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ABSTRACT
Many computer vision applications rely on feature matching,
hence the need for computationally efficient and robust 4D
light field (LF) feature detectors and descriptors for applica-
tions using this imaging modality. In this paper, we propose
a novel LF feature extraction method in the scale-disparity
space, based on a Fourier disparity layer representation. The
proposed feature extraction takes advantage of both the Har-
ris feature detector and SIFT descriptor, and is shown to yield
more accurate feature matching, compared with the LiFF light
field feature with low computational complexity. In order to
evaluate the feature matching performance with the proposed
descriptor, we generated synthetic LF datasets with ground
truth matching points. Experimental results with synthetic
and real datasets show that, our solution outperforms exist-
ing methods in terms of both feature detection robustness and
feature matching accuracy.

Index Terms— Feature detection, feature descriptor, fea-
ture matching, light fields, Fourier disparity layer.

1. INTRODUCTION

In the past decades, 2D feature detectors such as SIFT [1],
SURF [2], FAST [3], and ORB [4] has been instrumental in
many computer vision applications with 2D images, such as
structure-from-motion, 3D reconstruction, object tracking, or
scene recognition. However, 2D image feature detection and
matching can be significantly affected by occlusions, scale
and illumination changes, and non-Lambertian reflections. It
has been shown in [5] that 3D feature detection from RGB-D
images can be more robust than 2D feature detection.

Light fields, unlike 2D imaging and RGB-D images, by
recording the flow of rays emitted by the scene along differ-
ent directions, yield a 4D spatio-angular representation of the
scene, from which one can extract information about the par-
allax and depth of the scene. 4D LF features therefore hold
promises to solve limitations of 2D image features in pres-
ence of occlusions, illumination changes and non Lambertian
scenes. This is investigated in [6] and [7] where the authors
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exploit depth information in the LF to build scale-depth de-
scriptors. Another category of approaches builds upon 2D
descriptors, by computing 2D detectors on the different sub-
aperture images, and then imposing angular consistency using
epipolar geometry [8], [9] or using optical flows [10], [11].
The authors in [12] instead simultaneously consider all sub-
aperture images and extend the SIFT descriptor to 4D LF by
searching for features in a joint 4D scale-slope space, i.e. in
the scale space as SIFT but at different depths, or slopes of
structures in epipolar plane images.

Despite the above work, defining robust and computation-
ally efficient 4D LF feature extractors and descriptors is still a
widely open problem. One question inherent to the LiFF de-
scriptor is the discretization of the depth space, which has ob-
vious implications on computational complexity. The depth
space discretization corresponds to a list of slopes, a higher
number of slopes giving a better performance, but a higher
computational complexity. The optimal list of slopes is not
easy to determine. The authors recommend using as many
slopes as there are samples in the LF angular dimension.

In this paper, we propose a novel 4D LF feature, called
FDL-HSIFT feature, based on the Harris detector and SIFT
descriptor computed on the Fourier disparity layer represen-
tation [13]. The FDL is a compact representation which sam-
ples the LF in the depth (or equivalently the disparity) dimen-
sion by decomposing the scene as a discrete sum of layers.
The layers, and their corresponding disparity values, are auto-
matically found, from a subset of LF views, using regularized
least square regression performed in the Fourier domain, in-
dependently at each spatial frequency. The proposed feature
is therefore defined in the 4D LF scale-disparity space, the
disparity being discretized thanks the FDL construction. The
representation being compact, it leads to a reduced computa-
tional complexity without loosing in terms of performance.

In summary, the contributions of the paper are as follows

• We introduce a FDL based scale-disparity space (FDL-
SDIS), which benefits potential LF feature extraction.

• By combining the Harris detector and the SIFT descrip-
tor, we propose a novel FDL-HSIFT blob feature in the
FDL based scale-disparity space.

• We also created a synthetic dataset using blender which
gives ground truth matches, in order to evaluate the pro-
posed feature descriptor.
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Fig. 1. Overview of FDL-HSIFT feature matching.

2. RELATED WORK

2.1. Image and LF based features extraction

Image feature detection refers to the problem of identifying
and localizing interest points, blobs and regions. Classical
2D image feature detectors such as [14], or SUSAN [15],
SIFT[1], FAST [3], SURF [2] and ORB [4] feature detectors
have been widely employed in many computer vision appli-
cation. These feature detectors are mainly based on specific
image gradient distributions, which have local or global in-
variance to possible image translation, rotation, or to scale or
affine transformation.

