
HAL Id: hal-03233502
https://hal.science/hal-03233502

Preprint submitted on 24 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lyapunov-Krasovskii characterization of the
input-to-state stability for switching retarded systems

Ihab I. Haidar, Pierdomenico Pepe

To cite this version:
Ihab I. Haidar, Pierdomenico Pepe. Lyapunov-Krasovskii characterization of the input-to-state sta-
bility for switching retarded systems. 2021. �hal-03233502�

https://hal.science/hal-03233502
https://hal.archives-ouvertes.fr


Lyapunov–Krasovskii characterization of the input-to-state stability
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Abstract

In this paper we characterize various stability notions of nonlinear switching retarded systems by the
existence of a common Lyapunov–Krasovskii functional with suitable conditions. We consider a general
class of Lebesgue measurable switching signals. We provide an equivalence property showing that uniform
input-to-state stability can be equivalently studied through the class of piecewise-constant inputs and
piecewise-constant switching signals. Thanks to this equivalence property, we rely on what it is developed
in the literature to provide direct and converse theorems for uniform input-to-state, asymptotic and
exponential stability. Based on these results, we give a first order approximation theorem for nonlinear
switching retarded systems. A link between the exponential stability of an unforced switching retarded
system and the input-to-state stability property, in the case of measurable switching signals, is obtained.
Examples showing the applicability of our results are also given.

Keywords: Input-to-state stability; Converse theorems; Lyapunov–Krasovskii functionals; retarded func-
tional differential equations; switching systems.

1 Introduction

Many complex systems encountered in practice result from switching phenomenon between different indi-
vidual subsystems [3]. Mathematically, a switched system can be defined by an indexed family of dynamical
subsystems and a rule that orchestrates the switching between them. The problem of stability and stabiliz-
ability of such class of systems has motivated an interesting branch in the literature of control theory (see,
e.g., [1, 2, 22, 23, 28, 42, 43, 46] and references therein). It is well known that the existence of a Lyapunov
function which is independent on the switching index with some uniform dissipation property along the tra-
jectories of each individual subsystem, called common Lyapunov function, consists of a sufficient condition
for various stability notions. The necessity question about the existence of a common Lyapunov function for
switching systems which are uniformly stable has attracted much attention in the literature of control theory.
Converse Lyapunov theorems for the global asymptotic stability of switching systems have been developed
in [3, 26, 44] for finite-dimensional systems, in [10, 15, 31] for infinite-dimensional systems, and in [11, 12, 13]
for switching retarded systems. These theorems are also a key for characterizing another important stability
notion called input-to-state stability (ISS), which is introduced by E. Sontag in [39]. Indeed, the well known
approach introduced in [40] for ordinary differential equations, characterizing the ISS by some robust global
asymptotic stability, allows to use the converse theorems developed for global asymptotic stability in order
to prove the existence of a Lyapunov function for systems which are ISS. This approach is further used for
switching ordinary differential systems [25], as well as for retarded and neutral functional differential systems
without switch [19, 38].
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In this paper we consider a general class of switching retarded systems with measurable switching signal.
Inspired by what is developed in [11], we start by proving that the ISS property (as well as the asymptotic
and exponential stability) of switching retarded systems can be equivalently studied through the class of
piecewise-constant inputs and piecewise-constant switching signals. More precisely, we show that a switching
retarded system is uniformly ISS (uniformity is meant here with respect to the switching signal) if and only
if this property holds for all piecewise-constant inputs and piecewise-constant switching signals. At the best
of the authors’ knowledge, this equivalence property has not been explored in the literature of input-to-state
stability, not even for finite-dimensional non-switching systems. Different important points arise from this
equivalence property. For example, an important point concerns the problem of the absolute continuity
of Lyapunov–Krasovskii functionals. In fact, when dealing with a retarded system, the map describing
the evolution of the state is simply continuous with respect to time (see, e.g., [14, Lemma 2.1]). Thus a
continuous, or even Lipschitz on bounded sets, Lyapunov–Krasovskii functional evaluated on the solutions
of such a system will be in general continuous and not absolutely continuous with respect to time. By
consequence, when we deal with a retarded equation which holds almost everywhere (this is, for example, the
case of systems with Lebesgue measurable inputs), the nonpositivity, almost everywhere, of the upper right-
hand Dini derivative of a Lyapunov–Krasovskii functional is not sufficient to conclude about its monotonicity.
Different solutions have been proposed in the literature in order to overcome this problem (see, e.g., [17, 35]).
For example, in [35], one proves that this problem can be overcome by restricting the class of initial states
to continuously differentiable ones; this does not yield any loss of generality because, as it is shown in the
same paper, the ISS property holds with continuous initial states if and only if it holds with continuously
differentiable ones. Here, thanks to our equivalence property, this problem can be overcome differently by
restricting the class of inputs and switching signals to the class of piecewise-constant ones. Indeed, in this
case, the nonpositivity of the upper right-hand Dini derivative of a Lyapunov–Krasovskii functional evaluated
on the solutions of a switching retarded system will hold everywhere instead of almost everywhere permitting
to conclude about the monotonicity question (see [9]). By the virtue of this equivalence property, we further
generalize what is recently developed in [13] concerning uniform asymptotic and exponential stability of
switching retarded systems with piecewise-continuous switching signals to the case of measurable switching
ones. Also, based on the same approach used in [19, 38, 40], we provide, thanks to the converse theorems
developed in [13], a characterization of the ISS property of switching retarded systems through the existence
of a Lyapunov–Krasovskii functional with suitable conditions.

Thanks to these theorems, a link between the exponential stability of an unforced switching retarded
system and the input-to-state stability, in the case of Lebesgue measurable switching signals, is given, thus
extending what is recently developed in [13] in the case of piecewise-constant switching signals. We also
extend the very well known first order approximation theorem (see, e.g. [20, 21]) to nonlinear switching
retarded systems. More precisely, we show that a nonlinear switched retarded system is uniformly locally
exponentially stable if and only if its linearized one is uniformly globally exponentially stable, provided that,
for each mode, the nonlinear map describing the related dynamics is Fréchet differentiable at the origin. This
theorem is very useful in practice. In fact, the local stability analysis of a nonlinear switching retarded system
can be then reduced to the stability analysis of a switching linear one, for which many useful methods exist
in the literature (see, e.g., [27, 45]). The theorems developed in this paper are also applicable to nonlinear
systems with uncertain Lebesgue measurable time-delays. These results further generalize previous ones in
the literature concerning retarded systems with time-varying delays assumed piecewise continuous (see [17]).

The paper is organized as follows. Section 2 presents the notation, definitions and assumptions in use.
The statements of our main results are presented in Section 3. The link between exponential stability and
input-to-state stability, and the first order approximation theorem are given in Sections 4 and 5, respectively.
Two examples describing the applicability of our results are shown in Section 6. All the proofs are postponed
to the appendix.

