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A B S T R A C T   

Wind power is developing rapidly because of its potential to provide renewable electricity and the large 
reduction in installation costs during the past decade. However, the high temporal variability of the wind power 
source is an obstacle to a high penetration in the electricity mix as it makes difficult to balance electricity supply 
and demand. There is therefore a need to quantify the variability of wind power and also to analyze how this 
variability decreases through spatial aggregation. In the context of climate change, it is also necessary to analyze 
how the wind power potential and its variability may change in the future. One difficulty for such objective is the 
large biases in the modeled winds, and the difficulty to derive a reliable power curve. In this paper, we propose 
an Empirical Parametric Power Curve Function (EPPCF) model to calibrate a power curve function for a realistic 
estimate of wind power from weather and climate model data at the regional or national scale. We use this model 
to analyze the wind power potential, with France as an example, considering the future wind turbine evolution, 
both onshore and offshore, with a focus on the production intermittency and the impact of spatial de- 
correlations. We also analyze the impact of climate change. 

We show that the biases in the modeled wind vary from region to region, and must be corrected for a valid 
evaluation of the wind power potential. For onshore wind, we quantify the potential increase of the load factor 
linked to the wind turbine evolution (from a current 23% to 30% under optimistic hypothesis). For offshore, our 
estimate of the load factor is smaller for the French coast than is currently observed for installed wind farms that 
are further north (around 35% versus 39%). However, the estimates vary significantly with the atmospheric 
model used, with a large spatial gradient with the distance from the coast. The improvement potential appears 
smaller than over land. The temporal variability of wind power is large, with variations of 100% of the average 
within 3–10 h at the regional scale and 14 h at the national scale. A better spatial distribution of the wind farms 
could further reduce the temporal variability by around 20% at the national scale, although it would remain high 
with respect to that of the demand. The impact of climate change on the wind power resource is insignificant 
(from +2.7% to − 8.4% for national annual mean load factor) and even its direction varies among models.   

1. Introduction 

In the context of climate change, air pollution, energy security and 
depleting fossil fuel reserves, wind power has had a rapid development 
in the past decade. This rapid development was also favored by 
decreasing costs. According to the IRERA Renewable Power Generation 
Costs 2019 [1], the onshore wind energy installed capacity has increased 
from 178 GW to 594 GW from 2010 to 2019 and the offshore wind 
installed capacity reached 28 GW at the end of 2019. During the same 
period, the onshore wind LCOE (Levelized Cost of Energy) has dropped 
from 0.086 $/kWh to 0.053$/kWh, and the offshore wind LCOE has 

down from 0.161 $/kWh to 0.115 $/kWh. 
However, with the increasing share of wind power in the electricity 

system, the high variability of this energy source may cause difficulties 
to balance production and demand [2,3]. Numerous tools and studies 
have been developed to analyze the potential of interconnections, de
mand side management and electricity storage to compensate for the 
intermittency [3–6]. For such objectives, analysis at the hourly scale (or 
higher) [7–10] is needed to analyze the RES variations and the system 
ability to balance supply and demand. Therefore, realistic wind speed 
data at high spatial and temporal scale is required to simulate the wind 
power output. The lack of reliable wind speed data at the necessary scale 
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makes it difficult to quantify the potential wind power output, which 
results in uncertainties in the electricity system planning, in particular 
when accounting for the impact of climate change. Reanalysis data [11] 
derived from Numerical Weather Prediction (NWP) models and data 
assimilation methods have been used for such objective. The potential 
and limitations of wind power have been analyzed over Sweden [12], 
Ireland [13], Great Britain [14], France [[15], p. 5], China [16] and 
Europe [17–20] and the globe [21]. However, as pointed out by [11], 
weather reanalysis data must be used with caution as several variables 
show significant biases. Also, the reanalysis data are spatially coarse and 
are not capable of resolving local variations, especially in complex 
terrain and along the coast [22]. Cradden et al [13] confirms, using 
MERRA2 reanalysis data, that the agreement between observed and 
modeled load factors gets better with a larger installed capacity as 
averaging statistically reduces the errors. Iain et al. [18] shows the 
MERRA and MERRA-2 reanalysis data presents a significant spatial bias 
in wind speed in different parts of Europe and stress the need to apply a 
regional bias correction. Olauson et al [12] demonstrates that the 
simulation of Swedish wind power output from numerical weather wind 
field requires a seasonal and diurnal bias correction; a similar result is 
found at the European scale [19]. González-Aparicio et al [17] shows 
that unresolved spatial features of the local wind field in reanalysis data 
leads to underestimate in the highest wind power outputs, and that 
downscaling the MERRA reanalysis to a much finer spatial scale allows a 
better representation of the wind variability. Torralba et al [23] finds a 
large spread of wind speed trend for different reanalysis which may 
result in biases for wind power estimates. Jourdier [15] shows that the 
ERA5 reanalysis provides a better description of the wind field than the 
MERRA2 model, through a statistical analysis against observations, 
although it underestimates the wind speeds, in particular over mountain 
areas. Gruber et al [24] finds that bias-corrected MEARRA2 with local 
measurements and Global Wind Atlas can deliver satisfactory wind 
simulation result at the regional scale, but not at the local scale; they also 
find that ERA5 outperforms MERRA2 [25] in a multi-county application. 
European Commission [20] et Bosch et al [21] find combining Wind 
Global Atlas with MERRA reanalysis allows a better representation of 
the wind fields. Although most of the studies are carried out with a 
specific attention to onshore wind, there are also several studies that 
focus on the offshore wind in Iberian Peninsula [26], India [27], 
Portugal [28], Spain [29], the north sea [30] and the globe [31]. In the 
present paper, we shall focus on the French metropolitan territory 
because (i) France shows a large variety of terrain and wind pattern and 
(ii) wind production data are available at the regional scale. 

Spatial aggregation reduces the variability of wind power output and 
is then an effective way to decrease the wind power variability, as 
demonstrated in many studies: [32] focuses on China’s and shows that 
the regional wind power is highly correlated for some regions, whereas 
others show little correlation, as it decreases with the distance; in [33] 
the spatial smoothing effects are studied across several EU countries, the 
result shows that the correlation degree is related to the distance: 
countries that are close to each other, such as Great-Britain and Ireland, 
Denmark and Germany, Denmark and Sweden show a strong correlation 
in their wind power output; in [19] the short-term variability can be 
reduced significantly thanks to the decrease of correlation with 
increasing separation distance in Europe. [34] focuses on the Nordic 
countries and shows that the wind power outputs in Denmark and 
Sweden show the highest correlation. [35] confirms the low correlation 
for some countries in Europe that are further apart, which generates 
some smoothing (less variability) when the total wind power output of 
the continent is considered. However, none of these studies properly 
quantify the intermittency mitigation linked to the spatial decorrelation, 
which is the main concern for real electricity system design. One major 
difficulty, as mentioned in [3,36], is the absence of agreed definition of 
the “intermittency” and how it can be quantified. Some attempts have 
been made in that direction, such as [37] that analyses the wind power 
spectral density and its variations with spatial averaging, or [19] that 

uses filters to analyze frequency bands containing fluctuations of 
different periods, or [38] that computes several metrics of the wind 
power density (WPD), such as mean, median and variability, and also 
considers the temporal length of periods when the WPD in above or 
below an arbitrary threshold. Other suggestions to quantify the inter
mittency of wind power are summarized in [3]. They focus on the sta
tistical variability but do not quantify the rate of change in wind 
production, although it is an issue for electricity system operation. 
Another quantification of the intermittency has been recently proposed 
[36] by quantifying the spread of the relative deviation of power vari
ation over a time interval, normalized by average power. The wind 
power intermittency is compared to that of the consumption. These 
metrics are not sufficient to properly estimate the potential of wind 
power in a mix, and its potential to replace conventional (thermal) 
power plants, which is also related to the risk of low wind during periods 
of high demand. Furthermore, as offshore wind is gaining popularity, 
thanks to the prospect of higher load factor, reduced variability, and 
limited opposition from neighbors, it deserves specific attention. In this 
context, there is a need to better understand and quantify the variability 
of wind power potential and spatial smoothing effects among regions. 
We shall therefore use recently-proposed quantification of the inter
mittency to analyze this characteristic of the wind power production 
that has insufficiently been analyzed. 

Due to the prospects of climate change, there are additional un
certainties as the statistics of meteorological conditions may change. 
This has already been analyzed for European countries: in [39] the 
impact of climate change on the mean load factor is slightly positive in 
northern and central Europe whereas it appears negative in southern 
Europe, accompanied by an intensified seasonal patterns at the end of 
the century; in [40] the mean wind load factor is found to decrease from 
5% to 15% in central and southern Europe by the end of the century in 
the extreme emission scenario (i.e. RCP8.5), while increase of the same 
magnitude in some parts of Northern Europe; such northern-southern 
divisions are also found in [41,42], where the wind energy source is 
projected to increase in Northern-Central Europe while decreases in 
Mediterranean region at the end of the century; even in the near future 
(i.e. 2020–2049), the projection is expected to increase 4%-8% in 
Northern Europe and to decrease 6%-12% in Mediterranean winter [43]; 
in [44] a robust and up to 7% increase of wind power output are found at 
the European scales in the 21st century, and simultaneous production 
shortfall would be intensified due to more homogenous wind conditions; 
in [45] the overall annual output change is shown to be less than 5% 
across the Europe in the 21st century, with larger effects at the very local 
scale, with negligible variations on the variability; similar conclusions 
are found in [46] although there are indications for changes in the 
seasonal patterns and variability; in [47] the impact on UK wind power 
production is minor in annual production but will affect seasonal pat
terns and in [48] a mixed impacts are found for UK with an increase in 
some region while a decrease in other parts with an intensified inter- 
annual variation; in [49] the change in Spain is up to − 8% in mid- 
century (2042–2065) for some region and may affect seasonal output. 
More studies can be found in Pryor et al [50] which provides a 
comprehensive review regarding climate change impacts on wind power 
generation besides European countries. [51] stresses that the wind 
power potential and its sensitivity to climate change vary between the 
climate models that are used (both Global Climate Models (GCM) and 
Regional Climate Models (RCM)) and depends on the bias-correction 
method, the wind turbine characteristic and implantation. The result
ing uncertainties impact the planning of real electricity system. We shall 
therefore analyze the potential impact of climate change on the wind 
power production, focusing not only on the averaged load factor as done 
in previous studies, but also on the other statistical characteristics 
related to the intermittency. 