In parallel, in the past two decades, many acquisition de-
vices have been designed to capture LF, ranging from camera
arrays, [16], to single cameras mounted on moving gantries,
and plenoptic cameras [17]. Overviews of these devices can
be found in [18] and [19]. Several LF feature detectors and
descriptors have been introduced in the literature [7, 8, 20,
12]. Tosic and Berkner [7] proposed to detect edge keypoints
in the LF scale-depth (Lisad) space, constructed using a mod-
ified Gaussian kernel, and parameterized both in the object
scale and depth. The authors in [8] use epipolar geometry
to impose angular consistency between 2D descriptors com-
puted in the different sub-aperture images, while the authors
in [10], [11] instead use optical flows. These methods based
on 2D features computed on the different sub-aperture images
suffer from the limitations of 2D feature descriptors. Tsai et
al.[20] instead propose a method to distinguish between re-
fracted and Lambertian image features using a LF camera,
based on textural cross-correlation to characterise apparent
feature motion across the LF. The authors in [12] extend the
SIFT descriptor to 4D LF to detect blob features in a joint 4D
scale-slope space, i.e. in the scale space as SIFT but at dif-
ferent depths corresponding to slopes of structures in epipolar
plane images. The method yields more precise feature match-
ing in the context of structure from motion (SfM).

2.2. Light field representation

Let us consider the 4D LF representation proposed in [21]
and [22] describing the radiance along rays by a function
LF (x, y, u, v), and based on a parameterization of orienta-
tions of light rays with two parallel planes. The pairs (x, y)
and (u, v) represent the spatial and angular coordinates of

light rays respectively.
By applying spatial or frequency refocusing [23], a LF

can be represented by a sequence of images refocused at dif-
ferent depth planes, called focal stack. The 3D focal stack
can also be inversely converted to a 4D representation (Sub-
aperture images, SAIs), e.g. using the focal stack based de-
convolution [24] [25], or recovering from the Fourier domain
[26]. The LF can be instead represented by a set of layers,
each one corresponding to a different disparity value [13],
and computed using a fast disparity regularized least square
regression in frequency domain.

For simplicity of notation, let us consider only one 2D
slice of the light field with only one spatial and one angular
dimension. The Fourier transform of the light field can be
computed as [13]

L̂(wx, wu) =
∑
k

δ(wu − dkwx)L̂k(wx) (1)

where wx and wu are spatial and angular frequency terms.
δ(wu−dkwx) is a dirac function, which simulates the aperture
function with infinitely small aperture size. Each function L̂k

can be derived as,

L̂k(wx) =

∫
Ωk

e−2iπxwxL(x, 0)dx (2)

and interpreted as the Fourier transform of the central view
L(x, 0) only considering a spatial region Ωk of disparity dk,
hence the name Fourier Disparity Layers (FDL). More gener-
ally, the Fourier Transform L̂u0 of Lu0 (a LF view at angular
coordinate u0 defined by Lu0(x) = L(x, u0)), given a set of
n disparity values {dk}k∈[1,n], can be decomposed as [13]

L̂u0
(ωx) =

∑
k

e+2iπu0dkωxL̂k(ωx). (3)

The FDL representation is therefore composed of the set of
layers {Lk(x)} (for a 2D slice) which can be derived from
the inverse Fourier transform of L̂k(wx).

The FDL construction is done using linear regression
which automatically finds the correct discretization in the
depth or disparity space, leading to a more compact repre-
sentation, compared to a focal stack, that has been shown
efficient for various processing applications, e.g. rendering,
view synthesis or varying aperture size and shape.



3. THE PROPOSED FDL-HSIFT FEATURE

3.1. FDL based scale-disparity space

We consider the FDL representation with the 4D notation, i.e.
the set of layers {Lk(x, y)} derived from the inverse Fourier
transform of L̂k(wx, wy), for feature extraction. The differ-
ent layers define a discretization of the disparity space. To
make the proposed feature robust to scale variance, by us-
ing a Gaussian kernel based scale transformation, the scale-
disparity space (SDIS) is thus defined by the set of layers

Ψk,σ(x, y) = Lk(x, y, σ) = Lk(x, y)⊗G(x, y, dk, σ) (4)

whereG(σ) is a Gaussian kernel associated with disparity dk.
We construct the representation Ψk,σ(x, y) in the SDIS for
each given input LF, number k of disparity layers and scale
factor σ.

