is to reliably detect the transmitted binary symbol; i.e., whether m = 0336

or m = 1. A standard method, known as concentration shift keying (CSK), is often defined as the emission337

of different quantities of molecules for each message; however, in practice, it is ubiquitous to restrict the338

receiver to sample at a time Ts such that the quantity of molecules at the receiver is maximized in some339

sense (e.g., the expected number of molecules at the receiver is maximized). For the simplest diffusion model340

(5), the statistics for the number of molecules in the receiver, NRx, can be computed in closed-form for an341

infinite domain. However, a characterization of the statistics is more challenging when boundary conditions342

or chemical reactions are present, although some results have been obtained in this setting (see e.g., [44]).343

Extensions to non-binary signaling schemes have been studied in, for example, [55].344

In the absence of chemical reactions, a number of approaches have been proposed; e.g., type based,345

timing-based modulation, and spatial-based. Type-based signaling is one of the most widespread, where346

multiple types of molecules can be used as information-carrying molecules. These benefits can be obtained347

by representing each symbol with different types of molecules as proposed in [73] and known as Molecule348

Shift Keying (MoSK). Alternatively, in Molecular Concentration Shift Keying (MCSK), it has been pro-349

posed to use different types of molecules for two consecutive transmissions to reduce interference [74]. In350

[75], different types of molecules are used as orthogonal channels and it is proposed to use multiple CSK351

channels simultaneously which is called as D-MoSK in the literature. Timing based approaches are based352

on representing the intended message by release time as done for binary signaling in [76] and multi level353

signaling in [77]. Spatial-based approaches can also be developed by utilizing MIMO concepts [78] and index354

modulation [79]. In addition to these, hybrid approaches have also been proposed such as [80] and [81].355

In addition to these works and methods presented here, there are several other approaches available in the356

literature and we refer the interested reader to the surveys [8] and [9] for more details.357

4.2. Detection in RDME Channels358

On the other hand, few approaches have been developed for molecular motion governed by the RDME.359

A recently proposed approach [54, 55, 37], instead exploits the equilibrium behavior of the RDME in the360

presence of a reflective boundary—leading to a scheme known as equilibrium signaling, which is also applicable361

to a general family of Langevin diffusions [37]. In equilibrium signaling, Ts is chosen to be sufficiently large362

such that the statistics for the number of molecules in the receiver can be approximated in closed-form via363

(15) or a Gaussian approximation for the RDME (see [54]). An advantage of this approach is that the364

stationary distribution is independent of most system parameters (e.g., diffusion coefficients, presence of365

obstacles, and changes to the location of the transmitter or receiver). With the stationary distribution, it is366

then feasible to derive near-optimal detection rules [54, 37].367

To illustrate the idea behind equilibrium signaling, consider Fig. 4. Here, the transmitter seeks to send a368

message to the receiver by releasing information molecules of species S2 through the communication channel369
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by producing molecules via the first order chemical reactions S1
a1−→ S2 and S2

a2−→ S1. In equilibrium370

signaling, the receiver ideally observes the quantity of molecules of S1,S2 in its domain at the sampling time371

Ts →∞. In practice, as shown in [54], the required time t∗ to reach the equilibrium state of the system with372

a tolerable error, can be much much smaller and such time can be derived in terms of channel parameters.373

Once, Ts is chosen as t∗, the transmitter communicates by releasing and the receiver observes the quantity374

of molecules in its domain.375

One can view equilibrium signaling as lying in the family of CSK schemes, although—as noted earlier—it376

differs from how such schemes have been designed in practice. We also remark that equilibrium signaling377

can be used to increase the data rate for multi-level signaling [55]. The scheme is also highly robust to378

uncertainties in diffusion coefficients, the shape of the boundary, and locations of the transmitter and receiver379

[54]380

To illustrate the robustness of equilibrium signaling to uncertainties in the channel, suppose that a

sequence of bits, s1, . . . , sn, over a period of n sampling intervals is sent. We can represent this sequence

as Smn to show that this sequence has m transmissions (each transmission corresponds to a bit 1). Further,

let NRx,1(nTs|Smn ) and NRx,2(nTs|Smn ) denote the number of molecules of species S1 and S2, respectively,

observed by the receiver at the end of the n-th symbol period (i.e., at time (n+ 1)Ts), given the transmitted

sequence Smn . Under these circumstances with sufficiently large ∆ as shown in [54], the distribution of

molecules in the receiver can be well approximated by

NRx,1(nTs|Smn ) ∼ N (mµr,1,mµr,1),

NRx,2(nTs|Smn ) ∼ N (mµr,2,mµr,2), (35)

where µr,1, µr,2 > 0 are known constants, dependent on the volume of the enclosing container and not the

specific geometry, and N (µ, σ2) denotes the Gaussian law with mean µ and variance σ2. In particular,