In this paper, we make use of atmospheric modeling simulations 
(both weather reanalysis and climate model) to estimate the wind power 
potential, its intermittency and its sensitivity to climate change, for both 
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onshore and offshore development. Previous publications cited above 
have shown significant biases in the wind fields provided by weather 
models so that there is a need to first develop a bias-correction method 
that can be applied to both weather reanalysis and climate simulations 
and also be able to take into account potential wind turbine technology 
evolution. 

We focus on the France region as it offers a large variety of inland 
terrains, and also offshore potential over the English Channel, the 
Atlantic and the Mediterranean that cover diverse weather patterns. 
Although the development in France has not been as fast as that in 
neighboring countries, the wind installed capacity has increased from 
5.8 GW to 16.5 GW in the last decade as revealed by the French Elec
tricity Balance 2019 report [52]. The French government has announced 
ambitious goal for the development of Renewable Energy Source (RES) 
simultaneously to a reduction of the nuclear share in the mix. In 
accordance with the French National Low Carbon Strategy (SNBC) [53] 
to reduce its GHG emissions to a quarter by 2050 compared to 1990 with 
a fully decarbonization in energy sector, the Multi Annual Energy Plan 
(PPE) [54] has set up the energy strategy for 2019–2028, which fixed the 
goal of wind energy development to achieve 24.1 GW in 2023 and 
33.2–34.7 GW in 2028 for onshore, and 2.4 GW and 5.2–6.2 GW in 2023 
and 2028 respectively for offshore wind power installations. 

In this context, the paper aims at a full evaluation of the wind power 
potential at the regional and national scale, with France as an example. 
This evaluation includes the current mean load factor, its potential for 
improvement with new technologies, and the impact of climate change; 
the potential contribution of offshore technologies; and a quantitative 
evaluation of the intermittency at the regional and national scale. 

The paper is organized as follows. Section 2 describes the data, and 
the method used to estimate the wind power output from potentially- 
biased numerical wind field and to quantify the intermittency. Section 
3 evaluates the onshore wind power output potential at the French 
regional scales and analyses its temporal and spatial variability. For this 
objective, one uses and evaluates the method (3.1), analyzes the po
tential load factor improvement thanks to the wind turbine evolution 
(3.2), and discusses the wind power variability and spatial de- 
correlations effects (3.3). Section 4 evaluates the offshore wind power 
output potential and intermittency effects, by first estimating the 
offshore wind load factor in French coast with current technologies 
(4.1), then assessing the potential impact of wind turbine evolution 
(4.2), and finally by analyzing the intermittency and spatial de- 
correlation effects, and proposing potential installation distribution 
that minimizes the intermittency (4.3). Section 5 focuses on the impact 
of climate change in mean and seasonal wind power output and its 
intermittency. Section 6 evaluates the performance of different numer
ical weather wind speed models used in this study so as to discuss the 
result uncertainty. The last section summarizes the results, discusses the 
limitations of the study, and suggest further analysis and research. 

2. Data and method 

2.1. Data 

2.1.1. Wind speed data 
In this study, we use two different wind speed model data. The 

analysis weather model aims at providing wind fields that are repre
sentative of the reality at a given time. Conversely, the climate models 
provide a wind field whose statistic is realistic but with no attempt to 
represent the reality at a given time. 

For the weather model, we use reanalysis dataset, which is derived 
using multi observations and data assimilations methods. Among 
different available reanalysis datasets, ERA5 is gaining popularity since 
its first release in July 2017, and several studies have shown its quality 
compared to MERRA-2, [15,22,25,55] which is often used one for wind 
power study. Therefore, we use ERA5 reanalysis in our study, which 
provides hourly wind speed since 1979 with a spatial resolution of 0.25◦

at 10 m and 100 m altitude. We use the data for 100 m altitude since it is 
close to the typical wind turbine hub height. 

For the climate models, in order to account for model uncertainties in 
climate projection [56], we use a number of simulations and two 
Representative Concentration Pathways (RCP). These models are 
developed in the context of the EURO-CORDEX initiative, which pro
vides regional climate projections for Europe [49]. These high- 
resolution simulations are based on low-resolution climate simulation 
using various Global Climate Models (GCM models in Table 1) that are 
downscaled to higher resolution using Regional Climate Models (RCM in 
Table 1). Among the eight different models, six GCM models and three 
RCM models are included. The combination of GCM and RCM models 
allow an assessment of the modeling uncertainty. In addition, different 
GHG emission pathways are studied, where RCP4.5 representative an 
intermediate scenario, whereas RCP8.5 is a worst-case scenario. Note 
that the RCM climate simulation that are available for our analysis 
provide an estimate of the wind speed at 10 m height, whereas the more 
appropriate 100 m wind speed is not available. 

2.1.2. Wind production data 
Wind power model development requires empirical data on wind 

production. Because of commercial rules, the wind power productions 
are not available at the wind farm scale. Conversely, the French TSO 
(RTE) makes available hourly onshore wind production data at the 
regional and hourly scale since 2013 [57]. In addition, the location and 
rated power (capacity) of the wind farms [58] are available. 

There are currently no operational offshore wind farms in France. 
Therefore, we use German offshore production data as a reference. 
Hourly wind offshore production data from 2016 to 2018 and wind farm 
implementation in Germany are provided by Open Power System Data 
platform [59]. 

2.2. Methods 

The Manufacturer’s Power Curve (PC) for a given wind turbine 
provide the theoretical load factor as a function of wind speed. However, 
it does not account for a number of factors, including the representative 
height of the wind turbine for extracting the model wind speed, the load 
factor loss due to the wake effects, availability, electrical efficiency, 
turbine performance, environmental losses, and curtailments. In addi
tion, it is well known that meteorological models present significant 
biases for the wind speed estimation. These biases may be region- 
dependent as discussed in the paper cited in the introduction. There
fore, an Empirical Parametric Power Curve Function (EPPCF) method is 
proposed here to determine a power curve function that is representa
tive of the regional scale and that can be used to generate realistic time 
series of net wind power load factor from weather and climate model 
data. 

2.2.1. Load factor 
The load factor (capacity factor) is defined as the ratio of actual 

energy output over the rated power over a period and is an indicator of 
production ability. The load factor time series is computed by regional 
historical wind power production weighting by wind farm installed 
capacity as described in Eq. (1) where h denotes the hour, r denotes 
region, LFr,h is the load factor, Er,h is the wind power production, and Pr 

is the rated capacity. Note that the wind power production data used in 
our study is the net production data, which accounts for all loss factors, 
including the wake effects, availability, electrical efficiency, turbine 
performance, environmental losses, and curtailments that can be 
different from one region to another. 

LFr,h =
Er,h

Pr
(1)  
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2.2.2. Wind speed 
We use electricity production data at the regional or national level. 

The wind speed in the models is provided at a spatial resolution that is 
higher than the regional/national data of the wind production. Besides, 
each region contains a number of wind farms. There is therefore a need 
to compute an effective wind speed that is representative of the 
regional/national scale. For wind speeds that are lower than the rated 
wind speed, the wind farm power is roughly proportional to the cubic of 
the wind speed. We then derive an effective wind speed as described in 
Eq. (2) which accounts for the distribution of the wind farms installed 
capacity within the considered area, 

vr,h =

(∑
i(v3

i,h*pi,h)
∑

ipi,h

)1/3

(2) 

where the sums are over the wind farms considered in the region, 

i(lon, lat) indicates the wind farm location, pi is wind power capacity and 
v is the model wind speed at the location of the farm. 

2.2.3. Empirical Parametric Power Curve Function (EPPCF) model 
The method assumes that the load factor is an increasing function of 

the wind speed. For wind speeds less than a cut-in wind speed, the load 
factor is close to zero. It then increases following a cubic relationship 
that saturates to 1. For the largest wind speeds (around 25 m/s), the 
safety of the wind turbine may impose a blade configuration with no 
output, but this is an extremely infrequent event that is not considered in 
our method. As it dominates the recent market, we only consider the 
pitch-regulated wind turbine that shows a monotonic increase of the 
output with the wind speed. The method is based on the distribution of 
wind speeds and load factor. Based on the hypothesis that the load factor 
is an increasing function of wind speed, the two frequency distributions 
are used to define the relationship. In other words, the point in the 

Table 1 
Overview of EURO-CORDEX Climate models used in this study.  

