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Many computer vision applications rely on feature matching, hence the need for computationally efficient and robust 4D light field (LF) feature detectors and descriptors for applications using this imaging modality. In this paper, we propose a novel LF feature extraction method in the scale-disparity space, based on a Fourier disparity layer representation. The proposed feature extraction takes advantage of both the Harris feature detector and SIFT descriptor, and is shown to yield more accurate feature matching, compared with the LiFF light field feature with low computational complexity. In order to evaluate the feature matching performance with the proposed descriptor, we generated synthetic LF datasets with ground truth matching points. Experimental results with synthetic and real datasets show that, our solution outperforms existing methods in terms of both feature detection robustness and feature matching accuracy.

INTRODUCTION

In the past decades, 2D feature detectors such as SIFT [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF], SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF], FAST [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], and ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF] has been instrumental in many computer vision applications with 2D images, such as structure-from-motion, 3D reconstruction, object tracking, or scene recognition. However, 2D image feature detection and matching can be significantly affected by occlusions, scale and illumination changes, and non-Lambertian reflections. It has been shown in [START_REF] Gupta | Perceptual organization and recognition of indoor scenes from rgb-d images[END_REF] that 3D feature detection from RGB-D images can be more robust than 2D feature detection.

Light fields, unlike 2D imaging and RGB-D images, by recording the flow of rays emitted by the scene along different directions, yield a 4D spatio-angular representation of the scene, from which one can extract information about the parallax and depth of the scene. 4D LF features therefore hold promises to solve limitations of 2D image features in presence of occlusions, illumination changes and non Lambertian scenes. This is investigated in [START_REF] Ghasemi | Scale-invariant representation of light field images for object recognition and tracking[END_REF] and [START_REF] Tošić | 3d keypoint detection by light field scale-depth space analysis[END_REF] where the authors exploit depth information in the LF to build scale-depth descriptors. Another category of approaches builds upon 2D descriptors, by computing 2D detectors on the different subaperture images, and then imposing angular consistency using epipolar geometry [START_REF] Abecasis Teixeira | Epipolar based light field key-location detector[END_REF], [START_REF] Johannsen | On linear structure from motion for light field cameras[END_REF] or using optical flows [START_REF] Maeno | Light field distortion feature for transparent object recognition[END_REF], [START_REF] Xu | Transcut: Transparent object segmentation from a light-field image[END_REF]. The authors in [START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF] instead simultaneously consider all subaperture images and extend the SIFT descriptor to 4D LF by searching for features in a joint 4D scale-slope space, i.e. in the scale space as SIFT but at different depths, or slopes of structures in epipolar plane images.

Despite the above work, defining robust and computationally efficient 4D LF feature extractors and descriptors is still a widely open problem. One question inherent to the LiFF descriptor is the discretization of the depth space, which has obvious implications on computational complexity. The depth space discretization corresponds to a list of slopes, a higher number of slopes giving a better performance, but a higher computational complexity. The optimal list of slopes is not easy to determine. The authors recommend using as many slopes as there are samples in the LF angular dimension.

In this paper, we propose a novel 4D LF feature, called FDL-HSIFT feature, based on the Harris detector and SIFT descriptor computed on the Fourier disparity layer representation [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF]. The FDL is a compact representation which samples the LF in the depth (or equivalently the disparity) dimension by decomposing the scene as a discrete sum of layers. The layers, and their corresponding disparity values, are automatically found, from a subset of LF views, using regularized least square regression performed in the Fourier domain, independently at each spatial frequency. The proposed feature is therefore defined in the 4D LF scale-disparity space, the disparity being discretized thanks the FDL construction. The representation being compact, it leads to a reduced computational complexity without loosing in terms of performance.

In summary, the contributions of the paper are as follows

• We introduce a FDL based scale-disparity space (FDL-SDIS), which benefits potential LF feature extraction.

• By combining the Harris detector and the SIFT descriptor, we propose a novel FDL-HSIFT blob feature in the FDL based scale-disparity space.

• We also created a synthetic dataset using blender which gives ground truth matches, in order to evaluate the proposed feature descriptor. 

RELATED WORK

Image and LF based features extraction

Image feature detection refers to the problem of identifying and localizing interest points, blobs and regions. Classical 2D image feature detectors such as [START_REF] Christopher G Harris | A combined corner and edge detector[END_REF], or SUSAN [START_REF] Stephen | Susan: new approach to low level image processing[END_REF], SIFT [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF], FAST [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF] and ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF] feature detectors have been widely employed in many computer vision application. These feature detectors are mainly based on specific image gradient distributions, which have local or global invariance to possible image translation, rotation, or to scale or affine transformation.