µr,1 =
a1

a2
µr,2, µr,2 =

∆VRx

Vtot

1 + a1

a2
VTx+VRx

Vtot

, (36)

where Vtot = NVVox is the total volume of the system. Moreover,

NRx,1(nTs|Smn ) +NRx,2(nTs|Smn ) ∼

N (m(µr,1 + µr,2),m(µr,1 + µr,2)). (37)

Therefore, unlike other signaling schemes, in equilibrium signaling, there is no need to know exact geom-381

etry of the channel or the distance between the transmitter and the receiver. The only required information382

to model the signal is the volume of the channel and the volume of the receiver.383

To show the performance of equilibrium signaling, we focus on the scenario of a bounded fluid domain384

and the presence of obstacles as in the three different channels presented in Fig. 5. In order to derive385

detection rules in these channels, it is necessary to evaluate the channel impulse responses, which cannot386
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be obtained analytically. Therefore, extensive simulations are typically required if conventional detection387

schemes are utilized. Furthermore, the detection methods will have different performance when the location388

of the transmitter or receiver, the fluid boundary, or obstacles varies. For example, if CSK is used for the389

channels given in Fig. 5, if the channel parameters (e.g., diffusion coefficients) are kept constant, we may390

expect different performance in the channels in Fig. 5(a) and 5(b) due to the differences in geometry. This is391

true even if the channels in Fig 5(b) and 5(c) have the same fluid boundary and obstacles, since the distance392

between the transmitter and the receiver are different. On the other hand, in equilibrium signaling, the393

channel response only depends on the volume of the channel and the receiver. As such, the performance in394

the three different channels in Fig. 5 is the same.395

This phenomenon is illustrated in Fig 6. In this figure, three different communication schemes are396

evaluated: equilibrium signaling with two species S1,S2; equilibrium signaling with one species S1; and CSK397

at the peak time of the observed signal (CSKopt). Note that for equilibrium signaling with one or two species,398

all parameters are kept the same including the communication time slot which is equal to the approximate399

equilibrium time and can be approximated as in [54]. As expected and can also be observed in Fig 6, as400

the volume of the system and the receiver are kept constant, the performance of equilibrium signaling and401

equilibrium signaling with one species does not change for different scenarios.402

On the other hand, using an optimum time slot for CSK communication can be obtained by selecting403

the time which maximizes the expected number of molecules as suggested in [82]. Therefore for all different404

scenarios— assuming that all channel parameters are known—it is possible to obtain an optimal detector405

for CSK. As can be seen in Fig 6, these curves differ for each scenario and equilibrium signaling can still406

outperform standard implementations of CSK.407

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5: Channel with different geometries. Blue boxes indicate obstacles.

The main alternative to equilibrium signaling in the context of the RDME is known as reaction-shift408

keying (RSK) [64], where a continuous-time molecular signal is transmitted and detected via chemical reac-409

tions. In common with equilibrium signaling (with multiple chemical species) is the use of chemical reactions410

in the transmitter and receiver; however, like CSK and MoSK, RSK does not exploit an equilibrium state411

and requires computation of the expected quantity of molecules in the receiver at a given time. As this412

requires a full solution of the equation of motion, good estimates of transmitter-receiver distances and diffu-413

sion coefficients are implicitly required. This again contrasts with equilibrium signaling—which also has a414
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Figure 6: Performance comparison of CSK and equilibrium signaling for the three scenarios presented in Fig. 5. Note that for

conventional CSK, the performances differ in different channels as expected while in equilibrium signaling since the volumes

are kept constant, same BER values are observed.

dramatically lower complexity—where these estimates are not required. Nevertheless, RSK does not require415

the system to reach an approximate equilibrium state and has advantages for systems with short symbol416

periods.417

5. Inference via Stochastic Reaction-Diffusion Systems418

It is widely known that chemical reaction networks, particularly genetic circuits, form a powerful means419

of performing computation. This has recently been developed in the context of molecular communications420

via microfluidic circuits [11] and for encoding and decoding of channel codes [83]. It is less commonly421

observed, but equally true, that stochastic reaction-diffusion can be viewed as stochastic molecular circuits422

for statistical inference. In this section, we review the use of stochastic reaction-diffusion systems to solve423

