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Jacobi-type algorithm for low rank orthogonal approximation of
symmetric tensors and its convergence analysis1

Jianze Li2, Konstantin Usevich3, and Pierre Comon4

Abstract: In this paper, we propose a Jacobi-type algorithm to solve the low rank orthogonal approximation
problem of symmetric tensors. This algorithm includes as a special case the well-known Jacobi CoM2
algorithm for the approximate orthogonal diagonalization problem of symmetric tensors. We study the
global convergence of this algorithm under a gradient based ordering for a special case: the best rank-2
orthogonal approximation of 3rd order symmetric tensors, and prove that an accumulation point is the
unique limit point under some conditions. We also propose a proximal variant of this algorithm in general
case, and prove its global convergence without any further condition. Numerical experiments are presented
to show the efficiency of this algorithm.

Keywords: Jacobi-type algorithm; low rank orthogonal approximation; symmetric tensors; weak conver-
gence; global convergence
Mathematics Subject Classification: 15A69, 15A23, 49M30, 65F99, 26E05

1 Introduction
As the higher order analogue of vectors and matrices, in the last two decades, tensors have been attracting
more and more attentions from various fields, including signal processing, numerical linear algebra and
machine learning [6, 10, 12, 21, 30, 2]. One reason is that more and more real data are naturally represented
in tensor form, e.g. hyperspectral images, fMRI data, or social networks. The other reason is that, compared
with the matrix case, tensor based techniques can capture higher order and more complicated relationships,
e.g. Independent Component Analysis (ICA) based on the cumulant tensor [8], and multilinear subspace
learning methods [25].

Low rank approximation of higher order tensors is a very important problem and has been applied in
various areas [12, 14, 31]. However, it is much more difficult than the matrix case, since it is ill-posed for
many ranks, and this ill-posedness is not rare for 3rd order tensors [17].

Notation. Let Rn1×···×nd
def
= Rn1⊗· · ·⊗Rnd be the space of d-th order real tensors and symm(Rn×···×n) ⊂

Rn×···×n be the set of symmetric ones [11, 27], whose entries do not change under any permutation of in-
dices. The identity matrix of size n is denoted by In. Let St(p, n) ⊂ Rn×p be the Stiefel manifold with
1 ≤ p ≤ n. Let On ⊂ Rn×n be the orthogonal group, i.e. On = St(n, n). Let SOn ⊂ Rn×n be the special
orthogonal group, i.e. the set of orthogonal matrices with determinant 1. We denote by ‖ · ‖ the Frobenius
norm of a tensor or a matrix, or the Euclidean norm of a vector. Tensor arrays, matrices, and vectors, will be
respectively denoted by bold calligraphic letters, e.g. A, with bold uppercase letters, e.g. M , and with bold
lowercase letters, e.g. u; corresponding entries will be denoted by Aijk, Mij , and ui. Operator •p denotes
contraction on the pth index of a tensor; when contracted with a matrix, it is understood that summation is
always performed on the second index of the matrix. For instance, (A •1 M)ijk =

∑
`A`jkMi`. We denote

A(M)
def
= A •1 MT •2 · · · •dMT

for convenience in this paper. For A ∈ Rn×···×n and a fixed set of indices 1 ≤ k1 < k2 < · · · < km ≤ n, we
denote by A(k1,k2,··· ,km) the m-dimensional d-th order subtensor obtained from A by allowing its indices
to take values in {k1, k2, · · · , km} only.

Problem statement. Let A ∈ symm(Rn×···×n) and 1 ≤ p ≤ n. In this paper, we study the best
rank-p orthogonal approximation problem, which is to find

C∗ def
=

p∑
k=1

σ∗ku
∗
k ⊗ · · · ⊗ u

∗
k, (1.1)
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where

(σ∗1 , . . . , σ
∗
p , u
∗
1, . . . , u

∗
p) = argmin

[u1,··· ,up]∈St(p,n)
σk∈R,1≤k≤p

‖A−
p∑
k=1

σkuk ⊗ · · · ⊗ uk‖. (1.2)

If p = 1, then (1.2) is the best rank-1 approximation problem [16, 19, 22, 33, 13] of symmetric tensors,
which is equivalent to the cubic spherical optimization problem [28, 34, 35]. If p = n, by [5, Proposition 5.1]
and [24, Proposition 5.2], we see that (1.2) is closely related to the approximate orthogonal diagonalization
problem for 3rd and 4th order cumulant tensors, which is in the core of Independent Component Analysis
(ICA) [7, 8, 9], and finds many applications [12].

To our knowledge, the orthogonal tensor decomposition was first tackled in [7], but appeared more
formally in [20], in which many examples were presented to illustrate the difficulties of this type of decom-
position. As shown in [5], the minimum in problem (1.2) exists, and the low rank orthogonal approximation
of tensors (LROAT) algorithm and symmetric LROAT (SLROAT) were developed to solve this problem
based on the polar decomposition. In the special case p = 1, the two algorithms boil down to the higher
order power method (HOPM) and symmetric HOPM (SHOPM) algorithm [16, 19, 33]. More recently, also
based on the polar decomposition, a similar algorithm was developed in [26] to solve problem (1.2), and this
algorithm was applied to the image reconstruction task.

Contribution. The main contributions of this paper can be summarized as follows:

• We propose a Jacobi-type algorithm for solving problem (1.2). This algorithm is exactly the well-
known Jacobi CoM2 algorithm [12] when p = n, and the same as the Jacobi-type algorithm for Tucker
approximation proposed in [18] when p = 1.

• Under the gradient based ordering defined in [18, 23, 32], we prove the global convergence5 of this
algorithm for 3rd order tensors of rank p = 2 under some conditions.

• We propose a proximal variant of this Jacobi-type algorithm, and prove its global convergence without
any further condition.

Organization. The paper is organized as follows. In Section 2, we show that two optimization problems
on Riemannian manifold St(p, n) and orthogonal group On are both equivalent to problem (1.2), and then
calculate their Riemannian gradients. In Section 3, we propose a Jacobi-type algorithm to solve problem
(1.2). This algorithm includes the well-known Jacobi CoM2 algorithm as a special case. In Section 4, we
study the global convergence of this algorithm under the gradient based ordering for the 3rd order tensor
and p = 2 case. In Section 5, a proximal variant of this algorithm is proposed, and its global convergence is
established. In Section 6, we report some numerical experiments showing the efficiency of this algorithm.