Institute GCM model RCP RCM model Spatial resolution Time resolution Wind speed altitude 

CNRM CNRM-CERFACS-CNRM-CM5 Historical, RCP2.6, RCP4.5, RCP8.5 ALADIN63 0.11◦ × 0.11◦ 3 h 10 m 
DMI ICHEC-EC-EARTH Historical, RCP2.6, RCP4.5, RCP8.5 HIRHAM5 0.11◦ × 0.11◦ 3 h 10 m 
DMI NCC-NorESM1-M Historical, RCP4.5, RCP8.5 HIRHAM5 0.11◦ × 0.11◦ 3 h 10 m 
SMHI CNRM-CERFACS-CNRM-CM5 Historical, RCP4.5, RCP8.5 RCA4 0.11◦ × 0.11◦ 3 h 10 m 
SMHI ICHEC-EC-EARTH historical, RCP2.6, RCP4.5, RCP8.5 RCA4 0.11◦ × 0.11◦ 3 h 10 m 
SMHI IPSL-IPSL-CM5A-MR historical, RCP4.5, RCP8.5 RCA4 0.11◦ × 0.11◦ 3 h 10 m 
SMHI MOHC-HadGEM2-ES historical, RCP2.6, RCP4.5, RCP8.5 RCA4 0.11◦ × 0.11◦ 3 h 10 m 
SMHI MPI-M− MPI− ESM− LR historical, RCP2.6, RCP4.5, RCP8.5 RCA4 0.11◦ × 0.11◦ 3 h 10 m  

Fig. 1. Illustration of the EPPCF method: (a) Wind speed and load factor CDF. (b) EPC obtained by wind speed and load factor CDF match. (c) EPPCF derived by 
fitting the EPC using Eq. (3), and manufacturer PPCF derived by fitting manufacturer PC using the same parametric equation which serves as a reference to quantify 
the deviation of the EPPCF. (d) Future wind turbine adapted EPPCF using current EPPCF adjusted by manufacturer PPCF. 
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power curve (lf ↔ v) should have the identical probability when 
computing the Cumulative Distribution Function (CDF) curve (Fig. 1a). 
Hence, by computing the CDF of the model’s wind speed and the 
observed load factor and matching the two distributions, we can obtain 
an Empirical Power Curve (EPC; Fig. 1b). However, it is more practical 
to manipulate an analytical function. In addition, there may be some 
noise in the data which may be smoothed by an analytical fit. For these 
reasons, we adjust the parameters of an analytical function to fit the EPC 
and derive an Empirical Parametric Power Curve Function (EPPCF, 
Fig. 1c). 

The analytical function that we use is 

LF(v) = εa*
2
π*arcsin

(

1 − exp

[

−

(
v

c0*εc

)k0*εk
])

(3) 

It computes the load factor as a function of wind speed ν, with three 
free parameters (εa, εc, εk). In order to better quantify the power curve 
deviation degree compared to a manufacturer’s Power Curve (PC), the 
parameters are expressed as a standard manufacturer PC shape param
eters (c0, k0) weighted by coefficients (εc,εk). The nominal value for these 
coefficients is 1, and we shall analyze their deviation from this value. 

Per construction, EPPCF is close to zero for low wind speeds and 
saturates to εa for high wind speed. The two other free parameters, 
(εc,εk) can be adjusted to fit the shape of the empirical function between 
these two extremes, which control the load factor inflection point in 
wind speed axis and the growth rate of the power curve respectively. 
When the coefficients vary, the power curve changes in different ways as 
illustrated in Fig. 2. In the analysis below, we will see how these co
efficients vary among regions and meteorological models. 

By construction, the load factor that is adjusted by our method has 
proper statistical properties. Another advantage of this method is that it 
does not require the load factor and wind speed time series, that are used 
for the calibration of the function, to be over the same periods, as long as 
they are long enough to be statistically representative. Also, the EPPCF 
can be calibrated against current climate values, and then used to esti
mate the load factor from future climate simulations. Furthermore, a 
wind turbine technology improvement, quantified by the change in the 
manufacturer PC, can also be accounted for through an adjustment of 
the EPPCF as illustrated in Fig. 1d. 

2.2.4. Technology improvement 
One of the objectives of this study is to propose a method that can be 

used to evaluate future wind power production, accounting for both the 
change in atmospheric circulation and the improvement of the wind 
turbines. The EPPCF that can be obtained as described above corre
sponds to the current wind fleet characteristics. In the future, technology 
will evolve as has been observed in the last decade in rated power, rotor 
diameter and hub height increase, and a slight decrease in specific 
power (i.e. rated power capacity per swept rotor area) [60,61]. Along 
with increasing wind turbine hub height, advanced specific power is 
considered as a promising way to increase load factor and reduce LCOE 
cost [60,62–64]. Note that the power curve shape is very sensitive to the 

specific power value; a smaller specific power wind turbine reaches the 
rated power for smaller wind speeds than that with larger specific power 
[62]. Since we focus on the load factor, we shall study two important 
aspects to measure its potential improvement: (i) the improved power 
curve shape due to the decrease of specific power (linked to the rotor 
diameter), and (ii) the increased wind speed due to the increase of hub 
height. Note that the low specific power wind turbines are designed for 
sites with low wind speed site, as a larger rotor captures more kinetic 
energy for such conditions. Conversely, large rotor is poorly suited for 
sites with high wind speed, as it experiences more mechanic stress in 
high and turbulent wind conditions. Nevertheless, material improve
ment and better controlling system may make it feasible in the future. 

In the following, we describe how we account for both the expected 
decrease in specific power and the expected increase in hub height to 
correct the EPPCF. As a prior estimate, we use the EPPCF that is derived 
from the current wind turbine fleet. The impact of the change in specific 
power is estimated on the basis of the parameters (c0,k0); i.e. we change 
the values from those of the current fleet to those of the expected fleet 
(manufacturer values). As for the impact of the increased hub height, we 
use a traditional power law (Eq. (4)) [65] to estimate the change in 
typical wind speed: 

v2 = v1*
(

h2

h1

)α

(4) 

Where the exponent α is the wind shear coefficient that depends on 
the surface roughness and velocity [65,66] as: 

α =
(z0

h1

)0.2
*[1 − 0.55*log(v1)] (5) 

Where v1 is the wind speed corresponding to current hub height h1, 
v2 is the increasing wind speed corresponding to a higher hub height h2. 
The surface roughness for onshore wind turbines in open flat terrain, 
grass, few isolated obstacles is approximately 0.03, which could be used 
as a general surface roughness value in our onshore wind study. The 
offshore surface roughness is approximately equal to 0.0061 [67]. 

In conclusion, an improved EPPCF can be expressed as: 

LF(v) = εa*
2
π*arcsin
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(6) 

where (εa, εc,εk) are obtained from the current fleet and atmospheric 
model adjustment, k*

0 and c*
0 are derived from the manufacturer PC and 

h1 and h2 are the typical hub heights for the current and future 
technologies. 

2.2.5. Intermittency and spatial de-correlation quantification metrics 
To quantify the regional spatial decorrelation effects, we first 

investigate the Pearson’s correlation coefficient to statistically measure 
the linear correlation of wind production time series among regions. 

We then use the method proposed by Suchet et al [36] to quantify the 

Fig. 2. Impact on the theoretical power curve functions when one parameter is changed and the others are kept to the nominal value of 1.  
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regional/national wind production intermittency. For a given temporal 
interval Δt, we first evaluate the statistics of the variation P(t+Δt) − P(t)
normalized by the mean of P. We define the intermittency as the dif
ference between the 5 and 95 percentiles of the distribution. Low values 
indicate power stability whereas large values indicate a high variability. 

I(Δt) = interpercentile5;95

({
P(t + Δt) − P(t)

P

})

(7) 

Another indicator of the wind power intermittency, useful for power 
system planning, is the capacity credit, i.e. the power fraction that can 
be reasonably expected when needed. The capacity credit is defined in 
[68] as “the amount of firm conventional generation capacity that can 

Fig. 3. France onshore wind power curve hourly validation by region. The density histogram shows the ERA5 wind speed at 100 m for the year of 2013–2019 
together with the regional wind load factor provided by RTE. The red curve is the EPC derived by matching the wind speed and load factor CDF, whereas the green 
curve is the fitted curve of EPC using EPPCF method. 
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be replaced with wind generation capacity, while maintaining the 
existing levels of security of supply”. A full evaluation of this capacity 
credit requires a detailed analysis of power system load and wind pro
duction profiles, accounting for the conventional generation capacity, 
and reliability level. Such analysis is beyond the scope of the paper. In 
[68], a simple method focuses on the periods of high demand (highest 
10%) and computes the mean wind load factor below the 15 percentile. 
It provides a quantification of the wind potential during periods of high 
demand and low wind. This can be done either over the year, or for each 
month. Here, we make a similar analysis although we search for even 
calmer (no wind) conditions, i.e. we consider high demand (highest 10% 
demand) and the lowest 5% wind power percentile. Although this 
cannot be seen as the true capacity value, it provides a metric that fo
cuses on the most problematic cases of demand-production balance for a 
high penetration of wind power in the electricity mix. 

3. Onshore wind power output potential and intermittency 

3.1. Method validation 

We simulate the load factor time series for the 12 administrative 
regions of continental France using the EPPCF method and based on the 
reported wind load factors and ERA5 reanalysis and EURO-CORDEX 
data from 2013 to 2019. The simulated result is then compared to the 
observed data. 

3.1.1. Hourly validation 
We first look at the ERA5 reanalysis data whose wind field is 

representative at a given time. Fig. 3 below illustrates the EPC and 
EPPCF compared to historical hourly data of 12 administrative regions 
in France. The historical scatter plot of load factor as a function of wind 
speed is based on the observed load factor and a representative regional 
wind speed calculated using Eq. (2). It shows the expected shape of a 
power curve with a saturation at 0 for low wind and a saturation at a 
value close to 1 for large winds. There are a few hourly outliers that may 
result from errors in the atmospheric model or wind power losing fac
tors. For the PACA and Ile de France region, the scatter is larger than for 
other regions, which is most likely due to the low installed capacity 
(<=100 MW). Based on the method described is Section 2.2, we derive 
two empirical power curves, here shown in red and green, that, as ex
pected, goes through the data points. The red curve corresponds to the 
EPC, based on the cumulative histograms of wind speed and load factor, 
whereas the green curve shows its analytical fit using Eq. (3). The fit 
provides the parameters that are discussed below. In particular, the 
saturation value εa shows significant variability among regions, as it 
ranges from 0.84 to 0.95. Similarly, the rated wind speed and growth 
rate of the power curve also show regional variability which is most 
likely the result of different model bias between regions, due to the 
surface roughness among other possible causes. 