statistical inference problems.424

5.1. Receiver Design425

In molecular communications, a key question is how the detection rules discussed in Section 4 can be426

implemented. Due to the small scale and limited resources available to receivers, particularly for nanoscale427

devices, computation via biochemical processes is highly desirable. The main work in this direction is due428

to Chou and his collaborators [60, 64, 61, 62, 65, 84], which exploits stochastic reaction-diffusion systems429

within the receiver.430
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A key example of this approach is in [63], which considers a receiver consisting of receptors that can

exist in two states: an inactive state X; and an active state X∗. An inactive receptor can be activated by a

signaling molecule, where the system is governed by the reactions

X + X
g+→ S + X∗

X∗
g−→ X, (38)

where g+ and g− are the propensities (discussed in detail in Sec. 3) and S is a signaling molecule.431

Detection is then based on the log posterior probability that symbol k has been sent given history X∗(t),

denoted by Lk(t) = logP (k|X∗(t)). Chou then showed that Lk(t) obeys

dLk(t)

dt
=

[
dx∗(t)

dt

]
+

log(E[nR(t)|k,X∗(t)])− g+(M − x∗(t))E[nR(t)|k,X∗(t)], (39)

where x∗(t) denotes the number of molecules X∗ at time t and nR(t) is the number of signaling molecules in

the receiver. Computing the term E[nR(t)|k,X∗(t)] is computationally challenging and therefore in [63], it

is approximated via σk(t) = E[nR(t)|k]. This leads to the demodulation filter

dZk(t)

dt
=

[
dx∗(t)

dt

]
+

log(σk(t))− g+(M − x∗(t))E[nR(t)|k,X∗(t)], (40)

with Zk(t) is initialized to the logarithm of the prior probability that symbol k is transmitted. Detection is432

then performed via k̂ = argmaxk Zk(t). While (40) can be computed numerically, a key contribution in [63]433

shows that it can also be approximated via a molecular circuit based on the gene promotor circuit DCS2,434

which is found in the yeast Saccharomyces cerevisiae.435

5.2. Parameter Estimation436

One example of an inference problem relevant for molecular communications is to estimate the quantity

of molecules of different types via non-specific receptors on the surface of the transmitter. In this setting,

the number of each type of molecule produced by the receptors depends linearly on the number of molecules

that bind with the receptors. In particular,

r = Ol, (41)

where r ∈ ZnR

≥0 is the number of each type of receptor molecule produced, which can be directly observed437

within the transmitting device. The vector l ∈ ZnL

≥0 is the number of each type of species in the environment438

that bind to receptors on the transmitter. The matrix O is an nR × nL observation matrix determining the439

production of receptor molecules given the number of molecules from the environment that bind with each440

receptor.441

In order to estimate the quantity l, a Bayesian approach can be adopted, to yield samples from Pr(l = u|r).

Motivated by Theorem 3.1, consider the product-Poisson prior for the number of molecules in the environment

that bind with the receptors, given by

Pr(l = u) =

nL∏
i=1

e−q̃i
q̃ui
i

ui!
, (42)
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where l ∈ ZnL

≥0, r ∈ ZnR

≥0, q̃ = [q̃1, . . . , q̃nL ]T are the positive rate parameters. In [85], it has been shown that442

the distribution of the posterior Pr(l|r) with the product-Poisson prior can be sampled from the quantities443

of molecules of species X1, . . . , Xn at a sufficiently large time t.444

This approach has been adopted within molecular communications for signal processing in [86, 87].445

Indeed, stochastic chemical reaction networks provide a powerful framework for computation. In particular,446

chemical reaction networks have been shown to implement expectation-maximization [88] and Boltzmann447

machines (binary stochastic neural networks) [89, 88]. This work focuses on the problem where it is desirable448

to maximize the likelihood Pr(x|θ), where x is data and θ is the parameter to be estimated. A key assumption449

is that x is drawn from an exponential family and only observations s = Ax are available; that is, the data x450

is a latent variable and the observations s are obtained via a linear transformation A. We note that a similar451

problem arises in the context of compressed sensing, which has been widely applied in various communication452

systems (see e.g., [90]).453

6. Stochastic Biological Environments454

In molecular communication systems embedded in a biological environment, there may be interactions be-455

tween information-carrying molecules and external biological organisms or competition for genetic resources456

in the process of encoding or decoding information. This problem, addressed in [91, 92, 25, 93, 94, 95] and457

often called coexistence, must account for the stochasticity due to small numbers of information carrying458

molecules or, for example, limited ribosomes during DNA translation [94]. As such, stochastic reaction-459

diffusion systems can play an important role.460

The problem of coexistence is how to ensure that information-carrying molecules do not significantly461

perturb an external biological system, where the external biological system is modeled via a stochastic462

chemical reaction system, illustrated in Fig. 7 for two types of signaling molecules. In [25, 94], components463

of a biological system are modeled via deterministic chemical reaction systems. There are two basic reasons464

why the interactions between a molecular communication system and an external biological system may be465

better modeled via stochastic models:466

(i) the motion of the information-carrying molecules is governed via Langevin or RDME models;467