3.2. FDL-HSIFT Feature detection and matching

To detect a FDL-HSIFT feature, we first use a Harris detector
in the SDIS representation. A displacement (∆x,∆y) in the
spatial dimension of the SDIS can be represented as,

Ψk,σ(∆x,∆y) =
∑
x,y

η(x, y)[Ψk,σ(x+ ∆x, y + ∆x)

−Ψk,σ(x, y)]2
(5)

where η(x, y) is a window function. By applying the Taylor
expansion to Equation 5, the displacement is derived as,

Ψk,σ(∆x,∆y) =
∑
x,y

[Ψx∆x,Ψy∆y]2 = [∆x,∆y]M

[
∆x
∆y

]
(6)

where Ψx and Ψy are 1st-order partial derivatives of Ψ in the
x and y directions respectively. The matrix M is the Harris
matrix or structure tensor defined as

M =
∑
x,y

η(x, y)

[
Ψ2
x ΨxΨy

ΨxΨy Ψ2
y

]
(7)

To detect corner points, edges or flat areas, we compute the
response R(x, y) of the Harris detector at each pixel of coor-
dinates (x, y) as in [14]

R(x, y) = det(M)− λ · (trace(M))2 (8)

where λ is the empirical coefficient within [0.04, 0.06], and
then simply select the top percentages of maximum response.

To represent the detected feature blobs, we employ a
SIFT-like description in the SDIS space. For a given image
blob with center (x, y), we compute a histogram of gradient
orientations for every Ψ(k,σ)(·). The histogram has 8 bins
covering the 360 degree. Then, the highest peak is selected as
the major direction, which, as in SIFT, preserves invariance
to rotation. The gradient magnitude m(x, y) and orientation
θ(x, y) are computed as

m(x, y) =
√

(Dx)2 + (Dy)2

θ(x, y) = arctan
Dy

Dx

(9)

in which,

Dx = Ψk,σ(x+ 1, y)−Ψk,σ(x− 1, y)

Dy = Ψk,σ(x, y + 1)−Ψk,σ(x, y − 1)
(10)

For a single Ψ(k,σ), the 128D descriptor f(Ψ(k,σ)) consists
of 16 blocks (4 × 4 ) with 8 directions in each. In this way,
we extract the FDL-HSIFT descriptor F (x, y) from a 16×16
neighborhood. F (x, y) can be represented by

F (x, y) = {f |f(Ψ(k,σ)), (k, σ) ∈ SDIS} (11)

Algorithm 1 FDL-HSIFT matching algorithm
Input: LF1, LF2.
Output: Matching point set (p1, p2)|p1 ∈ Q1, P2 ∈ Q2.

1: Construct the FDL of each LF (LF1 and LF2) by inverse
Fourier transform of Equation (2);

2: Construct the SDIS Ψ
(k,σ)
n (x, y) for each LF indexed by

n (n = 1, 2) by Equation(4);
3: for each pixel Qn = {(x, y)|(x, y) ∈ Ψ

(k,σ)
n (x, y)} do

4: apply the Harris corner detector using Equation 8;
5: descriptor fn(Ψ

(k,σ)
n (x, y)) is computed as

fn(Ψ
(k,σ)
n (x, y))

SIFT←− Ψ
(k,σ)
n (x, y) as in [1];

6: compute the curvature ratio r by calculating Equation
(12) between the features f1 and f2 at feature points
p ∈ Q1 and p2 ∈ Q2 in the two LFs

7: if r < 0.6 then
8: output [p1, p2] as matching between LF1 and LF2.
9: end if

10: end for

When applying FDL-HSIFT feature matching, we use a
cosine based metric for measuring the distance< f1(p), f2(q) >
between two feature vectors at two pixel positions in LF1 and
LF2 respectively. The variables p and q denote the candidate
matching coordinates in the two different LFs.

dist(p, q) = max
(k1,σ1),(k2,σ2)

(cos(fk1,σ1

1 (p), fk2,σ2

2 (q))),

where f1 ∈ F1, f2 ∈ F2

(12)
In this paper, we take the final matching decision by using a
principal curvature ratio r = dist(p, qmax)/dist(p, q2nd). It
is a positive matching only when r < 0.6, which means the
distance p to the nearest point qmax is obvious less than the
distance p to the second nearest point q2nd. We summarize
the FDL-HSIFT feature detection and matching algorithm in
Algorithm 1. In the experiments, we set the number of FDL
layers k = 9 and use 4 scale levels (σ = 1.6). These param-
eter settings may need to be adjusted for complex scene with
large disparities.