A statistical analysis of the capacity of the empirical model to 
reproduce the observed load factors is presented in Table 2. As 
mentioned above, the installed capacity in PACA and Ile de France are 
comparatively low so that the sample is less representative and leads to 
significant uncertainty in the statistics. Apart from these two regions, the 
region Auvergne-RA also performs worse than other regions. A large 
fraction of this region is located in mountain areas, so the complexity of 
the terrain makes it difficult to estimate a representative wind speed at 
the regional scale in our method. Apart from the 3 regions mentioned 
above, the Root Mean Square Error (RMSE) of observed historical versus 
EPPCF-simulated load factor ranges from 0.055 to 0.068 and the cor
relation varies from 0.93 to 0.97. The observed and simulated regional 
load factors can also be aggregated at the national scale. The aggrega
tion reduces the statistical noise which leads to significant improvement 
in the statistics. Indeed, at the national scale, the RMSE is lower than at 
the regional scale, while the correlation between observed and simu
lated load factors is larger. 

We also evaluate the distribution property of the simulated load 
factor with the whole nation as an example. The statistics of the load 
factor are important for the planning of the electricity mix with a large 
share intermittent renewable source, in particular regarding the fre
quency of periods with very low load factor. As expected, (Fig. 4), the 
distribution of the load factor as represented by the analytical model 
compares well with the empirical distribution. Quantitatively, the 
fraction of time when the load factor is less than 0.02, 0.05, 0.10 and 
0.20 in simulation are 1.5%, 8.8%, 25%, 53.6% compared to 1%, 7.6%, 
24.7% and 55.3% respectively. 

We then look at EURO-CORDEX models whose statistical property is 
expected to be realistic but with no attempt to represent reality at a 

Table 2 
Summary of the EPPCF model performance of hourly data from 2013 to 2019. For each region, one provides the RMS difference between the observed and modeled 
load factor, the hourly and annual mean correlation between these two variables, and the mean load factor, both observed and simulated.  

Region RMSE Hourly correlation Annual mean correlation Mean load factor (Observation) Mean load factor (Simulation) 

Grand-Est  0.0572  0.968  0.989  22.45%  22.58% 
Nouvelle-Aquitaine  0.0585  0.951  0.973  20.59%  21.16% 
Normandie  0.0553  0.970  0.979  23.55%  23.54% 
Bourgogne-FC  0.0763  0.934  0.787  21.91%  22.34% 
Hauts-France  0.0549  0.970  0.924  23.69%  23.62% 
Bretagne  0.0568  0.957  0.922  20.50%  20.53% 
Centre-VL  0.0681  0.953  0.907  23.14%  23.56% 
Pays-Loire  0.0555  0.963  0.928  21.96%  22.13% 
Occitanie  0.0653  0.955  0.394  27.78%  27.98% 
Auvergne-RA  0.0836  0.873  0.182  22.56%  22.62% 
Ile-France  0.1017  0.900  0.951  21.15%  21.05% 
PACA  0.1233  0.896  0.921  25.25%  25.20% 
National scale  0.0394  0.974  0.887  23.10%  23.23%  

Fig. 4. The cumulative distribution of observed (black solid line) and simulated 
national load factor (dash line) for the year of 2013–2019. 
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given time. To validate its short-term scale (3 h) statistical property, we 
compare their distributions and mean load factor to observation. We 
only show the national result below. As shown in Fig. 4, all EURO- 
CORDEX models show a statistical distribution of the load factor that 
is well represented by the analytical model, although there are some 
small differences among models. Quantitively, the average difference of 
the fraction of time when the load factor is less than 0.02, 0.05, 0.10 and 
0.20 in simulations are 0.5%, 3.4%, 3.6% and − 0.8%. The biggest dif
ference we find is the load factor frequency between 0.02 and 0.05 with 
a small underestimate in the simulation. The average mean in EURO- 
CORDEX models range from 0.227 to 0.232 compared to 0.231 in 
observation, which is minimal. 

3.1.2. Seasonal-diurnal validation 
Wind power presents a significant seasonal and diurnal pattern in 

observation, it is therefore necessary that the simulated wind can 
represent well these patterns for the reason that electricity demand also 
shows a seasonal and diurnal trend which may somehow different. Fig. 5 
shows the combined seasonal and diurnal properties of the whole 
nation. The left panel compares the simulated wind based on ERA5 
reanalysis with observations. The right panel shows the result of EURO- 
CORDEX model with an example of CERFACS-CNRM-CM5-ALADIN63 in 
RCP4.5 emission scenario, other EURO-CORDEX models show similar 
trend. Overall, ERA5 outperforms EURO-CORDEX models in both sea
sonal and diurnal trend. Nonetheless, the seasonal pattern is well 
replicated in both ERA5 reanalysis and EURO-CORDEX models, with a 
load factor that is about twice large in winter than it is in summer, with 
spring and autumn in between. However, the EURO-CORDEX models 
show a diurnal cycle that is notably different than what is observed; 
while ERA5 shows a much better agreement with the observations. This 
diurnal difference is further discussed in Section 6. 

3.1.3. Inter-annual validation 
Let us first point out that the observed wind production period (7 

years) is somewhat short for a proper inter-annual analysis. Nonetheless, 
we attempt to evaluate ERA5 inter-annual statistical property by 
computing the correlation between observed and simulated annual 
mean load factor. The result is shown in Table 2. On the whole, most of 
the regions present a high correlation between the simulation and 
observation (i.e. > 0.9). While for some regions, notably in Occitanie 
and Auvergne-RA where the terrain is complex, the simulation result is 
not as good. Again, this indicates that ERA5 reanalysis data cannot 
reproduce accurately the wind field in regions with complex terrain. For 
EURO-CODDEX models, whose data does not aim at providing real 
values at a given time, the year-to-year variations are not expected to 
correlate, although the inter-annual statistical variability can be 

compared. The observed inter-annual variability (standard deviation) at 
the national level for the year of 2013–2019 is 0.01. The EURO-CORDEX 
models’ inter-annual variability ranges from 0.009 to 0.023, which is 
therefore larger than what is observed for most models. One should 
however interpret this result with caution due to the limited time period 
(7 years) which is insufficient for a proper statistical evaluation. 

3.2. Measuring technology improvement 

There has been a gradual improvement of wind turbine in the last 
decade, and this is expected to continue in the future. Therefore, it is 
important to integrate the wind turbine technology improvement in the 
near-term and long-term simulation of wind power production. The 
reduced specific power is a mean to improve the load factor [63] and 
then to decrease the mean cost of wind electricity. Here, we analyze the 
impact of technology improvement using the method described in Sec
tion 2.2.4. 

In France, most wind turbine hub height are around 80–100 m, while 
the rotor diameter varies between 80 m and 110 m, with an average 
rated power of around 2.5 MW [73]. We have therefore chosen the wind 
turbine model GE 2.5–100, with a hub height of 75/85 m, rotor diameter 
of 100 m, rated power of 2.5 MW, and specific power of 318.3 W/m2 as 
representative of the current technology. For a representative descrip
tion of the future, we have chosen a wind turbine with 3.75 MW rated 
capacity, hub height of 115 m, rotor diameter of 130 m and specific 
power of 282.5 W/m2 as suggested in [63]. We suppose that in 2020, the 
average new installed wind turbine hub-height is 90 m and the specific 
power is 318.3 W/m2. These values are extrapolated linearly to 2050. 
Assuming that the reduction of the specific power is linear each year, 
with an average installed wind power capacity of 2 GW each year, along 
with the current installations, we can estimate the distributions of the 
wind turbine hub height and specific power in 2030. While in 2050, we 
only account for the last 25 years installations considering the lifetime of 
wind turbine. The wind turbine specific power and average hub height 
are summarized in Table 3. The correspondent power curve is generated 
by a parametric model [69] and is then fitted using the EPPCF model. 

Fig. 5. France national onshore wind power seasonal-diurnal validation of ERA5 (left) and CERFACS-CNRM-CM5-ALADIN63 RCP4.5 as an example of EURO- 
CORDEX model (right). The dash lines and solid lines are observed and simulated respectively from 2013 to 2019. 

Table 3 
Summarize of new installed and cumulative wind turbine characteristics in 
2020, 2030 and 2050.   

2020 2030 2050 

New installed hub height (m) 90 115 165 
New installed specific power (W/m2) 318.3 282.5 210.9 
Mean hub height of installed park (m) 80 93 135 
Cumulative specific power (W/m2) 318.3 307.5 253.9  
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In Fig. 6, we estimate how the average load factor of onshore wind 
may improve in the near-term (2030) and long-term (2050) future with 
an advanced hub-height and an advanced specific power in France. The 
result shows that in the near term, the increased hub-height leads to an 
improvement of load factor by about 4%, the simulated decrease of 
specific power similarly leads to an increase of 3%, for a total of 7% (i.e. 
from 0.231 to 0.246 in absolute at a national level). Assuming that this 
tendency continues after 2030 (a strong assumption given the un
certainties in further development at this temporal horizon) the national 
load factor may be improved from 0.231 to 0.301. 

3.3. Intermittency and spatial de-correlations 

Fig. 7 presents the intermittency and spatial correlation results of the 
current wind power fleet in France. The left panel shows the Pearson 
correlation coefficient among regions for onshore wind production. 
Interestingly, the correlation is close to zero between Mediterranean 
regions and other regions. Conversely, some regions that are 
geographically close to each other show a strong correlation (e.g. 
northeast regions Hauts-de-France and Normandie, northwest regions 
Grand-Est and Bourgogne-FC, central regions Ile-France and Centre-VL, 
west and southwest regions Pay-Loire and Bretagne with Nouvelle- 
Aquitaine). The correlation coefficients decrease with the distance, 
which is consistent with the findings of previous studies (e.g. [32–35]). 