(ii) when a biological system has relatively few molecules of a given species, the internal dynamics are468

better captured via stochastic, typically chemical reaction network, models.469

A general framework to establish information theoretic limits of molecular communication such that470

perturbations of the biological system are limited was developed in [93]. At its heart, this approach placed471

constraints on the statistics for the number of information-carrying molecules that bind with an external472

biological system. As such, techniques from covert communications [96] can be adapted to derive scaling473

laws for the number of messages that can be reliably communicated. An important conclusion is for a code474
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Figure 7: Molecular communication in the presence of a biological system [92].

blocklength n (corresponding to n symbols), the number of messages scales with
√
n when reliability and475

coexistence constraints are imposed. This is in contrast with the case where the biological system is not476

present, where via Shannon’s noisy channel coding theorem [97], the number of messages that can be reliably477

communicated scales with n. This suggests that coding in the presence of external biochemical systems may478

need to be adapted; namely, utilizing longer codes or transmission of less information.479

From the perspective of practical modulation schemes, in [92] an approach based on reactive signaling480

[30] was proposed. In particular, the number and time of release of two signaling molecules that can react481

with each other was optimized subject to a constraint on the expected number of molecules that pass through482

an external biological system.483

7. Open Problems484

As detailed in the previous sections, there has been significant progress in developing molecular commu-485

nication systems in the presence of and exploiting stochastic models. Nevertheless, each scheme has some486

limits on its applicability. In this section, we highlight several open problems that we believe will enhance487

the range of applications that can be supported via molecular communications.488

7.1. Detection489

As noted in Sec. 4, a key challenge is to derive reliable detection rules for various modulation schemes490

in the presence of channels governed by stochastic models. While the simplest form of Langevin diffusion—491

namely standard Brownian motion—has been widely studied, there is very little work considering inhomo-492

geneous diffusion and external forces.493

The main work in this direction is [37], based on equilibrium signaling; however, a key limitation is494

the requirement that information-carrying molecules do not degrade. Indeed, if molecules degrade, the495

equilibrium distribution for the number of molecules is concentrated around zero; that is, no information-496

carrying molecules remain in the system at the sampling time. A potential means of extending the work497

26



in [37] to the case of molecule degradation is to instead study quasi-equilibrium distributions. While quasi-498

equilibrium distributions have been considered in various chemical reaction systems [98], they have not yet499

been studied in the context of molecular communications. A similar issue also arises for the equilibrium500

signaling scheme in [54], in the context of the RDME model.501

Another challenge related to equilibrium signaling is the choice of the sampling time. In order to select502

the sampling time, it is necessary to determine when the system is “close” to equilibrium. In [54], this choice503

was based on analysis of an approximate underlying deterministic system. In order to carry out this analysis504

for general RDME models, a characterization of the optimal rate of convergence to equilibrium should be505

investigated. While bounds on the equilibrium convergence rate are known for fairly general deterministic506

reaction-diffusion systems [16], the optimal rate has not yet been obtained and remains a key open problem.507

An important limitation of the vast majority of work on molecular communications is the assumption that508

information-carrying molecules do not interact. Such an interaction can arise due to electrostatic forces; e.g.,509

if the molecules are ionized. In order to derive reliable detection rules in this scenario it appears necessary510

to draw techniques from the field of interacting particle systems [99].511

Finally, when the fluid media is, for example, turbulent, Langevin diffusion is not an appropriate model.512

Instead, anomalous diffusion models are more appropriate. While there is some work in this direction513

[100, 101, 102, 103, 104, 105], the intractability of the solutions to the resulting generalized Fokker-Planck514

equations introduces new difficulties for the design of detection rules.515

7.2. Stochastic Molecular Circuits516

At present, there has been very limited use of stochastic models to implement molecular circuits for the517

purpose of signal processing. As transmitting and receiving devices typically require even limited capabilities518

to perform coding and decoding, as well as parameter estimation, there are several opportunities for new519

applications of stochastic models in these settings. On the one hand, there are extensions of the work in [63]520

exploiting RDME models for detection. On the other hand, exploiting the capabilities of stochastic chemical521

reaction systems, as in the work in [85, 88], appears to be a fruitful direction for future work.522