2 Geometric properties

2.1 Equivalent problems

Let A ∈ symm(Rn×···×n) and 1 ≤ p ≤ n. Let X ∈ St(p, n) and W̃ = A(X). One problem equivalent to
(1.2) is to find

X∗ = argmax
X∈St(p,n)

f̃(X), (2.1)

where

f̃(X)
def
=

p∑
i=1

W̃2
i···i. (2.2)

Lemma 2.1. ([5, Proposition 5.1]) Let C∗ be as in (1.2). Then

〈A− C∗, u∗k ⊗ · · · ⊗ u
∗
k〉 = 0 and σ∗k = 〈A, u∗k ⊗ · · · ⊗ u

∗
k〉

for 1 ≤ k ≤ p. Moreover, it holds that

‖A− C∗‖2 = ‖A‖2 − ‖C∗‖2 = ‖A‖2 −
p∑
k=1

(σ∗k)2. (2.3)

Remark 2.2. (i) Let C∗ be as in (1.2) and X∗ be as in (2.1). We see from (2.3) that

X∗ = [u∗1, · · · , u∗p] and ‖A− C∗‖2 = ‖A‖2 − f̃(X∗).

In other words, to solve (1.2), it is enough for us to solve (2.1), which is an optimization problem on St(p, n).
(ii) If p = 1, then (2.1) is the cubic spherical optimization problem [28, 34, 35]. If p = n, then (2.1) is the
approximate orthogonal tensor diagonalization problem [8, 9, 12, 23].

5the iterations converge to a unique limit point for any starting point.
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Let Q ∈ On and W = A(Q). Another problem, equivalent to (2.1), is to find

Q∗ = argmax
Q∈On

f(Q), (2.4)

where

f(Q)
def
=

p∑
i=1

W2
i···i. (2.5)

In fact, if X ∈ St(p, n) and Q = [X,Y ] ∈ On, then Wi1···id = W̃i1···id for any 1 ≤ i1, · · · , id ≤ p. The

equivalence between (2.1) and (2.4) follows from the fact that f(Q) = f̃(X).

Remark 2.3. Let W ∈ symm(Rn×n×n) and 1 ≤ p ≤ n. Let W̃ = W(1,2,··· ,p). Then the objective used

in [18, (3.1)] is the sum of squares of all the elements in W̃, while (2.5) is the sum of squares of the diagonal

elements in W̃. They are the same if p = 1.

2.2 Riemannian gradient
Definition 2.4. Let A ∈ symm(Rn×···×n) and 1 ≤ i < j ≤ n. Define

σi,j(A)
def
= Aii...iAji...i, di,j(A)

def
= σi,j(A)− σj,i(A) = Aii...iAji...i −Aij...jAjj...j .

Theorem 2.5. The Riemannian gradient of (2.5) at Q is

grad f(Q) = QΛ(Q), (2.6)

where

Λ(Q)
def
= d ·



0 −d1,2(W) ... −d1,p(W) −σ1,p+1(W) ··· −σ1,n(W)

d1,2(W) 0 ... −d2,p(W) −σ2,p+1(W) ··· −σ2,n(W)

... ... ... ... ··· ··· ···

d1,p(W) d2,p(W) ... 0 −σp,p+1(W) ··· −σp,n(W)

σ1,p+1(W) σ2,p+1(W) ··· σp,p+1(W) 0 ··· 0

... ... ... ... ... ··· ...

σ1,n(W) σ2,n(W) ... σp,n(W) 0 ··· 0


. (2.7)

Proof. Note that

f(Q) =

p∑
j=1

W2
jj...j =

p∑
j=1

(
∑

i1,i2,...,id

Ai1,i2,...,idQi1,jQi2,j . . . Qid,j)
2.

Let V = A •2 QT · · · •dQT. Fix 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then

∂f

∂Qi,j
= 2dWjj...jVij...j

by methods similar to [23, Section 4.1]. Note that W = V •1 QT. We get the Euclidean gradient of (2.5) at
Q as follows:

∇f(Q) = 2dQ


W11...1 W12...2 . . . W1p...p 0 · · · 0
W21...1 W22...2 . . . W2p...p 0 · · · 0
. . . . . . . . . . . . · · · · · · · · ·

Wn1...1 Wn2...2 . . . Wnp...p 0 · · · 0





W1...1 · · · 0 · · · 0
...

. . .
... · · · 0

0 · · · Wp···p · · · 0
... · · · · · ·

. . .
...

0 · · · 0 · · · 0


.

By [1, (3.35)], we get that

grad f(Q) =
1

2
Q(QT∇f(Q)−∇f(Q)TQ) = QΛ(Q). (2.8)

Then the proof is complete.

Remark 2.6. (i) If p = 1, we see that Λ(Q) = 0 if and only if

W21...1 =W31...1 = · · · =Wn1...1 = 0,

which means that the first column of Q satisfies the condition in [28, (2)].
(ii) The definition of Λ(Q) in (2.7) can be seen as an extension of [23, (12)].
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Theorem 2.7. The Riemannian gradient of (2.2) at X satisfies

XT grad f̃(X) = d ·


0 −d1,2(W̃) ... −d1,p(W̃)

d1,2(W̃) 0 ... −d2,p(W̃)

... ... ... ...

d1,p(W̃) d2,p(W̃) ... 0

 . (2.9)

Proof. The proof goes along the same lines as for Theorem 2.5. Note that

f̃(X) =

p∑
j=1

W̃2
jj...j =

p∑
j=1

(
∑

i1,i2,...,id

Ai1,i2,...,idXi1,jXi2,j . . . Xid,j)
2.

Let Ṽ = A •2 XT · · · •dXT. Fix 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then

∂f̃

∂Xi,j
= 2dW̃jj...j Ṽij...j

by the similar methods in [23, Section 4.1]. Note that W̃ = Ṽ •1 XT. We get the Euclidean gradient of
(2.5) at X as follows:

∇f̃(X) = 2d


Ṽ11...1 Ṽ12...2 · · · Ṽ1p...p
Ṽ21...1 Ṽ22...2 · · · Ṽ2p...p
· · · · · · · · · · · ·
Ṽn1...1 Ṽn2...2 · · · Ṽnp...p



W̃1...1 · · · 0

...
. . .