Fig. 7 (center) quantifies the regional and national intermittency for 
both the wind power production and the demand. Let us recall that it 
shows the 5 and 95 percentiles of the relative changes in production. 
Thus, the curves on the upper part of the figure depict an increasing 
power, whereas the lower part show cases with a decreasing power. 
Interestingly, the figure is highly symmetrical, indicating that the large 
wind power increases are as large as the decreases. As with other results 
shown above, the results over Ile-de-France and PACA appear less reli
able due to the low number of wind farms in these two regions. The two 
regions in the south of the country (i.e. Occitanie and Auvergne-RA) 
show less intermittency than the others. As expected, the aggregation 
at the national scale does significantly reduce the intermittency. The 
average regional intermittency can be decreased by 53% for Δt = 1h, 
38% for Δt = 6h, 29% for Δt = 24h and 29% for the whole studies 
period. However, it remains large compared to that of the demand. 

Quantitatively, the intermittency metric is ± 15% for national onshore 
wind production compared to ± 7% for the demand variation for Δt =

1h; ±63% compared to ± 24% for Δt = 6h, and ± 125% compared to ±
16% for Δt = 24h (note that the demand variation at 24 h is lower than it 
is at 6 h due to the diurnal cycle). These results demonstrate that the 
intermittency of the wind production is much larger than that of the 
demand so that the current mid-load and peak-load installations 
designed to cope with the fluctuations of the demand may not be suf
ficient to face similar variations of the productions if the wind power 
fleet is developed significantly to replace the baseload nuclear power. 

Fig. 7 (right) shows the capacity credit, as defined above, which 
provides some indication of the minimal wind load factor in conditions 
of high demand. The regional values are on the order of 1%; Occitanie 
and Auvergne-RA show the highest value, which is consistent with the 
previous finding that these two regions are less intermittent than the 
others. The capacity credit for the national scale (3.6%) remains low but 
is very much larger than those at the regional scale, which confirms the 
impact of spatial de-correlation to reduce the intermittency of the wind 
power production. 

A question of interest is whether the intermittency, at the national 
scale, could be reduced by an optimal spatial distribution of the wind 
farms. Currently, a large fraction of the wind farms is located in a few 
regions that show significant correlation. Could a better distribution 
lead to reduced intermittency? To answer this question, we use four 
metrics of the intermittency (i.e. the temporal variability as in Fig. 5b for 
Δt = 1, 6, and 24 h, and the capacity credit as defined above). One as
sumes that the wind farm distribution within a region is fixed, but 
optimize the relative fraction of farms between regions. Compared to the 
current distribution, the optimization decreases the wind power vari
ability by 14%, 22%, 23% at 1 h, 6 h, 24 h intervals respectively, and 
increases the capacity credit up to ≈5.5%. Note that the wind farm 
distribution is rather different from the current situation, and depends 
strongly on the optimization criteria (Fig. 8 left). Thus, the positive 
impact of region-to-region decorrelation can be optimized so as to 
reduce the intermittency at the national scale, but the improvement 
remains modest. In fact, the impact of the spatial distribution on the 
criteria is so small that the optimization procedure struggles for finding 
the “best” distribution, and the result may depend on the hypothesis and 
the period that is chosen for the optimization. One robust result is that 

Fig. 6. Load factor improvement including advanced hub-height effect (green bar), advanced specific power effect (yellow), and combined effects of hub-height and 
specific power improvement (red), compared to current status in 2020 (blue), as derived from EPPCF model using ERA5 reanalysis wind speed data for regional and 
national onshore wind in 2030 (left), and 2050 (right). 

Y. Cai and F.-M. Bréon                                                                                                                                                                                                                        



Energy Conversion and Management 240 (2021) 114276

10

the wind production in southern regions is less variable than in the 
North, so that more wind farms should be installed there when aiming at 
a more stable production. Another robust result is that the variability of 
the wind production, at the national scale, remains high, even for an 
optimized distribution. Finally, we acknowledge that this analysis is 
rather theoretical as the placement of wind farms are limited by factors 
other than the national production optimization, such as the maximized 
yearly production of the wind farm, land availability and social 
acceptance. 

4. Offshore wind power output potential and intermittency 

4.1. Load factor estimation 

There are currently no operational offshore wind farms in France. We 
therefore do not have empirical power production data representative of 
the French coasts. To calibrate the relationships between modeled wind 

speed and wind power production (i.e. the EPPCF), we shall therefore 
use data available for the German coasts, but corrected by country- 
specific wind turbine generation profile. According to the Germany 
offshore wind energy development status report [70], at mid-2019, 
Germany offshore wind turbine has an average hub height of 94 m, 
rotor diameter of 130 m, and specific power of 368 W/m2. In France, the 
Saint-Nazaire offshore wind project uses GE Haliade 150–6 MW wind 
turbine (hub height: 100 m, rotor diameter: 150 m, rated power: 6 MW, 
and specific power: 335.9 W/m2). We shall use the characteristics of this 
turbine to analyze the potential of offshore wind production in France. 

We first apply the EPPCF method to the wind farms off the coast of 
Germany, which allows an empirical estimate of the offshore power 
curve, with respect to the modeled wind. The validity of the empirical 
function can be compared to the true load factor at the hourly scale. The 
accuracy of the empirical fit is acceptable, with an RMSE of 0.10 and a 
correlation of 0.93. The comparison plots (Fig. 9) confirm the fair 
agreement between the modeled and measured load factor but show that 

Fig. 7. Onshore wind intermittency and spatial decorrelation current state quantification. Pearson correlation coefficients of onshore wind load factor time series 
among regions (left). Regional wind load factor (solid line), national wind load factor (dashed line in darkred) and national demand (dashed line in orange) 
intermittency quantification with regard to rapidity and amplitude of wind power variation; namely, the 5th and 95th percentile of relative wind load factor or 
demand change relative to average wind load factor or demand at intervals (Δt) from 1 h to 70 h (center). Regional and national onshore intermittency quantification 
with regard to equivalence of ‘firm’ capacity in long-term system planning; namely, the capacity credit measured by the average load factor exceeding 95th percentile 
over top 10% load periods (right). The data is based on hourly historical observations from 2013 to 2019 provided by RTE. 

Fig. 8. Results of the optimization of the Onshore wind regional distribution aiming at a reduction of the national production intermittency, based on different 
metrics (i.e. Metric1: lowest relative wind power change for Δt = 1, Metric2: same as metric1 but for Δt = 6, Metric3: same as metric1 but for Δt = 24, Metric4: 
highest capacity credit). Left: Regional distribution of the installed capacities for the present and the various criteria. Center: Representation of the intermittency for 
the current and the optimized distribution. Right: Capacity credit for the current and optimized distributions. 
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the model often leads to large over-estimates in case of strong wind. The 
most likely hypothesis for these overestimates is curtailment of the wind 
farms for protection when a storm affects the area. These cases with high 
wind speeds are rare, so that the impact on the overall statistic is not 
significant. 

For the development of offshore wind power in France, several sites 
are considered in the English Channel, the Atlantic, and the Mediterra
nean, as shown in Fig. 10. The potential developments in the Mediter
ranean are not as advanced as those over the west coast because the 
waters are deeper which then requires the use of a floating technology, 
which is less mature than the grounded technology. 

The EPPCF that was calibrated against the offshore wind farms of 
Germany is then applied to the modeled wind at the location of wind 
projects off the coast of France. Both ERA5 reanalysis and EURO- 
CORDEX modeled wind are used. One may question the ability of the 
model to accurately reproduce the wind gradient close to the coast. In 
addition, ERA5 and EURO-CORDEX have a spatial resolution of 0.25◦

and 0.11◦ respectively, which is similar or larger than the typical dis
tance of the offshore wind farms to the coast (around 15 km). As a 
consequence, the model wind may be representative of a surface that 
contains both land and sea surface. We therefore investigate how the 
distance to the coast impacts the calculated mean load factor. This also 
appears necessary as offshore wind installations may be further away 
from the coast in the future. We therefore analyzed how the mean load 
factor increases as the wind farm location is moved away from the coast 
in the model. For ERA5, we simulated locations away from the original 
position 1 and 2 times the 0.25◦ spatial resolution (i.e. 28 km and 56 km) 
and searched for the highest value. For EURO-CORDEX models, we used 
a similar procedure but with 5 distances (i.e. 12 km, 24 km, 36, 48 km 
and 60 km). 

Fig. 11 shows the results of this analysis. First, there is a large 
dispersion among the EURO-CORDEX models with a full range of low 
factor that is close to 0.1, for a mean value of 0.36. Second, the load 
factor increases, as expected as the theoretical location of the wind farm 
moves away from the coastline. 

There is evidence for outliers in the load factor derived from the 
costal wind speed in EURO-CORDEX models. Some of the load factor 
computed for the true location of the wind farm, where the distance to 
the coast is on average 15 km, are surprisingly low, as for Saint-Nazaire 
according to ERA5 (25%), the Dunkerque site according to IPSL-CM5A- 
MR-RCA5 (<22%) and most sites according to HadGEM2-ES-RCA5. 
Most of ERA5 derived load factors are around 30%, and do not exceed 
34%. The load factors from the EURO-CORDEX ensemble of models are 
quite dispersed, and the median load factors for most sites are below 
30%. As expected, the load factors increase with the distance from the 
coastline. The estimates based on the ERA5 simulation increase from 

Fig. 9. Comparison of the observed and modeled load factor for offshore wind 
power off the coast of Germany. The colored scatterplot is a density histogram 
of reported load factor and ERA5 wind speed at 100 m for the year of 
2016–2018; the red curve is the derived EPC by matching the wind speed and 
load factor CDF; the green curve is the EPPCF method obtained though the best 
fit procedure. 