2 Switching retarded systems

In this section we list the notation, definitions, and the main assumptions in use.
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2.1 Notation

Throughout the paper, we adopt the following notation: R denotes the set of real numbers, R+ the set
of non-negative real numbers, and R the extended real line. By (Rn, ‖ · ‖) we denote the n-dimensional
Euclidean space, where n is a positive integer and ‖ · ‖ is the Euclidean norm. Given r > 0, B(0, r) denotes
the closed ball of (Rn, ‖ · ‖) of center 0 and radius r. The length of an interval I ⊂ R is denoted by |I|. By
1I we denote the indicator function of a nonempty subset I of R.

Given ∆ > 0, C = (C([−∆, 0],Rn), ‖ · ‖∞) denotes the Banach space of continuous functions mapping
[−∆, 0] into Rn, where ‖ · ‖∞ is the norm of uniform convergence. For a function x : [−∆, b) → Rn, with
0 < b ≤ +∞, for t ∈ [0, b), xt : [−∆, 0] → Rn denotes the history function defined by xt(θ) = x(t + θ),
−∆ ≤ θ ≤ 0. For a positive real H and given φ ∈ C, CH(φ) denotes the subset {ψ ∈ C : ‖φ − ψ‖∞ ≤ H}.
We simply denote CH(0) by CH .

A measurable function u : R+ → Rm, m positive integer, is said to be essentially bounded if ess supt≥0 |u(t)| <
+∞. We use the symbol ‖ · ‖∞ to indicate the essential supremum norm of an essentially bounded function.
For given times 0 ≤ t1 < t2, u[t1,t2) : R+ → Rm indicates the function given by u[t1,t2) = u(t)1[t1,t2)(t) for
t ≥ 0. A function u : R+ → Rm is said to be locally essentially bounded if, for any t > 0, u[0,t) is essentially
bounded.

A function α : R+ → R+ is said to be of class K if it is continuous, strictly increasing and γ(0) = 0; it is
said to be of class K∞ if it is of class K and unbounded. A continuous function β : R+×R+ → R+ is said to
be of class KL if β(·, t) is of class K for each t ≥ 0 and, for each s ≥ 0, β(s, ·) is nonincreasing and converges
to zero as t tends to +∞.

With the symbol ‖·‖a we indicate any semi-norm in C([−∆, 0],Rn) such that, for some positive constants
γa and γa, the following inequalities hold:

γa|φ(0)| ≤ ‖φ‖a ≤ γa‖φ‖∞, ∀φ ∈ C([−∆, 0],Rn).

The symbol ◦ denotes composition of functions and the symbol ⊗ denotes the Kronecker product of
matrices. By co(E) we denote the convex hull of a nonempty subset E of Rn.

2.2 Definitions and assumptions

Let us consider the switching control system described by the following retarded functional differential
equation

Σ :
ẋ(t) = fσ(t)(xt, u(t)), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

where: x(t) ∈ Rn; n is a positive integer; ∆ is a positive real (the maximum involved time delay); x0 ∈ C
is the initial state; the function σ : R+ → S is the switching signal; S is a nonempty set; u : R+ → Rm, m
positive integer, is a Lebesgue measurable locally essentially bounded input signal.

We introduce the following two assumptions:

Assumption 1. For each s ∈ S, fs(0, 0) = 0. Moreover, fs(·, ·) is uniformly (with respect to s ∈ S) Lipschitz
on bounded subsets of C × Rm, i.e., for any H > 0 there exists LH > 0 such that for every ϕ,ψ ∈ CH and
u, v ∈ B(0, H), the following inequality holds

|fs(ϕ, u)− fs(ψ, v)| ≤ LH (‖ϕ− ψ‖∞ + |u− v|) , ∀s ∈ S.

We denote by U the set of Lebesgue measurable locally essentially bounded inputs from R+ to Rm and
by UPC the subset of right-continuous piecewise-constant ones. We denote also by S the set of measurable
signals σ : R+ → S and by SPC the subset of right-continuous piecewise-constant ones.

Assumption 2. For each φ ∈ C, σ ∈ S and u ∈ U , the function t 7→ fσ(t)(φ, u(t)), t ∈ R+, is Lebesgue
measurable.

3



Under Assumption 1 and Assumption 2, the existence and uniqueness of a solution for system Σ as well
as its continuous dependence on the initial state is guaranteed by the theory of systems described by retarded
functional differential equations (see, e.g., [14, 21]). This can be reformulated by the following lemma.

Lemma 3. For any φ ∈ C, u ∈ U and σ ∈ S, there exists, uniquely, a locally absolutely continuous solution
x(t, φ, u, σ) of Σ in a maximal time interval [0, b), with 0 < b ≤ +∞. If b < +∞, then the solution is
unbounded in [0, b). Moreover, for any ε > 0, for any c ∈ (0, b), there exists δ > 0 such that, for any
ψ ∈ Cδ(φ), the solution x(t, ψ, u, σ) exists in [0, c] and, furthermore, the following inequality holds

|x(t, φ, u, σ)− x(t, ψ, u, σ)| ≤ ε, ∀ t ∈ [0, c].

We give in the following the different definitions of uniform exponential, asymptotic and input-to-state
stability of system Σ. The uniformity here is with respect to the switching signals σ.

Definition 4. We say that system Σ, with u(t) ≡ 0, is M-0-GAS (PC-0-GAS, respectively), if there exist a
function β ∈ KL such that, for any x0 ∈ C and σ ∈ S (SPC, respectively), the corresponding solution exists
in R+ and, furthermore, satisfies the inequality

|x(t, x0, σ)| ≤ β(‖x0‖∞, t), ∀ t ≥ 0.

Definition 5. We say that system Σ, with u(t) ≡ 0, is M-0-GES (PC-0-GES, respectively), if there exist
positive reals M and λ such that, for any x0 ∈ C and σ ∈ S (SPC, respectively), the corresponding solution
exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, σ)| ≤Me−λt‖x0‖∞, ∀ t ≥ 0.

Definition 6. We say that system Σ, with u(t) ≡ 0, is M-0-LES (PC-0-LES, respectively), if there exist
positive reals M , λ and H such that, for any x0 ∈ CH and σ ∈ S (SPC, respectively), the corresponding
solution exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, σ)| ≤Me−λt‖x0‖∞, ∀ t ≥ 0.

Definition 7. We say that system Σ is M-ISS (PC-ISS, respectively), if there exist a function β ∈ KL and
a class K function γ such that, for any x0 ∈ C, u ∈ U (UPC, respectively) and σ ∈ S (SPC, respectively), the
corresponding solution exists in R+ and, furthermore, satisfies the inequality

|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t) + γ(‖u[0,t)‖∞), ∀ t ≥ 0.

Let us also recall the following definition about Driver’s form derivative of a continuous functional V :
C → R+. This definition is a variation of the one given in [5, 34, 36] for retarded functional differential
equations without switching.