In parallel, in the past two decades, many acquisition devices have been designed to capture LF, ranging from camera arrays, [START_REF] Wilburn | High performance imaging using large camera arrays[END_REF], to single cameras mounted on moving gantries, and plenoptic cameras [START_REF] Ng | Light field photography with a hand-held plenoptic camera[END_REF]. Overviews of these devices can be found in [START_REF] Wu | Light field image processing: An overview[END_REF] and [START_REF] Ihrke | Principles of light field imaging: Briefly revisiting 25 years of research[END_REF]. Several LF feature detectors and descriptors have been introduced in the literature [START_REF] Tošić | 3d keypoint detection by light field scale-depth space analysis[END_REF][START_REF] Abecasis Teixeira | Epipolar based light field key-location detector[END_REF][START_REF] Tsai | Distinguishing refracted features using light field cameras with application to structure from motion[END_REF][START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF]. Tosic and Berkner [START_REF] Tošić | 3d keypoint detection by light field scale-depth space analysis[END_REF] proposed to detect edge keypoints in the LF scale-depth (Lisad) space, constructed using a modified Gaussian kernel, and parameterized both in the object scale and depth. The authors in [START_REF] Abecasis Teixeira | Epipolar based light field key-location detector[END_REF] use epipolar geometry to impose angular consistency between 2D descriptors computed in the different sub-aperture images, while the authors in [START_REF] Maeno | Light field distortion feature for transparent object recognition[END_REF], [START_REF] Xu | Transcut: Transparent object segmentation from a light-field image[END_REF] instead use optical flows. These methods based on 2D features computed on the different sub-aperture images suffer from the limitations of 2D feature descriptors. Tsai et al. [START_REF] Tsai | Distinguishing refracted features using light field cameras with application to structure from motion[END_REF] instead propose a method to distinguish between refracted and Lambertian image features using a LF camera, based on textural cross-correlation to characterise apparent feature motion across the LF. The authors in [START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF] extend the SIFT descriptor to 4D LF to detect blob features in a joint 4D scale-slope space, i.e. in the scale space as SIFT but at different depths corresponding to slopes of structures in epipolar plane images. The method yields more precise feature matching in the context of structure from motion (SfM).

Light field representation

Let us consider the 4D LF representation proposed in [START_REF] Levoy | Light field rendering[END_REF] and [START_REF] Steven J Gortler | The lumigraph[END_REF] describing the radiance along rays by a function LF (x, y, u, v), and based on a parameterization of orientations of light rays with two parallel planes. The pairs (x, y) and (u, v) represent the spatial and angular coordinates of light rays respectively.

By applying spatial or frequency refocusing [START_REF] Ng | Fourier slice photography[END_REF], a LF can be represented by a sequence of images refocused at different depth planes, called focal stack. The 3D focal stack can also be inversely converted to a 4D representation (Subaperture images, SAIs), e.g. using the focal stack based deconvolution [START_REF] Levin | Linear view synthesis using a dimensionality gap light field prior[END_REF] [25], or recovering from the Fourier domain [START_REF] Perez | Light field recovery from its focal stack[END_REF]. The LF can be instead represented by a set of layers, each one corresponding to a different disparity value [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF], and computed using a fast disparity regularized least square regression in frequency domain.

For simplicity of notation, let us consider only one 2D slice of the light field with only one spatial and one angular dimension. The Fourier transform of the light field can be computed as [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF] 

L(w x , w u ) = k δ(w u -d k w x ) Lk (w x ) (1) 
where w x and w u are spatial and angular frequency terms. δ(w u -d k w x ) is a dirac function, which simulates the aperture function with infinitely small aperture size. Each function Lk can be derived as,

Lk (w x ) = Ω k e -2iπxwx L(x, 0)dx (2) 
and interpreted as the Fourier transform of the central view L(x, 0) only considering a spatial region Ω k of disparity d k , hence the name Fourier Disparity Layers (FDL). More generally, the Fourier Transform Lu0 of L u0 (a LF view at angular coordinate u 0 defined by L u0 (x) = L(x, u 0 )), given a set of n disparity values {d k } k∈ [1,n] , can be decomposed as [START_REF] Pendu | A fourier disparity layer representation for light fields[END_REF] Lu0

(ω x ) = k e +2iπu0d k ωx Lk (ω x ). (3) 
The FDL representation is therefore composed of the set of layers {L k (x)} (for a 2D slice) which can be derived from the inverse Fourier transform of Lk (w x ).