Fig. 10. Annual mean wind speed (ERA5 model) and location of the offshore wind farm projects.  
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30.5% to 35.1% in average with an addition grid move (28 km) from its 
original location. The EURO-CORDEX increases from 28.2% to 33.7% in 
average of 1st quartile, from 30.9% to 35.9% in median, and from 33.4% 
to 37.8% in 3rd quartile with two additional grids move (24 km). There 
is a tendency for saturation (limited further improvement), with an extra 
increase of 1.9% in average for ERA5 with a further additional grid move 
(28 km), and 1.6% in average for EURO-CORDEX with 3 additional grids 
away from the coast (36 km). 

The findings that the average load factor increases significantly away 
from the coast is consistent with the results of wind speed variation near 
the coast observed from satellite Synthetic Aperture Radar [71] that 
focus on the Baltic sea. It indicates variation is significant when the coast 
distance is less than 20 km, with a variation of 0.7 m/s compared to 7 m/ 
s mean wind speed. While beyond 20 km, the change is only 0.2 m/s 
with respect to 8.1 m/s mean wind speed. The question remains whether 
the large gradient of the wind speed within ≈20 km of the coast is a true 
feature or whether this is a result based on simulations with a resolution 
that is similar or coarser. Indeed, for the sites at Le Treport, Courseulles, 
Saint–Nazaire and Gruissan, the ERA5 estimates are very much different 
when considering the true location and a simulated one just one pixel 
away in the model grid. The EURO-CORDEX model show similar fea
tures, when computing one or two pixels away from its original model 
grid. Because the French sites are close to the coastline, the model res
olution may not be able to capture the true offshore wind, so that we use, 
in the following, a location away (ERA5) and 2 locations away (EURO- 
CORDEX) from the coast for a less-biased estimate of the wind that is 
used to compute the load factor and its variability. 

Under such hypothesis, the simulated average load factor in ERA5 is 
35.1%, although the sites in English Channel and Mediterranean tend to 
have a higher load factor than those over the Atlantic Ocean. The 
average (between sites) median (among models) load factor in CORDEX 
ensemble is 35.9%. Note that the annual mean load factors are lower 

than those of the German wind farms (around 39%) even considering 
optimistic hypothesis regarding the ‘effective’ distance to the coast 
indicating that the wind resource for the French sites is not as high as it is 
in the North Sea. 

4.2. Measuring technology improvement 

According to [63], the reduction in specific power is a secondary 
factor for the LCOE cost reduction for offshore wind projects. We thus 
assume no change in the specific power at 335.9 W/m2, as in 2020, but 
consider an increase of the hub height from 100 m to 125 m in 2030 [63] 
and then 175 m in 2050. Assuming a constant installation rate and a 
lifetime of 25 years, the mean hub-height is then estimated as 114 m and 
145 m in 2030 and 2050 respectively. The wind speed increase at hub 
height is modeled using the method as described in Section 2.2.4. 

Fig. 12 shows the expected improvement in averaged load factor due 
hub height in 2030 and 2050. The load factor increase is very limited, 
≈0.005 in 2030 and ≈0.014 in 2050, because the vertical wind shear in 
the ocean is not as large as it is over land due to the lower surface 
roughness. The other factors, such as reducing wake effects, or better 
controlling system, have not been studied, since there are expected to 
have a limited contribution. 

4.3. Intermittency and spatial de-correlations 

This section analyzes the offshore intermittency and spatial de- 
correlations over the planned wind farms off the coast of France. We 
use the simulation result of ERA5 assuming that the installation is 
equally distributed among the chosen sites. The method is the same as 
for onshore wind. As shown in Fig. 13 (left), the load factor from the 
Atlantic and English Channel sites are strongly correlated, and so are 
those over the Mediterranean basin. Conversely, there is no correlation 

Fig. 11. France offshore wind farm estimated mean load factor under different distances away from the coast in both ERA5 and EURO-CORDEX from 2013 to 2019. 
d0 marks its original location, d1 marks a location away one times spatial resolution (i.e. 0.11◦ for EURO-CORDEX model and 0.25◦ for ERA5) from its original 
location, d2 marks two times spatial resolution and so on and so forth. The boxplot represents the distribution of the estimated load factor of a wind farm among 
EURO-CORDEX simulations under RCP4.5 (“*” marker) and RCP8.5 (“o” marker) scenario. ERA5 simulated load factor is represented using diamond marker. 
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of the wind power production between the two regions. The intermit
tency of the power is reduced when aggregated at a national level for 
both metrics as shown in Fig. 13 (center and right). The average regional 
intermittency can be reduced by 49% for Δt = 1 h, 47% for Δt = 6 h, 
42% for Δt = 24 h and 40% for the whole studies period. The decrease is 
more significant than onshore wind is probably due to the small size 
offshore wind farm that without any spatial decorrelation. However, the 
variability of the production remains high when compared to that of the 
demand. Even though the Mediterranean sites show a larger intermit
tency than those over the west coast, the capacity credit shows a huge 
increase from a single site to the national aggregated value, thanks to the 
de-correlation between the two main regions. All the metrics shown here 

are better (lower variability, higher capacity credit) for the offshore than 
for the onshore, which confirms previous claims that the former is less 
intermittent than the latter. Quantitatively, the intermittency metric is 
± 15% for national onshore wind production compared to ± 11% for the 
offshore wind variation for Δt = 1 h; ±63% compared to ± 48% for Δt =
6 h, and ± 125% compared to ± 94% for Δt = 24 h, which is a decrease 
of around 25%. The capacity credit is 3.6% for onshore wind compared 
to 6.8% for the offshore wind, that is almost a factor of 2. 

We further investigate the possibility to reduce intermittency by 
changing the installation distribution using the same metrics as for 
onshore wind. Using an optimized distribution of the offshore capacity, 
there is a small reduction of the power variability as shown in Fig. 14 
(center). Similarly, the distribution can be changed so that the capacity 
credit is somewhat improved (Fig. 14 right). This potential improvement 
is relative to a hypothetical case where all 11 offshore wind projects 
contain the same power capacity. The various optimization criteria lead 
to different distribution of installed power, but with a significant share 
for all three sectors, English Channel, Atlantic and Mediterranean. Based 
on our simulation result, Dunkerque is the preferable site in English 
Channel, Groix in the Atlantic sector and Faramen in Mediterranean. 
The optimized variability is by 11%, 45%, 88% at 1 h, 6 h, 24 h intervals 
respectively, and the optimized capacity credit is up to 8.3%. 

5. Changes in wind power characteristics in the context of 
climate change 

In the long-term future, climate change may impact the wind power 
potential and its intermittency, which could consequently influence the 
electricity system operation and planning. In this section, we investigate 
the impact of climate change on the French wind power production by 
comparing the load factor during one future period (2046–2055) and 
one historical period (2006–2015) using 8 EURO-CORDEX simulations 
under two different emission scenarios (RCP4.5 and RCP8.5). The choice 
of these two periods is driven by the long-term electricity system tran
sition studies projected on 2050, while 2006–2015 is representative of 
the present climate. We analyze the long-term change at a regional level 
and also at the aggregated national scale. The onshore wind distribution 
is assumed to be the same as that at the end of 2019. The offshore wind 
power is assumed to be distributed equally over the 11 sites discussed 
above. We first analyze the changes in annual and seasonal mean and 
distribution, and then focus on the changes in intermittency. 

Fig. 12. Annual-average Load factor for various sites where offshore wind 
farms are planned in France, for the improvement due to advanced hub-height 
effect in 2030 (green bar) and 2050 (red bar), compared to current status in 
2020 (blue), as derived from EPPCF model using ERA5 reanalysis wind speed 
data for regional and national offshore wind. 

Fig. 13. Same as Fig. 5 but for the Offshore wind projects. The data used is based on simulation result in using EPPCF method applying ERA5 wind speed data from 
2013 to 2019. 
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5.1. Annual and seasonal mean and distribution change 

The annual and seasonal mean load factor between 2006 and 2015 
and 2046–2055 are computed with 8 different EURO-CORDEX models 
(as in Table 1) under two different emission scenarios (RCP4.5 and 
RCP8.5). In addition to the mean load factor, we analyze whether there 
is a change in the probability of low load factor (which are critical for the 
electrical system), i.e. the change in the fraction of time when the load 
factor is less than 0.02, 0.10 and 0.20. 

As shown in Fig. 15, the results vary widely among model. Even the 
sign of the change is different among model, which demonstrates that 
the impact of climate change on the wind power production is very 
uncertain. The relative change of the load factor at the regional scale is 
of a few percent. At a national level, the average is typically a reduction 
by 1.9%, but this is not a reliable result given the variability among 
models. Even in extreme scenario conditions, the annual mean relative 
load factor change remains within +2.7%/− 8.4%, which is equivalent 
to an absolute load factor change within +0.006/− 0.019. These varia
tions are similar to the inter-annual load factor variability. There are 
indications for a slightly different behavior between Mediterranean re
gions and other regions. The seasonal cycle of the load factor is increased 
in most simulation as it increases during the winter and decreases during 
the summer, i.e. − 2.2% in spring, − 2% in summer, − 3.7% in autumn 
and + 0.1% in winter, which is consistent with the results of a previous 
study [46]. 

Concerning the load factor distribution change, the ‘low’ (compared 
to national load factor) load factor period (<=20%) time length tends to 
show a small increase on average. There is a tendency to increase the 
fraction of time with low (<=10%) or very low (<=2%) load factors, in 
particular in the spring, but not all models agree with this result. For the 
load factor less than or equal to 0.10, the change is more significant, 
with an increase of 0.7% of time in average at a regional level, and 
within +5.6%/− 2.7% between extremes. The national average change 
is around 1%, but within a range of +3.7%/− 1.5%. The figure of load 
factor inferior 0.1 and 0.2 are quite similar, which indicates that the 
changes result mostly from cases when the load factor is smaller than 
0.1. Although the seasonal change is more important, there is a strong 
dispersion among models. 