4. EXPERIMENTS

Given that no LF dataset is available with feature matching
ground truth, the authors in [12] evaluate their LiFF feature



Fig. 2. Feature detection and matching results with different datasets. (a), (b) and (c) are results on real LFs; (d) is the result on
synthetic LFs. For each dataset, the first two columns show detection results, the third columns is matching results. The circle
size and color denote the scale and disparity of detected features.

in the context of a SfM algorithm. We instead created LF
datasets with ground truth matching points. For each test data,
we generate a pair of LFs with a known rotation, translation
and camera settings. The LF includes 9× 9 views, each view
is 512 × 512 in spatial resolution, within the disparity range
[−2, 2] pixels. The central views of a pair of LFs are shown
in figure 3(a). Using Blender, we can do a pixel-wise cross-
check of matching (figure 3(c)) and feature matching (figure
3(d)) using ground truth depth (figure 3(b)).

Fig. 3. Example of Blender LF matching dataset. (a) Cen-
tral views of two LFs, with translation and rotation between
the two; (b) Corresponding depth maps of (a); (c) Matching
binary masks (black means that a matching point does not ex-
ist); (d) Pixel-wise matching ground truth of two LFs.

4.1. Feature detection and matching
First, we evaluate the detecting and matching performance of
the proposed FDL-HSIFT, in comparison with the classical
SIFT [1] and LiFF [12] descriptors. Since pixel-wise match-
ing ground truth is available, we calculate both the precision
and recall on the created synthetic LF datasets. The proposed
FDL-HSIFT detection and matching outperforms the state-of-
the-art LiFF feature (see Tab.1). Then, we conducted the same
comparative assessment with real-world LF datasets. The re-
sults can be seen in Fig.2. Given that, in this case, the match-
ing ground truth is not known, we check correct matches as in
[12]. But depth estimation may not be very precise for every
pixel. For this reason, we set the matching error tolerance to
20 pixels, which is the distance between the computed and the
theoretical positions. As shown in Tab.1, our algorithm finds
more feature blobs, and is also better in terms of precision.

Table 1. Comparison of feature matching on synthetic LFs
(total matches, precision, recall in each grid)

method chess sofa cabinets office

SIFT
38 68 247 9

0.868 0.956 0.984 0.556
0.022 0.025 0.140 0.003

LiFF
121 169 178 51

0.876 0.959 0.803 0.490
0.070 0.062 0.082 0.014

Ours
171 121 393 29

0.953 0.992 0.97 0.724
0.108 0.046 0.211 0.012

Table 2. Runtime comparison
method chess sofa cabinets office
SIFT 421.95s 220.87s 585.80s 227.35s
LiFF 86.29s 55.52s 97.01s 26.40s
Ours 62.93s 32.33s 82.72s 34.18s

4.2. Computational complexity
Tab. 2 gives a runtime comparison. The runtime of the pro-
posed feature matching pipeline includes three parts: time of
SDIS construction, feature detection and description and fea-
ture matching. Assuming a 4D LF (x, y, u, v) is decomposed
into SDIS as Ψ(x, y, k, σ), except for the time of SDIS con-
struction, the computational complexity of FDL-HSIFT will
be theoretically decreased (u×v)/(k×σ) times than repeated
SIFT. The computational complexity of FDL-HSIFT is lower
than LiFF in most of cases. One reason is the compact rep-
resentation of FDL with a lower number of layers compared
to images in a focal stack, as used by the LiFF feature de-
tector, making our algorithm more suitable for high angular
resolution LFs.

5. CONCLUSION

In this paper, we propose a FDL-HSIFT feature detection and
matching algorithm in LF scale-disparity spaces. To perform
a quantitative analysis, we have created with Blender pairs
of synthetic LF datasets, with ground truth matches. Exper-
imental results show that the proposed algorithm has better
precision and lower computational complexity compared to
the state-of-the-art LiFF feature detector. Future work will
be dedicated to analysis and optimization of FDL-HSIFT on
real-world LFs, e.g. in presence of noise and distortion.
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