...

0 · · · W̃p···p

 .
It follows by [1, (3.35)] that

grad f̃(X) = (In −XXT)∇f̃(X) + dX ·


0 −d1,2(W̃) ... −d1,p(W̃)

d1,2(W̃) 0 ... −d2,p(W̃)

... ... ... ...

d1,p(W̃) d2,p(W̃) ... 0

 , (2.10)

and the proof is complete.

Proposition 2.8. Let A ∈ symm(Rn×···×n) and 1 ≤ p ≤ n. Let X∗ ∈ St(p, n) and Q∗ = [X∗,Y ∗] ∈ On.

Suppose that f̃ is as in (2.2) and f is as in (2.5). Then

grad f̃(X∗) = 0 ⇔ grad f(Q∗) = 0.

Proof. Let W̃∗ = A(X∗) and W∗ = A(Q∗).

(⇒). By (2.9), we see that di,j(W∗) = di,j(W̃∗) = 0 for any 1 ≤ i < j ≤ p. It follows by (2.10) that

Y ∗Y
T
∗∇f̃(X∗) = (In −X∗X

T
∗ )∇f̃(X∗) = 0,

and thus
Y T
∗∇f̃(X∗) = Y T

∗Y ∗Y
T
∗∇f̃(X∗) = 0.

Then σi,j(W∗) = 0 for any 1 ≤ i ≤ p < j ≤ n, and thus grad f(Q∗) = 0 by (2.7).

(⇐). By (2.7), we see that di,j(W̃∗) = di,j(W∗) = 0 for any 1 ≤ i < j ≤ p. Note that σi,j(W∗) = 0 for

any 1 ≤ i ≤ p < j ≤ n. It follows that Y T
∗∇f̃(X∗) = 0, and thus

(In −X∗X
T
∗ )∇f̃(X∗) = Y ∗Y

T
∗∇f̃(X∗) = 0.

Then grad f̃(X∗) = 0 by (2.10). The proof is complete.

3 Jacobi low rank orthogonal approximation algorithm

3.1 Algorithm description
Let 1 ≤ p ≤ n and C = {(i, j), 1 ≤ i < j ≤ n, i ≤ p}. We divide C to be two different subsets

C1
def
= {(i, j), 1 ≤ i < j ≤ p} and C2

def
= {(i, j), 1 ≤ i ≤ p < j ≤ n}.
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Denote by G(i,j,θ) the Givens rotation matrix,

G(i,j,θ) =



i j

1
. . . 0

i cos θ − sin θ
. . .

j sin θ cos θ

0
. . .

1


,

as defined e.g. in [23, Section 2.2]. Now we formulate the Jacobi low rank orthogonal approximation
(JLROA) algorithm for problem (2.4) as in Algorithm 1.

Algorithm 1: JLROA algorithm

1: Input: A ∈ symm(Rn×···×n), 1 ≤ p ≤ n, a starting point Q0.
2: Output: Sequence of iterations Qk.
3: for k = 1, 2, . . . until a stopping criterion is satisfied do
4: Choose the pair (ik, jk) ∈ C according to a pair selection rule.

5: Solve θ∗k that maximizes hk(θ)
def
= f(Qk−1G

(ik,jk,θ)).

6: Set Uk
def
= G(ik,jk,θ

∗
k), and update Qk = Qk−1Uk.

7: end for

Remark 3.1. In JLROA algorithm, one natural way of choosing the index pairs is the following cyclic
ordering:

(1, 2)→ (1, 3)→ · · · → (1, n)→
(2, 3)→ · · · → (2, n)→
· · · → (p, p+ 1)→ · · · → (p, n)→
(1, 2)→ (1, 3)→ · · · .

(3.1)

In this cae, we call JLROA algorithm the JLROA-C algorithm.

3.2 Elementary rotations

Let W = A(Qk−1) and T (θ) = W(G(ik,jk,θ)). As in JLROA algorithm, we define

hk : [−
π

2
,
π

2
] −→ R+, θ 7−→ f (Qk−1G

(ik,jk,θ)) =

p∑
i=1

T 2
i···i(θ) (3.2)

where f is as in (2.5). Note that G(ik,jk,θ) = G(ik,jk,θ+2π) and T 2
i···i(θ) = T 2

i···i(θ + π) for any θ ∈ R
and 1 ≤ i ≤ p. We see that hk defined on the whole R is π-periodic. So it is sufficient to determine
θ∗k ∈ [−π/2, π/2] such that hk(θ∗k) = max

θ
hk(θ), and choose θ∗k with the smallest absolute value among all

possible θ.
Denote by R = R ∪ {±∞}. Define

τk : R −→ R+, x 7−→ hk(arctan(x)).

Let x = tan(θ) ∈ R and x∗k = tan(θ∗k). Then

τk(x)− τk(0) = hk(θ)− hk(0) =

p∑
i=1

T 2
i···i −

p∑
i=1

W2
i···i.

Lemma 3.2. Let hk be as in (3.2). Then h
′
k(θ) = −2Λ(Qk−1G

(ik,jk,θ))ik,jk .
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Proof. We denote by G(θ) = G(ik,jk,θ) for convenience. It follows from (2.8) and the methods similar to
[23, Lemma 5.7] that

h
′
k(θ) = 〈grad f(Qk−1G(θ)),Qk−1G

′
(θ)〉 = 〈Qk−1G(θ)Λ(Qk−1G(θ)),Qk−1G

′
(θ)〉

= 〈Λ(Qk−1G(θ)),G(θ)TG
′
(θ)〉 = −2Λ(Qk−1G(θ))ik,jk .