The annual mean and seasonal changing trend are mostly influenced 
by GCM models, as can be seen CNRM-CERFACS-CNRM-CM5- 
ALADIN63 and CERFACS-CNRM-CM5-RCA4, EC-EARTH-HIRHAM5 
and EC-EARTH-RCA4, although RCM does show a difference at a 
regional level. Conversely, those shared with the same RCM models may 
have a very different trend, for instance, NorESM1-M− HIRHAM5 and 
EC-EARTH-HIRHAM5, M− MPI− ESM− LR− RCA4 and EC-EARTH-RCA4, 
the changing trend can be quite different especially for the seasonal 

change, which sometime show change of different sign between models. 
Overall, the simulation results for the impact of climate change on 

the wind power production in France are in agreement with previous 
studies at the European scale: the impact is small, if there is any. The 
inter-model comparison shows that there is not a single reliable result (i. 
e. one that would be expected by all models) although most models 
indicate an amplification of the seasonal cycle of the load factor with an 
increase during the winter and a decrease during the summer. 

We performed a similar analysis for the offshore sites (not shown) 
and found similar results with changes of limited (negligible) amplitude 
and different signs of the change between models. The amplitude of the 
changes appears small with regard to the inter-annual variability. 

5.2. Annual and seasonal intermittency change 

We performed a similar analysis (not shown) to search whether 
climate change leads to a change of the intermittency metrics (Eq. (7)) 
with Δt = 1, 6 12 and 24. As for the analysis of the load factor change 
described in the previous section, we find no significant change of these 
metrics, and the results vary widely among atmospheric models so that 
there is no reliable conclusion. There is no apparent change in the dis
tribution of the wind power variations, both at the annual scale and for 
the different seasons. 

6. Wind speed model evaluation 

We have used the wind speed derived in different weather and 
climate models in our simulation, including ERA5 at 100 m, and 8 
EURO-CORDEX models under RCP4.5 and RCP8.5 at 10 m as presented 
in 2.1.1. As discussed, those models may present a significant bias and 
thus need to be used with cautious. Therefore, it is meaningful to eval
uate the wind speed models that we have used in our study to better 
understand their limits and how it may impact our conclusions. In this 
section, we will evaluate the model performance from three different 
aspects. Firstly, since we have used the EPPCF model to derive regional 
power curve function using both ERA5 and EURO-CORDEX multi 
models, as presented in 2.2.3, the three free coefficients, εa, εc, εk in the 
power curve function, which are normalized by a standard manufacturer 
PC in France (GE 2.5–100) for onshore wind, in the power curve func
tion Eq. (3) will impact the shape of the power curve as illustrated in 
Fig. 2. Hence, by comparing the power curve coefficients derived in 
different models, we shall be able to evaluate the performance of wind 
speed models to some extent. Since εa is mostly influenced by wind 
power losing effects, we only analyze here εc and εk, which give us an 
indication of the variability of model biases at the regional scale. Be
sides, we also evaluate the coastal effects of different models in offshore 

Fig. 14. Same as Fig. 6 but for the Offshore wind projects.  
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wind estimation. Further, we analyze the diurnal change difference 
deduced by models at different altitudes compared to observation. 

Fig. 16 illustrates a statistical comparison of the two power curve 
shape parameters, (εc,εk), in different models and in different regions. 
The mean value presents an average bias of the coefficients among 
different models across all regions. The standard deviation shows the 
variation of bias among models across different regions. A relative sta
bility of the coefficients (small standard deviation) between regions 

would give us confidence on the model’s ability to represent the wind 
field over regions with different structure. Fig. 16(a) depicts the mean 
value of the two coefficients across all regions. The result shows that 
ERA5 reanalysis at 100 m, the εc is close to 1, and εk is among the 
highest, which means the derived power curve is closest to the standard 
manufacturer PC and shows a better performance than the regional 
model (that provide a wind speed at 10 m). As for climate models, the 
result presents a large difference in model’s performance in average, and 

Fig. 15. Regional and national onshore wind relative mean load factor change & absolute distribution time change (i.e. the absolute change of percentage of time 
when the load factor is inferior to 2%, 10% and 20%) during one future (2045–2055) and one historic (2006–2015) period for annual and 4 different seasons. The 
colored star markers mean for RCP4.5 (left line), the circle markers mean for RCP8.5 (right line). 
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this can be caused by both GCM and RCM models, while the difference 
between different emission scenarios is comparatively small. Fig. 16(b) 
presents the standard deviation of coefficients across all regions. Both 
ERA5 and EURO-CODEX model derived power curve shows an impor
tant variation among regions. The variation induced by RCM models 
tend to more significant than GCM models, for example, the power 
curves derived from CERFACS-CNRM-CM5-ALADIN63 are much more 
dispersed than CERFACS-CNRM-CM5-RCA5 model, we can infer that 
this is caused by RCM model ALADIN63. Again, there is little difference 
in the results for the different emission scenarios. To summarize, the 
variation of power curve shows an important incoherence among 
different models across different regions, while the difference driven by 
different emission pathway scenarios in climate models shows 
comparatively small difference. Both GCM and RCM model presents an 
important influence on this variation. ERA5 reanalysis data, which is 
usually thought as a better presentation of reality and is used in many 
studies to correct climate model bias, nevertheless show significant 
deviations bias. All those diversifications imply the importance of the 
wind speed correction based on specific models and specific regions 
either in ERA5 reanalysis weather model or EURO-CORDEX climate 
models. 

Next, we evaluate the coastal effects of different models in offshore 
wind estimation. In section 3.1, we estimated the offshore load factor 
using different models. The results present a significant load factor 
spatial gradient in some of the models and we also find some ultra-low 
load factor. Therefore, this phenomenon can also be interpreted to 
evaluate the wind speed model’s performance as for coastal wind 
speeds. As can be clearly seen in Fig. 11, the IPSL-CM5A-MR-RCA5 and 
HadGEM2-ES-RCA5 show some important outliers (very low load fac
tor) in the EURO-CORDEX boxplot, even after moving away from the 
coast. While some other EURO-CORDEX models, the load factor outside 
the 1st and 3rd quantile can also be thought as a warning of lower or 
higher wind speed, for instance, CERFACS-CNRS-CM5-ALADIN63 with 
higher load factor and NorESM1-M− HIRHAM5 with lower load factor in 
Mediterranean regions. As for ERA5 reanalysis, some of the sites also 
present a significant load factor gradient, this can be caused by coarse 
resolution of the model or model’s bias. Therefore, one need to be very 
careful when applying directly the ERA5 reanalysis data or EURO- 
CORDEX data to estimate the offshore wind load factor, this could 
generate significant bias. 

Finally, we compared the diurnal difference of model derived at 
different altitude. Regardless of the EPPCF method that we used can also 
be applied to climate model, the data we used still has some limits. The 

Fig. 17 compare the diurnal difference (i.e.19 h–6 h compared to 7 h–18 
h) of models using at different altitudes with observation data. The 
result shows that wind turbine generates more electricity at night than 
during the day in most of regions. The diurnal difference in ERA5 at 100 
m is much smaller than those derived from EURO-CORDEX model at 10 
m. All EURO-CORDEX models at 10 m show an opposite trend of diurnal 
change, so that the use of the 10 wind shall lead to a larger power 
generation during the day than at night. Therefore, one need to be very 
careful when extrapolating 10 m wind speed directly to wind hub 
height, as it may generate a diurnal bias, which could potentially 
overestimate the potential of wind production since its better correlation 
with the demand (higher during the day than during the night). 

7. Summary and conclusions 

The main objective of this paper is an evaluation of the potential of 
wind power at regional and national scale, both onshore and offshore 
with a focus on France as an example. This evaluation includes the 

Fig. 16. Comparison of mean (a) and standard deviation (b) of the power curve coefficients, derived from the EPPCF model. The two figures compare the difference 
among different models across all regions, “*” star markers mean for EURO- CORDEX scenario RCP4.5, circle markers mean for EURO-CORDEX model scenario 
RCP8.5, diamond star markers in purple mean for ERA5. 

Fig. 17. Comparison of diurnal wind production difference (19 h-6 h compared 
to 7 h-18 h) among observation data and simulated wind production time series 
using wind speed of ERA5 at 100 m and multi-ensemble CORDEX models at 
10 m. 
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current mean load factor, its potential for improvement with new 
technologies, the impact of climate change, and the quantification of 
wind power intermittency which may also suggest a better regional 
wind distribution in order to reduce its variability. For this objective, we 
have used wind model data from the ERA5 reanalysis and multi- 
ensemble EURO-CORDEX climate models. All models show significant 
biases in their representation of the wind so that an Empirical Para
metric Power Curve Function (EPPCF) model was developed to calibrate 
a power curve function for a realistic estimate of wind power from 
weather and climate model data at the regional or national scale, on the 
basis of a history of observed load factor distributions. The method was 
validated against the observed load factor and leads to a high correlation 
(i.e., 0.974 at a national level) between observed and modelled power. 
Besides, the method ensures that main statistics of the load factor (mean 
and quartiles values) are properly reproduced. The statistical properties 
can be compared with that of similar studies published in open dataset 
as revealed in [72]. The method was applied at the scale of French 
administrative regions, but it is applicable over any other region. 

The estimate of load factor for offshore sites shows specific chal
lenges as (i) there is no empirical data for such sites off the coast of 
France, and (ii) all models show a large gradient in the wind field in 
proximity of the coast and may not be able to reproduce properly its 
speed at the exact location of the farm. We have used data from wind 
farms off the coast of Germany to calibrate the model and analyze the 
load factor as a function of the distance from the coastline. When using 
the model data at the exact location of the projected wind farms, some of 
the predicted load factor appears rather low (<0.30), not much larger 
than that of the onshore installations. When using the model wind speed 
further away from the coastline, the load factor is significantly increased 
(≈0.35 depending on locations and applicated atmospheric models), but 
remains smaller than that of the offshore wind farms in Germany 
(≈0.39). The sites off the coast of France are not as favorable as those of 
the North Sea that are used in Germany, Denmark or the UK. 