The FDL construction is done using linear regression which automatically finds the correct discretization in the depth or disparity space, leading to a more compact representation, compared to a focal stack, that has been shown efficient for various processing applications, e.g. rendering, view synthesis or varying aperture size and shape.

THE PROPOSED FDL-HSIFT FEATURE

FDL based scale-disparity space

We consider the FDL representation with the 4D notation, i.e. the set of layers {L k (x, y)} derived from the inverse Fourier transform of Lk (w x , w y ), for feature extraction. The different layers define a discretization of the disparity space. To make the proposed feature robust to scale variance, by using a Gaussian kernel based scale transformation, the scaledisparity space (SDIS) is thus defined by the set of layers

Ψ k,σ (x, y) = L k (x, y, σ) = L k (x, y) ⊗ G(x, y, d k , σ) (4)
where G(σ) is a Gaussian kernel associated with disparity d k . We construct the representation Ψ k,σ (x, y) in the SDIS for each given input LF, number k of disparity layers and scale factor σ.

FDL-HSIFT Feature detection and matching

To detect a FDL-HSIFT feature, we first use a Harris detector in the SDIS representation. A displacement (∆x, ∆y) in the spatial dimension of the SDIS can be represented as,

Ψ k,σ (∆x, ∆y) = x,y η(x, y)[Ψ k,σ (x + ∆x, y + ∆x) -Ψ k,σ (x, y)] 2 (5) 
where η(x, y) is a window function. By applying the Taylor expansion to Equation 5, the displacement is derived as, Ψ k,σ (∆x, ∆y) =

x,y [Ψ x ∆x, Ψ y ∆y] 2 = [∆x, ∆y]M ∆x ∆y (6) where Ψ x and Ψ y are 1st-order partial derivatives of Ψ in the x and y directions respectively. The matrix M is the Harris matrix or structure tensor defined as

M = x,y η(x, y) Ψ 2 x Ψ x Ψ y Ψ x Ψ y Ψ 2 y (7) 
To detect corner points, edges or flat areas, we compute the response R(x, y) of the Harris detector at each pixel of coordinates (x, y) as in [START_REF] Christopher G Harris | A combined corner and edge detector[END_REF] 

R(x, y) = det(M ) -λ • (trace(M )) 2 ( 8 
)
where λ is the empirical coefficient within [0.04, 0.06], and then simply select the top percentages of maximum response.

To represent the detected feature blobs, we employ a SIFT-like description in the SDIS space. For a given image blob with center (x, y), we compute a histogram of gradient orientations for every Ψ (k,σ) (•). The histogram has 8 bins covering the 360 degree. Then, the highest peak is selected as the major direction, which, as in SIFT, preserves invariance to rotation. The gradient magnitude m(x, y) and orientation θ(x, y) are computed as m(x, y) = (Dx) 2 + (Dy) 2 θ(x, y) = arctan Dy Dx [START_REF] Johannsen | On linear structure from motion for light field cameras[END_REF] in which,

Dx = Ψ k,σ (x + 1, y) -Ψ k,σ (x -1, y) Dy = Ψ k,σ (x, y + 1) -Ψ k,σ (x, y -1) (10) 
For a single Ψ (k,σ) , the 128D descriptor f (Ψ (k,σ) ) consists of 16 blocks (4 × 4 ) with 8 directions in each. In this way, we extract the FDL-HSIFT descriptor F (x, y) from a 16 × 16 neighborhood. F (x, y) can be represented by 

F (x, y) = {f |f (Ψ (k,σ) ), (k, σ) ∈ SDIS} (11 
for each pixel Q n = {(x, y)|(x, y) ∈ Ψ (k,σ) n (x, y)} do 4:
apply the Harris corner detector using Equation 8;

5: descriptor f n (Ψ (k,σ) n (x, y)) is computed as f n (Ψ (k,σ) n (x, y)) SIF T ←-Ψ (k,σ) n (x, y) as in [1]; 6:
compute the curvature ratio r by calculating Equation ( 12) between the features f 1 and f 2 at feature points p ∈ Q 1 and p 2 ∈ Q 2 in the two LFs output [p 1 , p 2 ] as matching between LF 1 and LF 2 .

9:

end if 10: end for When applying FDL-HSIFT feature matching, we use a cosine based metric for measuring the distance < f 1 (p), f 2 (q) > between two feature vectors at two pixel positions in LF 1 and LF 2 respectively. The variables p and q denote the candidate matching coordinates in the two different LFs.

dist(p, q) = max (k1,σ1),(k2,σ2) (cos(f k1,σ1 1 (p), f k2,σ2 2 (q))),
where

f 1 ∈ F 1 , f 2 ∈ F 2 (12) 
In this paper, we take the final matching decision by using a principal curvature ratio r = dist(p, q max )/dist(p, q 2nd ). It is a positive matching only when r < 0.6, which means the distance p to the nearest point q max is obvious less than the distance p to the second nearest point q 2nd . We summarize the FDL-HSIFT feature detection and matching algorithm in Algorithm 1. In the experiments, we set the number of FDL layers k = 9 and use 4 scale levels (σ = 1.6). These parameter settings may need to be adjusted for complex scene with large disparities.