We distinguish two cases:

Case 1: (ik, jk) ∈ C1. In this case the restricted cost function in (3.2) takes the form

hk(θ) = T 2
ik···ik (θ) + T 2

jk···jk (θ),

i.e., the elementary updates are exactly the same as in the case of orthogonal diagonalization [23]. In
particular, hk(θ) also has a period π/2 by [23, Section 4.3]. In other words, we can choose θ∗k ∈ [−π/4, π/4]
to maximize hk(θ). Equivalently, we can choose x∗k ∈ [−1, 1] to maximize τk(x).

Case 2: (ik, jk) ∈ C2. In this case, hk(θ) is simply

hk(θ) = T 2
ik···ik (θ),

which, in general, has a period π, and is a trigonometric polynomial of degree d in 2π. However, we can use
the fact that

(T 2
ik···ik (θ))′ = 2(T ′ik···ik (θ))(Tik···ik (θ)),

to find the update, which is given by finding roots of a d-th order real polynomial. Note that this subproblem
is related to rank-one approximation, and therefore the expressions can be found in [16, Section 3.5] and
[18, Section 3.2].

3.3 Subproblems
Let A ∈ symm(Rn×···×n) be of 3rd or 4th order. In the following subsections (Section 3.3.1 and Section 3.3.2)
we show the details of how to find θ∗k in JLROA algorithm. The derivations in Section 3.3.1 and Section 3.3.2
for (ik, jk) ∈ C1 case were first formulated in [9], and can also be found in [23, Section 6.2]. We present
them here for convenience.

3.3.1 3rd order symmetric tensors

Case 1: (ik, jk) ∈ C1. Take p ≥ 2 and the pair (1, 2) (without loss of generality). Let

a = 6(W111W112 −W122W222),

b = 6(W2
111 +W2

222 − 3W2
112 − 3W2

122 − 2W111W122 − 2W112W222).

Then we have that

τk(x)− τk(0) =
1

(1 + x2)2
(a(x− x3)−

b

2
x2), (3.3)

τ
′
k(x) =

1

(1 + x2)3
(a(1− 6x2 + x4)− b(x− x3)).

Denote by ξ = x− 1/x. Then τ
′
k(x) = 0 if and only if

Ω(ξ)
def
= aξ2 + bξ − 4a = 0.

Solve Ω(ξ) = 0 for all the real roots ξ`. Then solve x2 − ξ`x− 1 = 0 for all ` and take the best real root as
x∗k.

6



Case 2: (ik, jk) ∈ C2. Take 1 ≤ p < n and the pair (1,n) (without loss of generality). It holds that

T111(θ) =W111 cos3 θ + 3W11n cos2 θ sin θ + 3W1nn cos θ sin2 θ +Wnnn sin3 θ

=
1

(1 + x2)
3
2

(
W111 + 3W11nx+ 3W1nnx

2 +Wnnnx
3
)
,

and hence

τk(x)− τk(0) = T 2
111(θ)−W2

111 =
1

(1 + x2)3
[(W2

nnn −W2
111)x6 + (6W1nnWnnn)x5

+ (−3W2
111 + 9W2

1nn + 6W11nWnnn)x4 + (18W11nW1nn + 2W111Wnnn)x3

+ (−3W2
111 + 6W1nnW111 + 9W2

11n)x2 + (6W111W11n)x], (3.4)

τ
′
k(x) =

6T111(x)

(1 + x2)5/2
[−W1nnx

3 + (Wnnn − 2W11n)x2 + (2W1nn −W111)x+W11n].

Then we solve
−W1nnx

3 + (Wnnn − 2W11n)x2 + (2W1nn −W111)x+W11n = 0, (3.5)

and take x∗k to be the best point among these real roots and ±∞.

Remark 3.3. (3.5) is similar to equations in [16, Section 3.5], which were for the best rank-1 approximation
of a tensor in symm(R2×2×2).

3.3.2 4th order symmetric tensors

Case 1: (ik, jk) ∈ C1. Take p ≥ 2 and the pair (1, 2) (without loss of generality). It holds that

τk(x)− τk(0) = T 2
1111 + T 2

2222 −W2
1111 −W2

2222

=
1

(1 + x2)4
((8W1111W1112 − 8W1222W2222)(x− x7)

+ (−4W2
1111 + 12W1122W1111 + 16W2

1112 + 16W2
1222 − 4W2

2222 + 12W1122W2222)(x2 + x6)

+ (48W1112W1122 + 8W1111W1222 − 48W1122W1222 − 8W1112W2222)(x3 − x5)

+ (−6W2
1111 + 4W1111W2222 + 72W2

1122 − 6W2
2222 + 64W1112W1222)x4).

Denote by

a = 8(W1111W1112 −W1222W2222);

b = 8(W2
1111 − 3W1122W1111 − 4W2

1112 − 4W2
1222 +W2

2222 − 3W1122W2222);

c = 8(18W1112W1122 − 7W1111W1112 + 3W1111W1222

− 18W1122W1222 − 3W1112W2222 + 7W1222W2222);

d = 8(9W1111W1122 − 32W1112W1222 − 2W1111W2222

+ 9W1122W2222 + 12W2
1112 − 36W2

1122 + 12W2
1222);

e = 80(6W1122W1222 −W1111W1222 − 6W1112W1122 +W1112W2222).

Then

τ ′k(x) =
1

(1 + x2)5
[a(1 + x8) + b(x7 − x) + c(x6 + x2) + d(x5 − x3) + ex4].

Denote by ξ = x− 1/x. It follows that τ
′
k(x) = 0 if and only if

Ω(ξ)
def
= aξ4 + bξ3 + (4a+ c)ξ2 + (3b+ d)ξ + 2a+ 2c+ e = 0.

Solve Ω(ξ) = 0 for all the real roots ξ`. Then solve x2 − ξ`x− 1 = 0 for all ` and take the best real root as
x∗k.
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Case 2: (ik, jk) ∈ C2. Take 1 ≤ p < n and the pair (1,n) (without loss of generality). It holds that

T 2
1111(θ) =

1

(1 + x2)2

(
W1111 + 4W111n + 6W11nnx

2 + 4W1nnnx
3 +Wnnnnx

4
)
,

and hence

τk(x)− τk(0) =
1

(1 + x2)4
[(W2

nnnn −W2
1111)x8 + (8W1nnnWnnnn)x7

+ (−4W2
1111 + 16W2

1nnn + 12W11nnWnnnn)x6 + (48W11nnW1nnn + 8W111nWnnnn)x5

+ (−6W2
1111 + 2WnnnnW1111 + 36W2

11nn + 32W111nW1nnn)x4

+ (48W111nW11nn + 8W1111W1nnn)x3

+ (−4W2
1111 + 12W11nnW1111 + 16W2

111n)x2 + (8W1111W111n)x],

τ
′
k(x) =

−8T1111
(1 + x2)3

[W1nnnx
4 + (3W11nn −Wnnnn)x3 + (3W111n − 3W1nnn)x2

+ (W1111 − 3W11nn)x−W111n].