Some improvement of the load factor may be expected in the future 
thanks to technology developments of the wind turbines, related in 
particular to increased hub height and lower specific power. We have 
attempted to quantify the potential impact of these developments and 
found that the load factor, which is currently close to 0.231 at the na
tional scale, may increase to 0.246 in 2030 and up to 0.301 in 2050 with 
optimistic assumptions. Conversely, the potential for improvement for 
offshore wind power appears more limited. 

We paid specific attention to the question of wind power variability 
and its possible mitigation through spatial aggregation. There is very 
little temporal correlation in the wind power production between 
Mediterranean regions and other regions for both onshore and offshore 
wind. Conversely, there is a high temporal correlation for regions that 
are geographically close. Similarly, the modeled production from the 
Atlantic and English Channel offshore sites appears highly correlated. 
We have used two metrics to quantify the wind power intermittency: (i) 
the 5 to 95 inter-percentiles spread of the relative variation between two 
times that are separated by a given time interval; (ii) the capacity credit 
calculated as the typical production during the 5% lowest values, when 
considering only the high demand periods. The intermittency at the 
aggregated national scale can be reduced by around 30% thanks to 
spatial de-correlations. At the regional scale, the relative variations of 
the wind production are much higher than those of the demand: wind 
production varies by 100% of the average within 3–10 h for both in
creases and decreases. Aggregation at the national scale does reduce the 
variability, but it remains much larger than the demand variability, with 
variations of 100% of the average within 14 h. Spatial aggregation has a 
larger impact on the capacity credit, in particular for onshore wind, but 
it remains on the order of 4% for onshore and 7% for offshore at the 
national scale. Some improvement can be obtained through an opti
mized distribution of the wind farms between regions. 

We have also analyzed the impact of climate change on the wind 
power characteristics using 8 EURO-CORDEX models under RCP4.5 and 

RCP8.5 emission scenarios. There is no agreement between models on 
the direction of change (i.e. increase or decrease) for the various sta
tistical parameters that we analyzed. Most remain rather small (i.e., 
from +2.7% to − 8.4% for national annual mean load factor) so that one 
can reliably conclude that climate change will not significantly impact 
the mean load factor, or its other statistical properties, from wind farms 
in France. 

In the context of this paper, we also analyzed the ability of the at
mospheric model to reproduce the wind production at the regional and 
national scale. All models show biases that need to be compensated. 
Surprisingly (to us), the biases vary widely among models, but also from 
region to region. There is strong indication that the model that provide a 
wind speed at 100 m perform better than those that provide a 10 m wind 
speed, as most of the EURO-CORDEX models. In particular, the diurnal 
cycle deduced from the 10 m wind speed is anti-correlated with both the 
100 m modeled wind and the observed wind power production. Finally, 
the modelling of the offshore load factor poses additional difficulty 
given the large gradient of the wind speed away from the coastline. 
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Y. Cai and F.-M. Bréon                                                                                                                                                                                                                        

https://doi.org/10.1175/BAMS-D-14-00226.1
https://doi.org/10.1016/j.renene.2014.11.085
https://doi.org/10.1016/j.renene.2014.11.085
https://doi.org/10.1016/j.renene.2016.12.079
https://doi.org/10.1016/j.renene.2016.12.079
https://doi.org/10.1016/j.renene.2014.10.024
https://doi.org/10.1016/j.renene.2014.10.024
https://doi.org/10.5194/asr-17-63-2020
https://doi.org/10.5194/asr-17-63-2020
https://doi.org/10.1016/j.energy.2018.11.032
https://doi.org/10.1016/j.energy.2018.11.032
https://doi.org/10.1016/j.apenergy.2017.04.066
https://doi.org/10.1016/j.apenergy.2017.04.066
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.energy.2016.08.036
https://doi.org/10.1016/j.energy.2016.08.036
https://doi.org/10.1016/j.energy.2017.05.052
https://doi.org/10.1016/j.energy.2017.05.052
https://doi.org/10.1016/j.renene.2018.03.056
https://doi.org/10.1088/1748-9326/aa8a58
https://doi.org/10.1016/j.energy.2019.116212
https://doi.org/10.1016/j.energy.2019.116212
https://doi.org/10.1016/j.energy.2016.10.097
https://doi.org/10.1016/j.energy.2016.10.097
https://doi.org/10.1002/qj.3748
https://doi.org/10.1016/j.energy.2018.08.153
https://doi.org/10.1016/j.energy.2018.08.153
https://doi.org/10.1016/j.energy.2019.116514
https://doi.org/10.1016/j.energy.2019.116514
https://doi.org/10.1002/we.2095
https://doi.org/10.1002/we.144
https://doi.org/10.1016/j.rser.2015.12.318
https://doi.org/10.1016/j.rser.2015.12.318
https://doi.org/10.3390/en13133366
https://doi.org/10.3390/en13133366
https://doi.org/10.1016/j.renene.2011.05.022
https://doi.org/10.5194/acp-12-9687-2012
https://doi.org/10.5194/acp-12-9687-2012
https://doi.org/10.1175/JAMC-D-12-086.1
https://doi.org/10.1175/JAMC-D-12-086.1
https://doi.org/10.1016/j.apenergy.2019.113397
https://doi.org/10.1016/j.apenergy.2019.113397
https://doi.org/10.1002/joc.4382
https://doi.org/10.1088/1748-9326/aabff7
https://doi.org/10.5194/esd-8-1047-2017
https://doi.org/10.5194/esd-8-1047-2017
https://doi.org/10.1088/1748-9326/11/3/034013
https://doi.org/10.1029/2018JD028473
https://doi.org/10.1007/s10584-012-0486-5
https://doi.org/10.1007/s10584-012-0486-5
https://doi.org/10.1016/j.renene.2016.09.003
https://doi.org/10.1016/j.renene.2016.09.003
https://doi.org/10.1016/j.renene.2019.06.129
https://doi.org/10.1016/j.renene.2019.06.129
https://doi.org/10.1038/s43017-020-0101-7
https://doi.org/10.1016/j.rser.2019.109415
https://bilan-electrique-2019.rte-france.com/wp-content/uploads/2020/02/pdf_BE2019.pdf
https://bilan-electrique-2019.rte-france.com/wp-content/uploads/2020/02/pdf_BE2019.pdf
https://www.ecologie.gouv.fr/sites/default/files/2020-03-25_MTES_SNBC2.pdf
https://www.ecologie.gouv.fr/sites/default/files/2020-03-25_MTES_SNBC2.pdf
https://www.ecologie.gouv.fr/sites/default/files/20200422%2520Programmation%2520pluriannuelle%2520de%2520l%2527e%25CC%2581nergie.pdf
https://www.ecologie.gouv.fr/sites/default/files/20200422%2520Programmation%2520pluriannuelle%2520de%2520l%2527e%25CC%2581nergie.pdf
https://www.ecologie.gouv.fr/sites/default/files/20200422%2520Programmation%2520pluriannuelle%2520de%2520l%2527e%25CC%2581nergie.pdf
https://doi.org/10.1002/qj.3616
https://doi.org/10.1088/1748-9326/6/2/024008
https://doi.org/10.1088/1748-9326/6/2/024008
https://opendata.reseaux-energies.fr/explore/dataset/eco2mix-national-cons-def
https://opendata.reseaux-energies.fr/explore/dataset/eco2mix-national-cons-def
https://opendata.reseaux-energies.fr/explore/dataset/registre-national-installation-production-stockage-electricite-agrege-311219
https://opendata.reseaux-energies.fr/explore/dataset/registre-national-installation-production-stockage-electricite-agrege-311219
https://data.open-power-system-data.org
https://doi.org/10.1002/we.1974
https://doi.org/10.1038/nenergy.2016.135
https://doi.org/10.1038/s41560-018-0137-9
https://doi.org/10.1016/j.rser.2012.12.032
https://doi.org/10.1016/j.rser.2012.12.032


Energy Conversion and Management 240 (2021) 114276

19

[67] Golbazi M, Archer CL. Methods to estimate surface roughness length for offshore 
wind energy. Adv Meteorol 2019;2019:1–15. https://doi.org/10.1155/2019/ 
5695481. 

[68] Milligan M, Porter K. The capacity value of wind in the United States: Methods and 
implementation. Electr J 2006;19(2):91–9. https://doi.org/10.1016/j. 
tej.2005.12.010. 

[69] Y.-M. Saint-Drenan et al., “A parametric model for wind turbine power curves 
incorporating environmental conditions,” ArXiv190913780 Phys., Sep. 2019, 
Accessed: May 25, 2020. [Online]. Available: http://arxiv.org/abs/1909.13780. 

[70] “Status of Offshore Wind Energy Development in Germany First Half of 2019.” 
[Online]. Available: https://www.wind-energie.de/fileadmin/redaktion/do 

kumente/dokumente-englisch/publications/Status_of_Offshore_Wind_Ener 
gy_Development_First_Half_of_2019.pdf. 

[71] Hasager CB, Badger M, Peña A, Larsén XG, Bingöl F. SAR-based wind resource 
statistics in the baltic Sea. Remote Sens 2011;3(1):117–44. https://doi.org/ 
10.3390/rs3010117. 

[72] Moraes L, Bussar C, Stoecker P, Jacqué K, Chang M, Sauer DU. Comparison of long- 
term wind and photovoltaic power capacity factor datasets with open-license. Appl 
Energy 2018;225:209–20. https://doi.org/10.1016/j.apenergy.2018.04.109. 
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