Definition 8. For a continuous functional V : C → R+, its Driver’s form derivative, D+V : C × Rm → R,
is defined, for the switching system Σ, for φ ∈ C and u ∈ Rm, as follows,

D+V (φ, u) = sup
s∈S

lim sup
h→0+

V
(
φΣ,s
h,u

)
− V (φ)

h
,

where φΣ,s
h,u ∈ C is defined, for h ∈ [0,∆) and θ ∈ [−∆, 0], as follows

φΣ,s
h,u(θ) =

{
φ(θ + h), θ ∈ [−∆,−h)
φ(0) + (θ + h)fs(φ, u), θ ∈ [−h, 0].
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3 Main results

3.1 Input-to-state stability characterization theorems

In this section we give two different characterizations of the input-to-state stability property of system Σ.
The first one is based on the following theorem which shows that this property can be equivalently studied
through the class of piecewise-constant inputs and piecewise-constant switching signals.

Theorem 9. System Σ is M-ISS if and only if it is PC-ISS.

At the best of the authors’ knowledge, the result stated by Theorem 9 has not been explored in the
literature related to the property of input-to-state stability, not even in the framework of non-switching
finite-dimensional systems. The proof of Theorem 9 is given in Appendix A.

The second characterization of the input-to-state stability property of system Σ is given through the exis-
tence of a common Lyapunov–Krasovskii functional. This theorem is in the spirit of the converse Lyapunov–
Krasovskii theorems developed in [18, 19, 38] for systems described by retarded and neutral functional
differential equations.

Theorem 10. System Σ is M-ISS if and only if there exist a functional V : C → R+, Lipschitz on bounded
subsets of C, functions α1, α2, α3 ∈ K∞, and α4 ∈ K such that the following inequalities hold:

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a), ∀ϕ ∈ C,

(ii) D+V (φ, u) ≤ −α3(‖φ‖a) + α4(|u|), ∀ϕ ∈ C,∀u ∈ Rm.

The proof of Theorem 10 is based on the approach introduced in [41] in the case of non-switching finite-
dimensional systems. The proof is given in Apendix B.

3.2 Asymptotic and exponential stability characterization theorems

The following theorems provide necessary and sufficient conditions for the asymptotic and exponential sta-
bility properties of system Σ. The result is given through the existence of a common Lyapunov–Krasovskii
functional. These theorems are in the spirit of the converse Lyapunov–Krasovskii theorems developed in
[17, 18, 19, 37] for systems described by nonlinear retarded and neutral functional differential equations, and
in [13] for switching retarded functional differential equations with piecewise-constant switching signals.

Theorem 11. System Σ is M-0-GAS if and only if there exist a functional V : C → R+, Lipschitz on
bounded subsets of C, and functions α1, α2 ∈ K∞, α3 ∈ K such that the following inequalities hold for any
φ ∈ C

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖∞),

(ii) D+V (φ) ≤ −α3(|φ(0)|).
Theorem 12. System Σ is M-0-GES if and only if there exist a functional V : C → R+, Lipschitz on
bounded subsets of C, and positive reals α1, α2, α3 and p, such that the following inequalities hold for any
φ ∈ C

(i) α1‖φ‖p∞ ≤ V (φ) ≤ α2‖φ‖p∞,

(ii) D+V (φ) ≤ −α3‖φ‖p∞.
The following theorem gives necessary and sufficient conditions for the M-0-LES property of system Σ.

Theorem 13. System Σ is M-0-LES if and only if there exist positive reals H, p, α1, α2, α3 and Lipschitz
functional V : CH → R+, such that the following inequalities hold for any φ ∈ CH

(i) α1‖φ‖p∞ ≤ V (φ) ≤ α2‖φ‖p∞,

(ii) D+V (φ) ≤ −α3‖φ‖p∞.

The proofs of Theorem 11, Theorem 12 and Theorem 13 are given in Appendix C.
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4 A link between exponential stability and input-to-state stability

We have the following theorem (inspired by [13, 47]).

Theorem 14. Let system Σ be PC-0-GES. If there exist positive reals L and l and a nonnegative real p < 1
such that:

1) ∀φ, ψ ∈ C,∀u ∈ Rm,∀ s ∈ S, the following inequality holds

|fs(φ, u)− fs(ψ, u)| ≤ L‖φ− ψ‖∞; (1)

2) ∀φ ∈ C,∀u ∈ Rm,∀ s ∈ S, the following inequality holds

|fs(φ, u)− fs(φ, 0)| ≤ lmax{‖φ‖p∞, 1}|u|; (2)

then system Σ is M-ISS.

The proof of Theorem 14 is given in Appendix D. Notice that the hypothesis of this theorem concerns
piecewise-constant switching signals, and the result concerns Lebesgue measurable switching signals. This
theorem is therefore an extension of the result provided in [13].

5 Stability by first order approximation

While Theorem 13 characterizes the M-0-LES property of the nonlinear switching system Σ through the
existence of a common Lyapunov–Krasovskii functional, the following theorem uses its first-order approxi-
mation. In addition to Assumption 1 and 2, this theorem requires that the maps fs are Fréchet differentiable
at 0, for each s ∈ S.

Definition 15. A functional f : C → Rn is said to be Fréchet differentiable at φ ∈ C if there exists a bounded
linear operator L(φ) : C → Rn (the Fréchet derivative at φ) such that

lim
ψ→0,ψ 6=0

|f(φ+ ψ)− f(φ)− L(φ)ψ|
‖ψ‖∞

= 0.

Theorem 16. Let, for s ∈ S, the map fs be Fréchet differentiable at 0, and let Ls be the Fréchet derivative
at 0. Suppose that Ls is uniformly (with respect to s ∈ S) bounded, i.e., there exists m > 0, such that

|Lsφ| ≤ m‖φ‖∞, ∀φ ∈ C,∀ s ∈ S.

Then system Σ is M-0-LES if and only if the linear switching system

ΣL :
ξ̇(t) = Lσ(t)ξt, a.e. t ≥ 0,
ξ(θ) = ξ0(θ), θ ∈ [−∆, 0],

with ξ0 ∈ C, is PC-0-GES.

The proof of Theorem 16 is obtained by means of the equivalence between PC-0-GES and M-0-GES
properties, together with the developed converse Lyapunov–Krasovskii results. Theorem 16 is one of the
many significant cases which converse Lyapunov–Krasovskii theorems are useful for (see Section 6). The
proof is given in Appendix E.
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6 Illustrative examples

Example 17. Consider the following nonlinear uncertain time-varying retarded functional differential equa-
tion

ẋ(t) = f (τ(t), xt, u(t)) , a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

(3)

where: x(t) ∈ Rn; τ : R→ S are Lebesgue measurable time-delay functions; S ⊂ [0,∆]D, D positive integer,
∆ positive real (maximum involved time delay); u : R+ → Rm, m positive integer, is a Lebesgue measurable
locally essentially bounded input; f : S× C ×Rm → Rn is a continuous function such that f(s, 0, 0) = 0 and
f(s, ·, ·) is Lipschitz on bounded subsets of C × Rm uniformly with respect to s ∈ S.
For each s ∈ S, let, with a slight abuse of notation, fs : C × Rm → Rn be the function which is defined in
C × Rm as

fs(φ, v) = f(s, φ, v), φ ∈ C, v ∈ Rm.