Then we solve

W1nnnx
4 + (3W11nn −Wnnnn)x3 + (3W111n − 3W1nnn)x2 + (W1111 − 3W11nn)x−W111n = 0

and take x∗k to be the best point among these real roots and ±∞.

4 JLROA-G algorithm and its convergence

4.1 JLROA-G algorithm
Different from the cyclic ordering (3.1) in JLROA-C, another pair selection rule of Jacobi-type algorithm
based on the Riemannian gradient was proposed in [18]. In this sense, the pair (ik, jk) at each iteration is
chosen such that

|h
′
k(0)| = 2|(Qᵀ

k−1 grad f(Qk−1))ik,jk | ≥ ε‖ grad f(Qk−1)‖, (4.1)

where 0 < ε ≤ 2/n is fixed. By [18, Lemma 5.2] and [23, Lemma 3.1], we see that it is always possible to
find such a pair if f is differentiable. In this case, we call it the JLROA-G algorithm.

Algorithm 2: JLROA-G algorithm

1: Input: A ∈ symm(Rn×···×n), 1 ≤ p ≤ n, 0 < ε ≤ 2/n, a starting point Q0.
2: Output: Sequence of iterations {Qk}k≥1.
3: for k = 1, 2, . . . until a stopping criterion is satisfied do
4: Choose a pair (ik, jk) satisfying the inequality (4.1) at Qk−1.
5: Solve θ∗k that maximizes hk(θ) defined as in (3.2).

6: Set Uk
def
= G(ik,jk,θ

∗
k), and update Qk = Qk−1Uk.

7: end for

Remark 4.1. (i) By [18, Theorem 5.4] and [23, Theorem 3.3], we see that every accumulation point of the
iterations in JLROA-G is a stationary point of f .
(ii) Let A ∈ symm(Rn×n×n) and p = 1. Then JLROA-G is the same with the Jacobi-type algorithm in
[18], which was developed to find the best low multilinear rank approximation of symmetric tensors.

In this section, we mainly prove the following result for JLROA-G. The proof is postponed to Section 4.3.

Theorem 4.2. Let A ∈ symm(Rn×n×n) with n ≥ 3. Suppose that p = 2 and Q∗ is an accumulation point
of JLROA-G satisfying

A(Q∗)
2
112 +A(Q∗)

2
122 6= 0, (4.2)

A(Q∗)333A(Q∗)444 · · · A(Q∗)nnn 6= 0. (4.3)

Then either Q∗ is the unique limit point, or there exist an infinite number of accumulation points.
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4.2 Some lemmas
Lemma 4.3. Let W ∈ symm(R2×2×2) and T = W(G(1,2,arctan x)) with x ∈ R. Define τ : R → R+

sending x to T 2
111. Suppose that W222 6= 0 and τ(0) = max

x∈R
τ(x). Then

(i) W111 6= 0, W112 = 0,
(ii) W111(2W122 −W111) < 0.

Proof. (i) It is clear that |W222| ≤ |W111| since τ(0) ≥ τ(±∞). Then W111 6= 0. Let θ = arctanx. We have
that

dT111
dθ

= 3T112,
dT112
dθ

= 2T122 − T111
by straightforward differentiation [23, Page 10]. It follows that

τ ′(x) = 2T111
dT111
dθ

dθ

dx
=

6T111T112
1 + x2

, (4.4)

τ ′′(x) =
6

(1 + x2)2
(3T 2

112 + 2T111T122 − T 2
111 − 2T111T112x). (4.5)

Note that τ ′(0) = 0. We have W112 = 0 by (4.4).
(ii) Note that τ ′′(0) ≤ 0. We have 2W111W122 −W2

111 ≤ 0 by (4.5). To complete the proof, we only need
to prove that τ(0) < max

x∈R
τ(x) if W111 = 1, W122 = 1/2 and W222 = β 6= 0 without loss of generality. In

fact, it can be verified that

τ(x) =
(1 + 3

2
x2 + βx3)2

(1 + x2)3

in this case, and

max
x∈R

τ(x) ≥ τ(2β) =
(1 + 6β2 + 8β4)2

(1 + 4β2)3
> τ(0) = 1.

Definition 4.4. ([24, Definition 3.11]) Let A ∈ symm(Rn×n×n) and 1 ≤ i < j ≤ n. Suppose that
AiiiAiij = AijjAjjj . The stationary diagonal ratio, denoted by γij(A), is defined as follows.

γij(A)
def
=

{
0, if A(i,j) = 0;

∞, if Aiii = Ajjj = 0 and A2
ijj +A2

iij 6= 0;

otherwise, γij(A) is the (unique) number such that(
Aijj
Aiij

)
= γij(A)

(
Aiii
Ajjj

)
.

Lemma 4.5. Let W ∈ symm(R2×2×2) and T = W(G(1,2,arctan x)) with x ∈ R and x 6= 0. Suppose that
‖ diag{W}‖ = ‖diag{T }‖ 6= 0 and

W111W112 =W122W222, T111T112 = T122T222.
Then γ12(W) = γ12(T ) = −1 or 1/3.

Proof. Note that ‖ diag{W}‖ = ‖ diag{T }‖ and ‖W‖ = ‖T ‖. We see that |γ12(W)| = |γ12(T )|. Let

T = W(G(1,2,arctan x)). Define

τ : R −→ R+, x 7−→ ‖ diag{T }‖2 = T 2
111 + T 2

222.