A specific open problem is the development of molecular circuits for detection and channel estimation,523

which can account for non-specific receptors. Indeed, nanoscale networks are expected to exploit devices524

that are enclosed by a membrane and require a mechanism to transfer information-carrying molecules into525

a receiving. Such receptors can bind to information-carrying molecules, and potentially also other chemical526

species in the environment. The techniques developed in [85, 88] are ideally suited to coping with this527

problem and an initial study has been carried out in [86].528

7.3. External Biochemical Systems529

Despite the possibility of information-carrying molecules interacting with external biochemical systems,530

there has been very limited work investigating how these interactions can be mitigated and the impact on the531
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performance of the communication system. This is particularly true when the internal stochastic dynamics532

of the biochemical systems are considered.533

A starting point to begin characterizing the performance reduction can be found in [91], which exploited534

a fundamental connection between the coexistence problem and covert communications to derive information535

theoretic limits of communication. However, this work assumed that the biological system does not have536

memory; that is, the biological system is “reset” after each symbol is transmitted. As realistic biological537

systems are likely to have memory of their previous state (due to the Markovian nature of their dynamics),538

addressing this issue seems important in order to understand the true limits of molecular communication539

systems in the presence of external biochemical systems. A further extension would be to consider the “finite540

blocklength regime” as considered in [106, 107].541

Another open issue is the development of practical signaling strategies to minimize the impact of molecular542

communication systems on their environment. One approach is to build on recent work studying the impact543

of multiple receivers on reliability [108]. Another angle is to view the molecular communication link as a544

perturbation of the reaction-diffusion system governing the external biological system. Here, variations on545

perturbed global attractor theorems in chemical reaction network theory may play a useful role [109].546

7.4. Distributed Spectroscopy547

Many proposed engineering applications of molecular communications are in highly uncertain environ-548

ments; e.g., in vitro applications in the human body. Nevertheless, in some settings it is possible to design549

the communication channel in the sense that molecular motion can be controlled. A key example of such550

a setting is in microfluidic systems, where the stochastic model governing motion can be adapted to the551

engineering application. A basic question is then how to optimize the channel?552

For deterministic models of microfluidic channels, there have been several works investigating how channel553

parameters affect the dynamics [110, 111, 112, 113, 114, 115, 116]. For channels governed by stochastic mod-554

els, how to tailor the channel to an engineering application has not been widely investigated. One exception555

is the recent work in [117, 118], where channel design for the purpose of spectroscopy was investigated.556

Indeed, a key challenge in molecular biology is to understand how environmental conditions affect the557

dynamics of biochemical processes. To answer this questions in practice, it is necessary to measure the558

concentration of chemical species produced by the biochemical process under observation—known as an assay.559

However, it is not always straightforward to perform such measurements in situ or in vivo as the spectroscopy560

measurement devices require special environmental conditions; for example, in force spectroscopy utilizing561

atomic force microscopy, well-defined, flat and non-reactive substrates are required [119]. In this case, it562

may desirable to extract samples from the process and perform spectroscopy elsewhere.563

One approach to performing state estimation of a biochemical process in a distributed fashion has recently564

been proposed in [117]. This approach is illustrated in Fig. 8, where a biochemical process under observation565

contained in a chamber, connected to spectroscopy chamber—where the quantity of a given chemical species566

can be directly observed—via a microfluidic channel.567
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Figure 8: Distributed spectroscopy model in [117, 118].

A key open problem is how to design the joint sensing, communication and estimation system tailored568

to particular spectroscopy methods. Such design relies heavily on the behavior of a RDME analogous. In569

particular, instead of a molecular communication detection problem (as considered in Sec. 7.1), it is necessary570

to estimate an unknown quantity of a given chemical species. An even more challenging variant is to design571

such systems for in vivo applications, perhaps building on the Raman spectroscopy-based methods in [120].572

8. Conclusions573

Stochastic models for reaction and diffusion play a critical role in developing molecular communication574

systems. This is due to the need to characterize the statistics for the number of molecules that are observed575

by a receiver, to implement signal processing via molecular circuits, and to mitigate the impact on external576

biochemical processes. In this paper, we have surveyed general stochastic models and their applications in577

recent work. By outlining a number of open problems, we hope to encourage further developments to address578

outstanding issues of both an engineering and a mathematical nature.579
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