So, system (3) can be equivalently rewritten as system Σ with σ ≡ τ . The existence and uniqueness of the
solution of system (3) is guaranteed by Assumption 1 and Assumption 2. Thanks to this equivalent switching
representation and thanks to Theorem 10, we have that system (3) is M-ISS if and only if there exist a
functional V : C → R+, Lipschitz on bounded subsets of C, and functions α1, α2, α3 ∈ K∞, and α4 ∈ K, such
that inequalities (i) and (ii) of Theorem 10 are satisfied. This result further generalizes previous ones in the
literature concerning retarded systems with time-varying delays assumed piecewise continuous (see [17]).

Example 18. Consider a system described by the following equation

ẋ(t) = Ax(t) +Bx(t− τ0) + C(τ1(t)) (x(t− τ2(t))⊗ x(t− τ3(t))) , a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

(4)

where: x(t) ∈ Rn; τ0 ∈ [0,∆]; τ1, τ2, τ3 : R+ → [0,∆] are measurable uncertain functions; A and B are n×n
real matrices; the matrix function C : [0,∆] → Rn×n2

is continuous. Let S = [0,∆]3 and let τ : R → S
be the measurable function, which is defined, for each t ∈ R+, by τ(t) = (τ1(t), τ2(t), τ3(t)). For each
s = (s1, s2, s3) ∈ S, let the function fs : C → Rn be defined, for φ ∈ C, as

fs(φ) = Aφ(0) +Bφ(−τ0) + C(s1) (φ(−s2)⊗ φ(−s3)) .

System (4) can be equivalently written as system Σ. Furthermore, Assumptions 1 and 2 are satisfied. Indeed,
Assumption 1 is a straightforward consequence of the fact that the matrix function C(·) is continuous. Con-
cerning Assumption 2, for each φ ∈ C, the function g : R+ → Rn defined, for t ∈ R+, as g(t) = fτ(t)(φ) is
clearly measurable. By Theorem 16, system (4) is M-0-LES if and only if the linear, time-invariant system
described by

ξ̇(t) = Aξ(t) +Bξ(t− τ0), t ≥ 0,
ξ(θ) = x0(θ), θ ∈ [−∆, 0],

(5)

is PC-0-GES. Thus, in order to study the M-0-LES property of system (4), we can refer to the linear
system (5). Many methods, such as the ones based on LMIs, are available in the literature which permit
to examine the exponential stability of systems like (5) (see, e.g., [6, 7, 8, 32], and references therein). If,
in the case of system (5), these LMIs are verified, then the M-0-LES property of system (4) follows from
Theorem 16. As well, eigenvalues based approaches (see [29]), or CTCR methods (see [33]) can be used for
establishing the exponential stability of (5), from which the M-0-LES property of system (4) follows from
Theorem 16.

Acknowledgements
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A Proof of Theorem 9

The proof is inspired from [11]. The proof of Σ is M-ISS implies that it is PC-ISS is obvious. Suppose now
that Σ is PC-ISS and let β and γ be the related KL and K functions. Let φ ∈ C, u ∈ U and σ ∈ S. Let
x(t, φ, u, σ) be the corresponding solution in a maximal interval [0, b), 0 < b ≤ +∞. We are going to prove,
using a contradiction reasoning, that

|x(t, φ, u, σ)| ≤ β(‖φ‖∞, t) + γ(‖u[0,t)‖∞), ∀ t ∈ [0, b). (6)

Recall that (see Lemma 3) inequality (6) implies b = +∞. Let us suppose the existence of 0 < ` < b such
that

|x(`, φ, u, σ)| > β(‖φ‖∞, `) + γ(‖u[0,`)‖∞). (7)

For k ≥ 1, consider the bounded function Ij 3 t 7→ fσ(t)(xj `k
, u(t)), and Ij =

[
(j − 1) `k , j

`
k

)
, 1 ≤ j ≤ k.

Let I =
{
t ∈ [0, `] : |u(t)| > ‖u[0,`]‖∞

}
and let u ∈ U be the function defined as u(t) = u(t)1[0,`]\I(t). We

remark that k
`

∫
Ij
fσ(τ)(xj `k

, u(τ))dτ = k
`

∫
Ij
fσ(τ)(xj `k

, u(τ))dτ is in the closure of the convex hull of (see,

e.g., [4, Chapter 2, Corollary 8])

E =
{
fs(xj `k

, v) : s ∈ S, v ∈ u(Ij)
}
⊂ Rn,

where u(Ij) = {u(t), t ∈ Ij}. Thus, for each 1 ≤ j ≤ k there exist an element Ej ∈ co(E) such that∣∣∣∣∣k`
∫
Ij

fσ(τ)(xj `k
, u(τ))dτ − Ej

∣∣∣∣∣ < 1

k
. (8)

Carathéodory’s Theorem (see, e.g., [16, Chapter 3, Theorem 1.3.6]) implies that Ej is a convex combination
of n+ 1 points of E, i.e.,

Ej =

n+1∑
i=1

αijfsij (xj `k
, uij),

where sij ∈ S, uij ∈ u(Ij), αij is nonnegative and
∑n+1
i=1 αij = 1. Substitute Ej by its value in (8), we get

the following inequality ∣∣∣∣∣k`
∫
Ij

fσ(τ)(xj `k
, u(τ))dτ −

n+1∑
i=1

αijfsij (xj `k
, uij)

∣∣∣∣∣ < 1

k
. (9)

Let σk : [0, `]→ S be the piecewise-constant signal defined as

σk(t) = sij ∀ t ∈ Iij ,

and uk : [0, `]→ Rm be the piecewise-constant input defined as

uk(t) = uij ∀ t ∈ Iij ,

where the (disjoint) intervals Iij are such that
⋃n+1
i=1 Iij = Ij and |Iij | = αij

`

k
. We associate with (σk, uk)

the following system

Σk :
ẋk(t) = fσk(t)(xk,t, uk(t)), a.e. t ∈ [0, `],
xk,0(θ) = φ(θ), θ ∈ [−∆, 0],

where xk,t : [−∆, 0]→ Rn is defined by xk,t(θ) = xk(t+ θ), −∆ ≤ θ ≤ 0.

Claim 19. ∀ ε > 0, ∃ k0 ≥ 1 such that ∀ k ≥ k0, we have sup
t∈[0,`]

‖xk,t − xt‖∞ < ε.

8



Let us assume that the claim is true. Knowing that Σ is PC-ISS, it follows that the solution of Σk satisfies
the following inequality

|xk(t, φ, uk, σk)| ≤ β(‖φ‖∞, t) + γ(‖uk[0,t)‖∞), ∀ t ∈ [0, `]. (10)

From (7), it follows the existence of an ε > 0 such that

|x(`, φ, u, σ)| ≥ ε+ β(‖φ‖∞, `) + γ(‖u[0,`)‖∞). (11)

For this ε, thanks to the claim, there exits k0 such that, for every k ≥ k0, we have

|xk(`, φ, uk, σk)− x(`, φ, u, σ)| < ε

2
. (12)

It follows, from (11) and (12), that

|x(`, φ, u, σ)| ≤ |xk(`, φ, uk, σk)|+ ε

2
≤ β(‖φ‖∞, `) + γ(‖uk[0,`)‖∞) +

ε

2

≤ β(‖φ‖∞, `) + γ(‖u[0,`)‖∞) +
ε

2
< |x(`, φ, u, σ)| − ε

2
.