Then τ(x) = τ(0) by the condition. It follows by (3.3) that

W2
111 +W2

222 − 3W2
112 − 3W2

122 − 2W111W122 − 2W112W222 = 0. (4.6)

After the substitution ofW122 = γ12(W)W111 andW112 = γ12(W)W222 to (4.6), we get that γ12(W) = −1

or 1/3. Note that W = T ((G(1,2,arctan x))ᵀ). We can similarly get that γ12(T ) = −1 or 1/3.

Lemma 4.6. Let W ∈ symm(R3×3×3) and T = W(G(1,3,arctan x)) with x ∈ R and x 6= 0. Suppose that
|W111| = |T111| > 0 and

W111W112 =W122W222, T111T112 = T122T222, W113 =W223 = T113 = T223 = 0.

Then W112 =W122 = T112 = T122 = 0.

Proof. It can be verified that

−
x

√
1 + x2

W122 = T223 = 0,

and thus W122 = 0. It follows by the condition that W112 = 0. Note that W = T ((G(1,3,arctan x))ᵀ). We
can similarly get that T112 = T122 = 0.
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4.3 Proof of Theorem 4.2
Before proving the main theorem, we recall a result on global convergence from [23], which is the direct
consequence of [29, Theorem 2.3].

Theorem 4.7. ([23, Corollary 5.4]) Let f be a real analytic function from On to R. Suppose that {Qk}∞k=1 ⊂
On and, for large enough k,
(i) there exists σ > 0 such that

|f(Qk)− f(Qk−1)| ≥ σ‖ grad f(Qk−1)‖‖Qk −Qk−1‖,

(ii) grad f(Qk−1) = 0 implies that Qk = Qk−1.
Then the iterations {Qk}∞k=1 converge to a point Q∗ ∈ On.

Next, we provide a useful bound on the difference between cost functions at consecutive iterations.

Lemma 4.8. Let A ∈ symm(Rn×n×n). Let hk(θ) be as in (3.2) for k ∈ N. Then there exists δ > 0 such
that

hk(θ∗k)− hk(0) ≥ δ|h′k(0)|2 (4.7)

for any k ∈ N with (ik, jk) ∈ C2 in JLROA-G.

Proof. Let W = A(Qk−1) and T = W(G(ik,jk,θ)). Let (i, j) = (ik, jk). It is clear that Tiii(θ) is a
trigonometric polynomial with a finite degree n0 for all the iterations in C2. By [3, Theorem 1], we see that

T ′iii(0)2 ≤ n2
0(‖Tiii‖2∞ − T 2

iii(0)) = n2
0(hk(θ∗k)− hk(0)),

when θ = 0. Note that h′k(0) = 2Tiii(0)T ′iii(0). Let M > 0 such that |4n2
0T 2
iii(0)| < M for all the iterations

in C2. Then
|h′k(0)|2 ≤ 4n2

0T 2
iii(0)(hk(θ∗k)− hk(0)) < M(hk(θ∗k)− hk(0)).

The proof is complete if we set δ = 1/M .

Remark 4.9. Let A ∈ symm(Rn×n×n×n) be of 4th order. By the similar methods, we can also prove (4.7)
for pairs in C1, or pairs in C2.

Proof of Theorem 4.2. Assume that there exist a finite number of accumulation points, denoted by Q(`)(1 ≤
` ≤ N). Then any accumulation point is a stationary point by Remark 4.1(i). In other words, it holds that

Λ(Q(`)) = 0 for all 1 ≤ ` ≤ N by (2.8). Let Q∗ = Q(1). Now we prove that Q∗ is the unique limit point.
Step 1. We first prove that all the accumulation points satisfy (4.2) and (4.3) if Q∗ satisfies them. Note
that the number of accumulation points is finite. We can see that any two different accumulation points can
be connected by finite combination of the following two possible paths.
(a) Take the pair (1, 2) ∈ C1. If {x∗k, (ik, jk) = (1, 2)} is finite or converges to 0, this path doesn’t appear
and we skip it. Otherwise, this set has a nonzero accumulation point ζ and a subsequence converges to it.
We assume that

{x∗k, (ik, jk) = (1, 2)} → ζ 6= 0

without loss of generality. Note that {Qk−1, (ik, jk) = (1, 2)} has an accumulation point. We assume that

{Qk−1, (ik, jk) = (1, 2)} → Q(`1)

without loss of generality. Then Q(`2) = Q(`1)G(1,2,arctan ζ) is another different accumulation point. It is
clear that A(Q(`1))iii = A(Q(`2))iii for 3 ≤ i ≤ n. Note that A(Q(`1))(1,2) and A(Q(`2))(1,2) satisfy the
conditions in Lemma 4.5. We see that

A(Q(`1))2112 +A(Q(`1))2122 6= 0, A(Q(`2))2112 +A(Q(`2))2122 6= 0.

(b) Take the pair (1, 3) ∈ C2 for example. Other pairs in C2 are similar. If {x∗k, (ik, jk) = (1, 3)} is finite
or converges to 0, this path doesn’t appear and we skip it. Otherwise, this set has a nonzero accumulation
point ζ and a subsequence converges to it. We assume that

{x∗k, (ik, jk) = (1, 3)} → ζ 6= 0

without loss of generality. Note that {Qk−1, (ik, jk) = (1, 3)} has an accumulation point. We assume that

{Qk−1, (ik, jk) = (1, 3)} → Q(`1)

without loss of generality. Then Q(`2) = Q(`1)G(1,3,arctan ζ) is another different accumulation point. Note
that A(Q(`1))(1,2,3) and A(Q(`2))(1,2,3) satisfy the conditions in Lemma 4.6. We see that

A(Q(`1))112 = A(Q(`1))122 = A(Q(`2))112 = A(Q(`2))122 = 0.
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Since Q∗ satisfies (4.2), we see that path (a) is the only possible path. Then all the accumulation points

satisfy (4.2). Note that Q∗ satisfies (4.3) and A(Q(`1))iii = A(Q(`2))iii for 3 ≤ i ≤ n in path (a). All the
accumulation points satisfy (4.3).
Step 2. Since path (b) in Step 1 doesn’t appear, we get that

{x∗k, (ik, jk) ∈ C2} → 0 (4.8)

in JLROA-G. Let N (Q∗, η) be the neighborhood of Q∗ = Q(1) in On with radius η > 0 such that there
exist no other accumulation points in this neighborhood. If pair (i, j) ∈ C2 satisfies that