EXPERIMENTS

Given that no LF dataset is available with feature matching ground truth, the authors in [START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF] evaluate their LiFF feature 

Feature detection and matching

First, we evaluate the detecting and matching performance of the proposed FDL-HSIFT, in comparison with the classical SIFT [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF] and LiFF [START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF] descriptors. Since pixel-wise matching ground truth is available, we calculate both the precision and recall on the created synthetic LF datasets. The proposed FDL-HSIFT detection and matching outperforms the state-ofthe-art LiFF feature (see Tab.1). Then, we conducted the same comparative assessment with real-world LF datasets. The results can be seen in Fig. 2. Given that, in this case, the matching ground truth is not known, we check correct matches as in [START_REF] Donald G Dansereau | Liff: Light field features in scale and depth[END_REF]. But depth estimation may not be very precise for every pixel. For this reason, we set the matching error tolerance to 20 pixels, which is the distance between the computed and the theoretical positions. As shown in Tab.1, our algorithm finds more feature blobs, and is also better in terms of precision. 

Computational complexity

Tab. 2 gives a runtime comparison. The runtime of the proposed feature matching pipeline includes three parts: time of SDIS construction, feature detection and description and feature matching. Assuming a 4D LF (x, y, u, v) is decomposed into SDIS as Ψ(x, y, k, σ), except for the time of SDIS construction, the computational complexity of FDL-HSIFT will be theoretically decreased (u×v)/(k×σ) times than repeated SIFT. The computational complexity of FDL-HSIFT is lower than LiFF in most of cases. One reason is the compact representation of FDL with a lower number of layers compared to images in a focal stack, as used by the LiFF feature detector, making our algorithm more suitable for high angular resolution LFs.

CONCLUSION

In this paper, we propose a FDL-HSIFT feature detection and matching algorithm in LF scale-disparity spaces. To perform a quantitative analysis, we have created with Blender pairs of synthetic LF datasets, with ground truth matches. Experimental results show that the proposed algorithm has better precision and lower computational complexity compared to the state-of-the-art LiFF feature detector. Future work will be dedicated to analysis and optimization of FDL-HSIFT on real-world LFs, e.g. in presence of noise and distortion.

Fig. 1 .

 1 Fig. 1. Overview of FDL-HSIFT feature matching.

Fig. 2 .

 2 Fig. 2. Feature detection and matching results with different datasets. (a), (b) and (c) are results on real LFs; (d) is the result on synthetic LFs. For each dataset, the first two columns show detection results, the third columns is matching results. The circle size and color denote the scale and disparity of detected features.

Fig. 3 .

 3 Fig. 3. Example of Blender LF matching dataset. (a) Central views of two LFs, with translation and rotation between the two; (b) Corresponding depth maps of (a); (c) Matching binary masks (black means that a matching point does not exist); (d) Pixel-wise matching ground truth of two LFs.

)

  Algorithm 1 FDL-HSIFT matching algorithm Input: LF 1 , LF 2 . Output: Matching point set (p 1 , p 2 )|p 1 ∈ Q 1 , P 2 ∈ Q 2 . 1: Construct the FDL of each LF (LF 1 and LF 2 ) by inverse Fourier transform of Equation (2); 2: Construct the SDIS Ψ

	(k,σ) n	(x, y) for each LF indexed by
	n (n = 1, 2) by Equation(4);

3:

Table 1 .

 1 Comparison of feature matching on synthetic LFs (total matches, precision, recall in each grid)

	method chess	sofa cabinets office
		38	68	247	9
	SIFT	0.868 0.956	0.984	0.556
		0.022 0.025	0.140	0.003
		121	169	178	51
	LiFF	0.876 0.959	0.803	0.490
		0.070 0.062	0.082	0.014
		171	121	393	29
	Ours	0.953 0.992	0.97	0.724
		0.108 0.046	0.211	0.012

Table 2 .

 2 Runtime

				comparison	
	method	chess	sofa	cabinets	office
	SIFT	421.95s 220.87s 585.80s 227.35s
	LiFF	86.29s	55.52s	97.01s	26.40s
	Ours	62.93s	32.33s	82.72s	34.18s
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