Hence the contradiction arises. It follows that

|x(t, φ, u, σ)| ≤ β(‖φ‖∞, t) + γ(‖u[0,t)‖∞), ∀ t ∈ [0, b). (13)

Inequality (13) holds for any φ ∈ C, σ ∈ S, and any u ∈ U . From inequality (13) and Lemma 3, it follows
that b = +∞ and Σ is M-ISS.

Proof of the claim: Let, for k ≥ 1, Γk : [0, `]→ Rn be the function defined as

Γk(t) =

∫ t

0

(
fσ(τ)(xτ (φ, u, σ), u(τ))− fσk(τ)(xτ (φ, u, σ), uk(τ))

)
dτ, ∀ t ∈ [0, `], (14)

and yk : [−∆, `]→ Rn be the function defined as

yk(t) = x(t, φ, u, σ)− xk(t, φ, uk, σk), ∀ t ∈ [−∆, `].

We have, for t ∈ [0, `],

yk(t) =

∫ t

0

fσ(τ)(xτ (φ, u, σ), u(τ))dτ −
∫ t

0

fσk(τ)(xk,τ (φ, uk, σk), uk(τ))dτ.

By adding and subtracting
∫ t

0
fσk(τ)(xτ (φ, u, σ), uk(τ))dτ in the expression of yk(t), we get the following

equalities/inequalities

|yk(t)| =

∣∣∣∣∫ t

0

fσ(τ)(xτ (φ, u, σ), u(τ))dτ −
∫ t

0

fσk(τ)(xk,τ (φ, uk, σk), uk(τ))dτ

∣∣∣∣
≤

∫ t

0

∣∣fσk(τ)(xτ (φ, u, σ), uk(τ))− fσk(τ)(xk,τ (φ, uk, σk), uk(τ))
∣∣ dτ + |Γk(t)|

≤ LH

∫ t

0

‖xτ (φ, u, σ)− xk,τ (φ, uk, σk)‖∞ dτ + sup
τ∈[0,`]

|Γk(τ)|

= LH

∫ t

0

‖yk,τ‖∞dτ + sup
τ∈[0,`]

|Γk(τ)|, (15)

where

H = max

{
sup

τ∈[−∆,`]

|x(τ, φ, u, σ)|, sup
τ∈[−∆,`]

|xk(τ, φ, uk, σk)|

}
.

9



From (15), we have

‖yk,t‖∞ = sup
θ∈[−∆,0]

|yk(t+ θ)| ≤ sup
θ∈[−∆,0],t+θ≥0

LH

∫ t+θ

0

‖yk,τ‖∞dτ + sup
τ∈[0,`]

|Γk(τ)|,

≤ LH

∫ t

0

‖yk,τ‖∞dτ + sup
τ∈[0,`]

|Γk(τ)|.

By Gronwall’s lemma, the following inequality holds

sup
t∈[0,`]

‖yk,t‖∞ ≤ eLH` sup
t∈[0,`]

|Γk(t)|. (16)

We are going to show that Γk converges uniformly to zero on the interval [0, `]. Observe that, for t ∈ [0, `],
we have

Γk(t) =

k∑
j=1

∫
Ij∩[0,t]

(
fσ(τ)(xτ (φ, u, σ), u(τ))− fσk(τ)(xτ (φ, u, σ), uk(τ))

)
dτ.

Then, by adding and subtracting

k∑
j=1

∫
Ij∩[0,t]

(
fσk(τ)(xj `k

(φ, u, σ), uk(τ))− fσ(τ)(xj `k
(φ, u, σ), u(τ))

)
dτ

in the expression of Γk, the following equality/inequalities hold

Γk(t) =

k∑
j=1

∫
Ij∩[0,t]

(
fσ(τ)(xτ (φ, u, σ), u(τ))− fσ(τ)(xj `k

(φ, u, σ), u(τ))
)
dτ

+

k∑
j=1

∫
Ij∩[0,t]

(
fσk(τ)(xj `k

(φ, u, σ), uk(τ))− fσk(τ)(xτ (φ, u, σ), uk(τ))
)
dτ

−
k∑
j=1

∫
Ij∩[0,t]

(
fσk(τ)(xj `k

(φ, u, σ), uk(τ))− fσ(τ)(xj `k
(φ, u, σ), u(τ))

)
dτ

≤ 2LH

k∑
j=1

∫
Ij∩[0,t]

‖xτ (φ, u, σ)− xj `k (φ, u, σ)‖∞dτ −
k∑
j=1

Kj , (17)

where, for j = 1, · · · , k, the constant Kj is given by

Kj =

∫
Ij∩[0,t]

(
fσk(τ)(xj `k

(φ, u, σ), uk(τ))− fσ(τ)(xj `k
(φ, u, σ), u(τ))

)
dτ.

We distinguish three different cases:

(i) if Ij ∩ [0, t] = Ij , then by definition of fσk and using inequality (9), we have

|Kj | =

∣∣∣∣∣
∫
Ij

fσk(τ)(xj `k
(φ, u, σ), uk(τ))dτ −

∫
Ij

fσ(τ)(xj `k
(φ, u, σ), u(τ))dτ

∣∣∣∣∣
=

∣∣∣∣∣
n+1∑
i=1

∫
Iij

fsij (xj `k
(φ, u, σ), uij)dτ −

∫
Ij

fσ(τ)(xj `k
(φ, u, σ), u(τ))dτ

∣∣∣∣∣
=

`

k

∣∣∣∣∣
n+1∑
i=1

αijfsij (xj `k
(φ, u, σ), uij)−

k

`

∫
Ij

fσ(τ)(xj `k
(φ, u, σ), u(τ))dτ

∣∣∣∣∣
<

`

k2
;
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(ii) if Ij ∩ [0, t] = [(j − 1) `k , t], then

|Kj | ≤
∫

[(j−1) `k ,t]

∣∣∣fσk(τ)(xj `k
(φ, u, σ), uk(τ))− fσ(τ)(xj `k

(φ, u, σ), u(τ))
∣∣∣dτ

≤
∫
Ij

∣∣∣fσk(τ)(xj `k
(φ, u, σ), uk(τ))

∣∣∣dτ +

∫
Ij

∣∣∣fσ(τ)(xj `k
(φ, u, σ), u(τ))

∣∣∣dτ
≤ 2LH

∫
Ij

‖xj `k (φ, u, σ)‖∞dτ +

∫
Ij

LH |uk(τ)|dτ +

∫
Ij

LH |u(τ)|dτ

≤ 2LH
`

k
‖xj `k (φ, u, σ)‖∞ + 2

`

k
LH‖u[0,`]‖∞;

(iii) if Ij ∩ [0, t] = ∅, then Kj = 0.