{Qk−1 ∈ N (Q∗, η), (ik, jk) = (i, j)} is infinite, (4.9)

then A(Q∗)
(i,j) satisfies the conditions in Lemma 4.3 by condition (4.3). Then A(Q∗)iii(A(Q∗)iii −

2A(Q∗)ijj) 6= 0. Let

ρ1
def
= min |A(Q∗)iii(A(Q∗)iii − 2A(Q∗)ijj)|

for all pairs (i, j) ∈ C2 satisfying (4.9). Then ρ1 > 0. For other accumulation points, we can similarly get ρ`
for 1 < ` ≤ N . Then

ρ
def
= min ρ` > 0. (4.10)

Step 3. Now we show that there exists κ > 0 such that

|hk(θ∗k)− hk(0)| ≥ κ|h′k(0)||θ∗k| (4.11)

for all (ik, jk) ∈ C2. Let W = A(Qk−1). Denote (i, j) = (ik, jk). Note that |x∗k| < +∞ when k is large
enough by (4.8). Then by (3.5) and (4.8), we have that

h′k(0)

x∗k
=

6WiiiWiij

x∗k
= −6Wiii[(2Wijj −Wiii) + (Wjjj − 2Wiij)x

∗
k −Wijjx

∗
k
2]

have accumulation points in the set

{−6A(Q(`))iii(2A(Q(`))ijj −A(Q(`))iii), pair (i, j) satisfies (4.9), 1 ≤ ` ≤ N}

when k ∈ N with (ik, jk) ∈ C2. It follows from (4.10) that there exists υ > 0 such that |h′k(0)| ≥ υ|x∗k| when
k is large enough with (ik, jk) ∈ C2.. Then we get (4.11) by Lemma 4.8.
Step 4. If {x∗k, (ik, jk) = (1, 2) ∈ C1} is finite, we skip it. Otherwise, by [23, (27)], we know that

|hk(θ∗k)− hk(0)| = |
x∗kh

′
k(0)

2(1− x∗k
2)
| ≥

1

2
|h′k(0)||θ∗k| (4.12)

for all (ik, jk) ∈ C1. Let ω = min{κ, 1/2} > 0. By (4.11) and (4.12), we get that

|hk(θ∗k)− hk(0)| ≥ ω|h′k(0)||θ∗| ≥
√

2

2
ωε‖ grad f(Qk−1)‖‖Qk −Qk−1‖,

for all k ∈ N. Then Q∗ is the unique limit point by Theorem 4.7.

5 JLROA-GP algorithm and its convergence

5.1 JLROA-GP algorithm
To prove better theoretical convergence results, in this section, we further propose a proximal variant of
JLROA-G algorithm, which is called JLROA-GP algorithm. Let γ(θ) : [−π, π] → R+ be a C2 function
satisfying that η1θ2 ≤ γ(θ) ≤ η2θ2 for two positive constants η1, η2 > 0. This new variant is shown in
Algorithm 3.

5.2 Convergence analysis
In this subsection, we mainly prove the following convergence result for JLROA-GP algorithm.

Theorem 5.1. In JLROA-GP algorithm, the iterates {Qk}k≥1 converge to a stationary point Q∗.

To prove Theorem 5.1, we first need to show two lemmas. In fact, the proofs of these two lemmas are
included in the proof of [23, Theorem 6.2]. We present them here for convenience.
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Algorithm 3: JLROA-GP algorithm

1: Input: A ∈ symm(Rn×···×n), 1 ≤ p ≤ n, 0 < ε ≤ 2/n, δ > 0, a starting point Q0.
2: Output: Sequence of iterations {Qk}k≥1.
3: for k = 1, 2, . . . until a stopping criterion is satisfied do
4: Choose a pair (ik, jk) satisfying the inequality (4.1) at Qk−1.
5: Solve θ∗k that maximizes

h̃k(θ) = hk(θ)− δγ(θ), (5.1)

where hk(θ) is defined as in (3.2).

6: Set Uk
def
= G(ik,jk,θ

∗
k), and update Qk = Qk−1Uk.

7: end for

Lemma 5.2. In JLROA-GP algorithm, there exists σ1 > 0 such that

hk(θ∗k)− hk(0) ≥ σ1|θ∗k|
2. (5.2)

Proof. Since
hk(θ∗k)− hk(0)− δγ(θ∗k) = h̃k(θ∗k)− h̃k(0) ≥ 0,

we get that
hk(θ∗k)− hk(0) ≥ δγ(θ∗k) ≥ δη1|θ∗k|

2. (5.3)

The proof is complete by setting σ1 = δη1.

Lemma 5.3. In JLROA-GP algorithm, there exists σ2 > 0 such that

|θ∗k| ≥ σ2|h
′
k(0)|. (5.4)

Proof. Define
h̄(θ,Q) = f(QG(i,j,θ))− δγ(θ),

for θ ∈ [−π, π], Q ∈ On and 1 ≤ i < j ≤ n. Let

M
def
= max

Q∈On,θ∈[−π,π],1≤i<j≤n

∣∣∣∣∂2h̄∂θ2
(θ,Q)

∣∣∣∣ .
Then M < +∞ since f and γ are both C2 and On is compact. Therefore, we have that

|h′k(0)| = |h̃′k(0)| = |h̃′k(θ∗k)− h̃′k(0)| ≤M |θ∗k|,

for any Qk−1 ∈ On, θ∗k ∈ [−π, π] and 1 ≤ ik < jk ≤ n. The proof is complete by setting σ2 = 1/M .

Proof of Theorem 5.1. Note that ‖Qk−Qk−1‖ ≤
√

2|θ∗k| by [23, Eq. (25)]. By Lemma 5.2, Lemma 5.3 and
the inequality (4.1), we have that

f(Qk)− f(Qk−1) = hk(θ∗k)− hk(0) ≥ σ1|θ∗k|
2 ≥ σ1σ2|θ∗k||h

′
k(0)|

≥
ε
√

2
σ1σ2‖Qk −Qk−1‖‖ grad f(Qk−1)‖.