For ε > 0 there exists k1 such that if k ≥ k1 then
∑k
j=1 |Kj | < ε

2eLH`
. Furthermore, Since x(·) is uniformly

continuous on [−∆, `], we deduce the existence of k2 such that if k ≥ k2 then ‖xτ (φ, u, σ)−xj `k (φ, u, σ)‖∞ <
ε

4LH`eLH`
for every τ ∈ Ij and every j = 1, . . . , k. As a consequence, if k ≥ max{k1, k2} we have, from (17),

|Γk(t)| <
ε

4LH`eLH`
2LH

k∑
j=1

|Ij |+
ε

2eLH`
=

ε

LH`
. (18)

Note that this is true for every t ∈ [0, `], we conclude that

sup
t∈[0,`]

|Γk(t)| < ε

LH`
. (19)

Equations (16) together with (19) conclude the proof of the claim. The proof of the theorem is complete.

B Proof of Theorem 10

The proof is analogous to the proof given in [24] for finite dimensional systems. However, as mentioned in the
introduction, since we deal with a retarded system, the map describing the evolution of the state is simply
continuous with respect to time. Thus a Lyapunov–Krasovskii functional evaluated on the solutions of such
a system will be in general continuous and not absolutely continuous with respect to time. By consequence,
we cannot directly use the standard comparison lemma [24, Lemma 4.4] in the proof of the sufficiency part
of Theorem 10. Instead, exploiting Theorem 9, one can use the following comparison lemma from [30].

Lemma 20. [30, Lemma 1] For each continuous and positive definite function α, there exists a class KL
function βα with the following property: if, for T > 0 (or T = +∞), y : [0, T ) → R+ is a continuous
non-negative function which satisfies the inequality

D+y(t) ≤ −α(y(t)), ∀ t ∈ [0, T ), (20)

where D+y denotes the upper-right Dini derivative of y, with y(0) = y0 ∈ R+, then it holds that

y(t) ≤ βα(y0, t), ∀t ∈ [0, T ). (21)

B.1 Proof of the sufficiency part

Thanks to Theorem 9, it is sufficient to consider the case when the switching signal σ and the input u are
piecewise-constant. For this, let x0 ∈ C, u ∈ UPC, and σ ∈ SPC. Let x(t, x0, u, σ) be the corresponding
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solution in a maximal interval [0, b), 0 < b ≤ +∞. Let w : [0, b) → R+ be the function which is defined in
[0, b) as

w(t) = V (xt(x0, u, σ)), ∀ t ∈ [0, b).

Knowing that u and σ are piecewise-constant, then, by [5, 34], we have, for all t ∈ [0, b),

D+w(t) = lim sup
h→0+

V (xt+h(x0, u, σ))− V (xt(x0, u, σ))

h

= lim sup
h→0+

V ((xt(x0, u, σ))
Σ,σ(t)
h,u(t) )− V (xt(x0, u, σ))

h

≤ sup
s∈S

lim sup
h→0+

V ((xt(x0, u, σ))Σ,s
h,u(t))− V (xt(x0, u, σ))

h

= D+V (xt(x0, u, σ), u(t)). (22)

By inequality (ii), it follows from (22) that

D+w(t) ≤ −α3(‖xt(x0, u, σ)‖a) + α4(|u(t)|), ∀ t ∈ [0, b).

Let the input u(t) be such that supt≥0 |u(t)| = v, for a suitable v ≥ 0. By analogous reasoning as in [36], we
can prove the existence of a constant c ∈ (0, b] such that

D+w(t) ≤ −α(w(t)), ∀ t ∈ [0, c), (23)

|x(t, x0, u, σ)| ≤ γ(v), ∀ t ∈ [c, b), (24)

where α = 1
2α3 ◦ α−1

2 and γ = α2 ◦ α−1
3 ◦ 2α4. Since t 7→ w(t) is continuous, from Lemma 20 it holds the

existence of a class KL function βα such that

|w(t)| ≤ βα(w(0), t), ∀ t ∈ [0, c),

from which it follows that
|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t), ∀ t ∈ [0, c), (25)

with β(r, t) = α−1
1 ◦βα(α2(γar), t). By consequence, inequalities (24) and (25) lead to the following inequality

|x(t, x0, u, σ)| ≤ β(‖x0‖∞, t) + γ(v), ∀ t ∈ [0, b). (26)

It follows, from Lemma 3, that b = +∞. By causality arguments, and given the arbitrarity of ϕ ∈ C, u ∈ UPC

and σ ∈ SPC, the PC-ISS of system Σ is proved.

B.2 Proof of the necessity part

Let us consider the system described by the following retarded functional differential equation

ΣR :
ẋ(t) = fσ(t) (xt, ρ(‖xt‖∞)d(t)) , a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

where ρ is globally 1-Lipschitz of class K∞ function, and d ∈ MB , where MB is the set of Lebesgue
measurable functions g : R+ → Rm satisfying ess supτ≥0 |g(τ)| ≤ 1. Let us introduce the following definition:

Definition 21. We say that system ΣR is M-robustly 0-GAS if there exists a class KL function β such that,
for any initial state x0 ∈ C, any σ ∈ S and any d ∈MB, the corresponding solution, denoted by xRt (x0, d, σ),
exists in R+ and, furthermore satisfies the following inequality

‖xRt (x0, d, σ)‖ ≤ β(‖x0‖∞, t), ∀ t ≥ 0.

12



The proof of the necessity part follows the same methodology introduced in [41] for finite-dimensional
systems and which was then extended in [19, 38] to encompass the class of retarded and neutral functional
differential equations. This is given by the following three lemmas:

Lemma 22. If system Σ is M-ISS, then there exists a suitable globally 1-Lipschitz of class K∞ function ρ
such that the related system ΣR is M-robustly 0-GAS.

Proof. Knowing that we deal with 0-GAS property which is uniform with respect to σ and d, the proof
follows the same lines of the proof of [38, Lemma 17]. �

Before giving the second lemma, let us first recall the following Driver’s form derivative of a Lyapunov–
Krasovskii functional related to system ΣR

D+V (φ) = sup
s∈S,d∈MB

lim sup
h→0+

V (φR,sh,d )− V (φ)

h
,

where, for ϕ ∈ C, h ∈ [0,∆), and θ ∈ [−∆, 0], φR,sh,d ∈ C is defined as follows

φR,sh,d (θ) =

{
φ(θ + h), θ ∈ [−∆,−h)
φ(0) + (θ + h)fs(φ, ρ(‖φ‖∞)d), θ ∈ [−h, 0].

We have the following lemma:

Lemma 23. Suppose that system ΣR is M-robustly 0-GAS. Then, there exist a functional V : C → R+,
Lipschitz on bounded sets, and functions, α1, α2, α3 of class K∞, such that, for any φ ∈ C, σ ∈ S and
d ∈ BRm(0, 1), the following inequalities hold:

(i) α1(‖φ‖∞) ≤ V (φ) ≤ α2(‖φ‖∞),

(ii) D+V (φ) ≤ −α3(‖φ‖∞).

Proof. The proof follows the same lines of the proof of the necessity part in [13, Theorem 1]. �

We have also the following lemma:

Lemma 24. [38, Lemma 21] Let V : C → R+, be a Lipschitz on bounded sets functional such that there
exists functions, α1, α2 of class K∞ such that the following inequalities hold:

α1(‖φ‖∞) ≤ V (φ) ≤ α2(‖φ‖∞), ∀φ ∈ C.

Then, the following conditions are equivalent:

(i) there exist a class K∞ function γ and a class K function ρ such that, for every φ ∈ C, u ∈ Rm such
that ‖φ‖∞ ≥ ρ(|u|), the inequality holds,

D+V (φ, u) ≤ −γ(‖φ‖∞); (27)

(ii) there exist a class K∞ function α3 and a class K function α4 such that, for every φ ∈ C, u ∈ Rm the
following inequality holds,

D+V (φ, u) ≤ −α3(‖φ‖∞) + α4(|u|). (28)

The proof of the necessity part of Theorem 10 derives from the following results: if system Σ is M-ISS
then, from Lemma 22, there exists a 1-Lipschitz of class K∞ function ρ such that system ΣR is M-robustly 0-
GAS. Thus, from Lemma 23, there exist a functional V : C → R+, Lipschitz on bounded sets, and functions,
α1, α2, ω3 of class K∞, such that, for any φ ∈ C, σ ∈ S and u ∈ Rm, satisfying |u| ≤ ρ(‖φ‖∞), the following
inequalities hold:

13



(i) α1(‖φ‖∞) ≤ V (φ) ≤ α2(‖φ‖∞),

(ii) D+V (φ) ≤ −ω3(‖φ‖∞).

Finally, thanks to Lemma 24, the point (ii) is equivalent to the existence of a class K∞ function α3 and a
class K function α4 such that, for every φ ∈ C, u ∈ Rm the following inequality holds,

(iii) D+V (φ, u) ≤ −α3(‖φ‖∞) + α4(|u|).

By consequence, if system Σ is M-ISS then there exist a functional V : C → R+, Lipschitz on bounded sets,
and functions α1, α2, α3 of class K∞, and a class K function α4 such that, for any φ ∈ C, σ ∈ S and u ∈ Rm,
inequalities (i) and (iii) hold. Hence, the proof of the necessity part is complete.

C Proofs of Theorems 11, 12 and 13

C.1 Proof of Theorem 11

The proof of Theorem 11 is a straightforward consequence of Theorem 9 together with the following theorem:

Theorem 25 ([13]). System Σ is PC-0-GAS if and only if there exist a functional V : C → R+, Lipschitz
on bounded subsets of C, and functions α1, α2 ∈ K∞, α3 ∈ K such that the following inequalities hold for
any φ ∈ C

(i) α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖∞),

(ii) D+V (φ) ≤ −α3(|φ(0)|).

C.2 Proof of Theorem 12

The proof of Theorem 12 is a straightforward consequence of the following theorem:

Theorem 26 ([13]). System Σ is PC-0-GES if and only if there exist a functional V : C → R+, Lipschitz
on bounded subsets of C, and positive reals α1, α2, α3 and p, such that the following inequalities hold for any
φ ∈ C

(i) α1‖φ‖p∞ ≤ V (φ) ≤ α2‖φ‖p∞,

(ii) D+V (φ) ≤ −α3‖φ‖p∞.

together with the following lemma:

Lemma 27. System Σ is M-0-GES if and only if it is PC-0-GES.

Proof. The proof follows the same lines of the proof of Theorem 9, and therefore is omitted. �

C.3 Proofs of Theorem 13

The proof of Theorem 13 follows from the following two lemmas:

Lemma 28. System Σ is M-0-LES if and only if it is PC-0-LES.

Proof. The proof follows the same lines of the proof of Theorem 9, and therefore is omitted. �

Lemma 29. System Σ is PC-0-LES if and only if there exist positive reals H, p, α1, α2, α3 and Lipschitz
functional V : CH → R+, such that the following inequalities hold for any φ ∈ CH

(i) α1‖φ‖p∞ ≤ V (φ) ≤ α2‖φ‖p∞,
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(ii) D+V (φ) ≤ −α3‖φ‖p∞.

Proof. We first prove the necessity part. Knowing that Σ is PC-0-LES, then there exist positive reals r,M
and λ such that the following inequality holds in Cr

|x(t, x0, σ)| ≤Me−λt‖x0‖∞, ∀ t ≥ 0.

By taking H = r/M and following the same lines of the proof of the necessity part of [13, Theorem 2], we

get the proof. As far as the proof of the sufficiency part is concerned, let δ = 1
2

(
α1

α2

) 1
p

H. Let x0 ∈ Cδ and

let σ ∈ SPC. Let x(t, x0, σ) be the corresponding solution in a maximal interval [0, b). Let w : [0, b) → R+

be the function which is defined in [0, b) as

w(t) = V (xt(x0, σ)), t ∈ [0, b).

Claim 30. The solution x(t, x0, σ) stays in CH for any t ∈ [0, b).

Let us assume that the claim is true. We have, for all t ∈ [0, b),

D+w(t) = lim sup
h→0+

w(t+ h)− w(t)

h
= lim sup

h→0+

V (xt+h(x0, σ))− V (xt(x0, σ))

h

= lim sup
h→0+

V ((xt(x0, σ))
Σ,σ(t)
h )− V (xt(x0, σ))

h

≤ sup
s∈S

lim sup
h→0+

V ((xt(x0, σ))Σ,s
h )− V (xt(x0, σ))

h
= D+V (xt(x0, σ)). (29)

By inequalities (i) and (ii), it follows from (29) that

D+w(t) ≤ −α3‖xt(x0, σ)‖p∞ ≤ −
α3

α2
w(t), ∀ t ∈ [0, b). (30)

Since w is continuous, it follows (see [9]) that

w(t) ≤ e−
α3
α2
tw(0), ∀ t ∈ [0, b). (31)

Finally, from (31) and the inequalities (i), we obtain

|x(t, x0, σ)| ≤
(
α2

α1

) 1
p

e−
α3
pα2

t‖x0‖∞, ∀ t ∈ [0, b). (32)

It follows, from Lemma 3, that b = +∞, and, given the arbitrarity of x0 ∈ Cδ and σ ∈ SPC, the PC-0-LES
property of the system Σ is proved, provided that the claim is true. Now, we prove the claim by contradiction.
Assume there exists t1 ∈ [0, b) such that ‖xt1(x0, σ)‖∞ < H, t ∈ [0, t1), and |x(t1, x0, σ)| = H. Then, for
t ∈ [0, t1], the inequalities (29)–(32) hold. Therefore, we obtain the following equalities/inequalities

H = |x(t1, x0, σ)| ≤
(
α2

α1

) 1
p

e−
α3
pα2

t1‖x0‖∞ ≤
(
α2

α1

) 1
p

δ =
H

2
. (33)

Therefore, the absurd inequality H ≤ H
2 arises. By contradiction, the claim is proved. The proof of the

sufficiency part of the lemma is complete. The proof of the lemma is complete. �
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D Proofs of Theorem 14

The proof of Theorem 14 follows directly from Theorem 9 together with the following theorem:

Theorem 31 ([13]). Let system Σ be PC-0-GES. If there exist positive reals L and l and a nonnegative real
p < 1 such that:

1) ∀φ, ψ ∈ C,∀u ∈ Rm,∀ s ∈ S, the following holds

|fs(φ, u)− fs(ψ, u)| ≤ L‖φ− ψ‖∞; (34)

2) ∀φ ∈ C,∀u ∈ Rm,∀ s ∈ S, the following holds

|fs(φ, u)− fs(φ, 0)| ≤ lmax{‖φ‖p∞, 1}|u|; (35)

then system Σ is PC-ISS.