By Theorem 4.7, we see that there exists Q∗ ∈ On such that Qk → Q∗. Now we show that Q∗ is a stationary
point. In fact, since hk(θ∗k)− hk(0)→ 0, we have θ∗k → 0 by (5.2), and thus h′k(0)→ 0 by (5.4). It follows
by the inequality (4.1) that ‖ grad f(Qk−1)‖ → 0, and thus grad f(Q∗) = 0. The proof is complete.

Remark 5.4. Compared with the Jacobi-PC algorithm in [23, Sec. 6], in this paper, we choose the gradient
based pair selection rule, and prove Theorem 5.1 for a general cost function f and a general function γ(θ).

Remark 5.5. We note that the elementary update with the proximal term becomes more difficult. If
(ik, jk) ∈ C1, a choice of γ(θ) satisfying the conditions is γ(θ) = 2 sin2(θ) cos2(θ), which was used in [23].
This choice of γ has advantage that the function remains π/2-periodic, and therefore the complexity of
finding the modified update is the same as the one without the proximal term. However, for the case
(ik, jk) ∈ C2 by adding a proximal term, we destroy the quadratic structure of hk(θ), and we need to find
roots of a polynomial of order 2d (instead of order d).
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6 Numerical experiments
In this section, we make some experiments to compare the performance of JLROA algorithm with the
LROAT and SLROAT algorihtms in [5], and Trust region algorithm by Manopt Toolbox in [4]. When p = 1,
LROAT and SLROAT are exactly the HOPM and SHOPM algorithms in [16, 19], respectively. We use
the cyclic ordering of JLROA-C algorithm for simplicity except Example 6.4. The LROAT and SLROAT
algorihtms are both initialized via HOSVD [15], because we find they generally have better performance in
this case.

Example 6.1. We randomly generate 1000 tensors in symm(R10×10×10), and run JLROA and SLROAT
algorithms for them. Denote by JVal and SVal the final value of (2.2) obtained by JLROA and SLROAT,
respectively. Set the following notations.
(i) NumG : the number of cases that JVal is greater than SVal;
(ii) NumS : the number of cases that JVal is smaller than SVal;
(iii) NumE : the number of cases that JVal is equal6 to SVal;
(iv) RatioG : the average of JVal/SVal when JVal is greater than SVal;
(v) RatioS : the average of JVal/SVal when JVal is smaller than SVal.
The results are shown in Table 1 and Figure 1. It can be seen that JLROA algorithm has better performance
when p > 2. They always get the same result when p = 1.

Table 1:
NumG NumS NumE RatioG RatioS

p = 1 0 0 1000 — —

p = 2 328 441 231 1.0023 0.9982

p = 5 747 246 7 1.0042 0.9985

p = 8 900 99 1 1.0044 0.9992

p = 10 815 180 5 1.0039 0.9996

Example 6.2. Let A ∈ symm(R3×3×3×3) such that

A1111 = 0.2883, A1122 = −0.2485, A1222 = 0.2972, A1333 = −0.3619,

A2233 = 0.2127, A1112 = −0.0031, A1123 = −0.2939, A1223 = 0.1862,

A2222 = 0.1241, A2333 = 0.2727, A1113 = 0.1973, A1133 = 0.3847,

A1233 = 0.0919, A2223 = −0.3420, A3333 = −0.3054,

as in [19, Example 1] and [5, Section 6.1]. It has been shown in [19, 5] that SHOPM (p = 1) and SLROAT
(p = 2) fail to converge for A. We now see the convergence behaviour of JLROA algorithm. The results of
JLROA, SLROAT and LROAT algorithms are shown in Figure 2. It can be seen that JLROA performances
are always better than or equal to those of SLROAT and LROAT.

Example 6.3. We randomly generate 1000 tensors in symm(R10×10×10), and run JLROA and Trust region
algorithms for them. Denote by JVal and TVal the final value of (2.2) obtained by JLROA and Trust region,
respectively. Set the following notations.
(i) NumG : the number of cases that JVal is greater than TVal;
(ii) NumS : the number of cases that JVal is smaller than TVal;
(iii) NumE : the number of cases that JVal is equal7 to TVal;
(iv) RatioG : the average of JVal/TVal when JVal is greater than TVal;
(v) RatioS : the average of JVal/TVal when JVal is smaller than TVal.
The results are shown in Table 2 and Figure 3. It can be seen that RatioG is very large when p = 1, 2,
which means that Turst region is not so stable as JLROA in these two cases. Correspondingly, Trust region
algorithm has generally better performance when p > 2.

6the difference is smaller than 0.0001.
7the difference is smaller than 0.0001.
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Figure 1: Distributions of points (JVal,SVal) in Example 6.1. The points are blue when
JVal is greater, and red when SVal is greater.
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Figure 2: Results of Example 6.2.
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Figure 3: Distributions of points (JVal,TVal) in Example 6.3. The points are blue when
JVal is greater, and red when TVal is greater.
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Table 2:
NumG NumS NumE RatioG RatioS

p = 1 125 0 875 211.7822 —

p = 2 395 360 245 5.0299 0.9986

p = 5 431 555 14 1.0016 0.9987

p = 8 393 604 3 1.0011 0.9992

p = 10 35 962 3 1.0002 0.9995

Example 6.4. Let A ∈ symm(R10×10×10) and p = 2. Suppose that Q∗ is an accumulation point of
JLROA-G. To check the frequency of conditions (4.2) and (4.3) being satisfied, we define

ω = min{|W112|, |W122|, |W333|, · · · , |Wnnn|},

where W = A(Q∗). We choose the iteration QK as the approximation of an accumulation point when K is
large enough (K = 500 in this experiment). We randomly generate A ∈ symm(R10×10×10) for 1000 times,
and run JLROA-G to see the frequency that ω > 0 (greater than 0.0001). The results are shown in Figure 4,
where ω > 0 for 991 times. It can be seen that the conditions (4.2) and (4.3) are satisfied in most cases.

0 100 200 300 400 500 600 700 800 900 1000

times

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

o
m

e
g

a

Figure 4: Results of Example 6.4. Blue points mean that ω > 0, while red points mean that
ω = 0.
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