E Proofs of Theorem 16

Lemma 32. Let the map fs be uniformly (with respect to s ∈ S) globally Lipschitz. System Σ is PC-0-GES if
and only if there exist a functional V : C → R+, and positive reals α1, α2, α3 and α4, such that the following
inequalities hold for any φ, ψ ∈ C

(i) α1‖φ‖∞ ≤ V (φ) ≤ α2‖φ‖∞,

(ii) D+V (φ) ≤ −α3‖φ‖∞,

(iii) |V (φ)− V (ψ)| ≤ α4‖φ− ψ‖∞.

Proof. The proof follows the same lines of the proof of [13, Theorem 2], and therefore is omitted. The global
Lipschitz property of the functional V is proved by exploiting the uniform global Lipschitz property of fs,
s ∈ S. �

Lemma 33. Let, for s ∈ S, the map fs be Fréchet differentiable at 0, and let Ls be its associated Fréchet
derivative. Suppose that Ls is uniformly (with respect to s) bounded. Then, system Σ is PC-0-LES if and
only if the linear switching system

ΣL :
ξ̇(t) = Lσ(t)ξt, a.e. t ≥ 0,
ξ(θ) = ξ0(θ), θ ∈ [−∆, 0],

with ξ0 ∈ C, is PC-0-GES.

Proof. We prove first the sufficiency part. From Lemma 32, it follows that there exist a functional V : C →
R+, and positive reals α1, α2, α3 and α4, such that the inequalities (i), (ii), (iii), in Lemma 32, hold with
respect to system ΣL. Now, we will show that Σ is PC-0-LES by means of this functional V . So, let us
consider the Driver’s derivative of V with respect to system Σ, i.e.,

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣ,s
h )− V (φ)

h
.
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Then, we have

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣ,s
h ) + V (φΣL,s

h )− V (φΣL,s
h )− V (φ)

h

≤ sup
s∈S

[
lim sup
h→0+

V (φΣ,s
h )− V (φΣL,s

h )

h
+ lim sup

h→0+

V (φΣL,s
h )− V (φ)

h

]

≤ sup
s∈S

lim sup
h→0+

α4‖φΣ,s
h − φΣL,s

h ‖∞
h

− α3‖φ‖∞

≤ sup
s∈S

lim sup
h→0+

α4 supθ∈[−∆,0] |φ
Σ,s
h (θ)− φΣL,s

h (θ)|
h

− α3‖φ‖∞

≤ sup
s∈S

lim sup
h→0+

α4 supθ∈[−h,0] |θ + h||fs(φ)− Lsφ|
h

− α3‖φ‖∞. (36)

Now, by using the definition of the Fréchet derivative of fs, s ∈ S, at 0, let δ be a positive real such that if
φ ∈ Cδ then the following inequality holds

|fs(φ)− Lsφ| ≤
α3

2α4
‖φ‖∞.

Therefore, for any φ ∈ Cδ, we have

D+V (φ) ≤ α3α4

2α4
‖φ‖∞ − α3‖φ‖∞ ≤ −

α3

2
‖φ‖∞. (37)

It follows, by Lemma 29, that system Σ is PC-0-LES. The sufficiency part is proved. Now, we prove the
necessity part. From Lemma 29, there exist positive reals H,α1, α2, α3 and Lipschitz functional V : CH →
R+, such that the following inequalities hold

(i) α1‖φ‖∞ ≤ V (φ) ≤ α2‖φ‖∞, ∀φ ∈ CH ,

(ii) D+V (φ) ≤ −α3‖φ‖∞, ∀φ ∈ CH ,

(iii) |V (φ)− V (ψ)| ≤ α4‖φ− ψ‖∞, ∀φ, ψ ∈ CH .

Let δ < H be a sufficiently small positive real such that, if φ ∈ Cδ then the following inequality holds

|fs(φ)− Lsφ| ≤
α3

2α4
‖φ‖∞. (38)

For sufficiently small h, for any φ ∈ Cδ, and for any s ∈ S, the following inequality holds

|V (φΣL,s
h )− V (φΣ,s

h )| ≤ α4‖φΣL,s
h − φΣ,s

h ‖∞. (39)

Let φ ∈ Cδ. Calculating the Driver’s derivative of V with respect to system ΣL (by proceeding exactly as
in (36) after interchanging Σ by ΣL), we obtain

D+V (φ) ≤ −α3

2
‖φ‖∞. (40)

It follows, by Lemma 29, that system ΣL is PC-0-LES. From linearity it follows that system ΣL is PC-0-GES.
The proof of the necessity part is complete. The proof of the lemma is complete. �

The proof of Theorem 16 follows from Lemma 28 and Lemma 33. The proof of Theorem 16 is complete.
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43(4):701–706, 2007.

[35] Pierdomenico Pepe. The problem of the absolute continuity for Lyapunov–Krasovskii functionals. IEEE
Transactions on Automatic Control, 52:953–957, 2007.

[36] Pierdomenico Pepe and Zhong P. Jiang. A Lyapunov-Krasovskii methodology for ISS and iISS of
time-delay systems. Systems & Control Letters, 55(12):1006–1014, 2006.

[37] Pierdomenico Pepe and Iasson Karafyllis. Converse Lyapunov–Krasovskii theorems for systems de-
scribed by neutral functional differential equations in Hale’s form. International Journal of Control,
86(2):232–243, 2013.

19



[38] Pierdomenico Pepe, Iasson Karafyllis, and Zhong P. Jiang. Lyapunov–Krasovskii characterization of
the input-to-state stability for neutral systems in Hale’s form. Systems & Control Letters, 102:48–56,
2017.

[39] Eduardo D. Sontag. Smooth stabilization implies coprime factorization. IEEE Transactions on Auto-
matic Control, 34(4):435–443, 1989.

[40] Eduardo D. Sontag. Comments on integral variants of ISS. Systems & Control Letters, 34(1):93–100,
1998.

[41] Eduardo D. Sontag and Yuan Wang. On characterizations of the input-to-state stability property.
Systems & Control Letters, 24(5):351–359, 1995.

[42] Zhendong Sun and Shuzhi S. Ge. Stability theory of switched dynamical systems. Springer-Verlag,
London, 2011.

[43] Yue-E Wang, Xi-Ming Sun, and Frédéric Mazenc. Stability of switched nonlinear systems with delay
and disturbance. Automatica, 69:78 – 86, 2016.

[44] Fabian Wirth. A converse Lyapunov theorem for linear parameter-varying and linear switching systems.
SIAM Journal on Control and Optimization, 44(1):210–239, 2005.

[45] Guangming Xie and Long Wang. Stability and stabilization of switched linear systems with state
delay: Continuous-time case. In 16th International Symposium on Mathematical Theory of Networks
and Systems, 2004.
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