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In this paper, we propose a Jacobi-type algorithm to solve the low rank orthogonal approximation problem of symmetric tensors. This algorithm includes as a special case the well-known Jacobi CoM2 algorithm for the approximate orthogonal diagonalization problem of symmetric tensors. We study the global convergence of this algorithm under a gradient based ordering for a special case: the best rank-2 orthogonal approximation of 3rd order symmetric tensors, and prove that an accumulation point is the unique limit point under some conditions. We also propose a proximal variant of this algorithm in general case, and prove its global convergence without any further condition. Numerical experiments are presented to show the efficiency of this algorithm.

Introduction

As the higher order analogue of vectors and matrices, in the last two decades, tensors have been attracting more and more attentions from various fields, including signal processing, numerical linear algebra and machine learning [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF][START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. One reason is that more and more real data are naturally represented in tensor form, e.g. hyperspectral images, fMRI data, or social networks. The other reason is that, compared with the matrix case, tensor based techniques can capture higher order and more complicated relationships, e.g. Independent Component Analysis (ICA) based on the cumulant tensor [START_REF] Comon | Independent component analysis, a new concept?[END_REF], and multilinear subspace learning methods [START_REF] Lu | Multilinear subspace learning: dimensionality reduction of multidimensional data[END_REF].

Low rank approximation of higher order tensors is a very important problem and has been applied in various areas [START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Lathauwer | Signal processing based on multilinear algebra[END_REF][START_REF] Smilde | Multi-way analysis with applications in the chemical sciences[END_REF]. However, it is much more difficult than the matrix case, since it is ill-posed for many ranks, and this ill-posedness is not rare for 3rd order tensors [START_REF] Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF].

Notation. Let R n 1 ו••×n d def = R n 1 ⊗• • •⊗R n d
be the space of d-th order real tensors and symm(R nו••×n ) ⊂ R nו••×n be the set of symmetric ones [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF][START_REF] Qi | Tensor analysis: Spectral theory and special tensors[END_REF], whose entries do not change under any permutation of indices. The identity matrix of size n is denoted by In. Let St(p, n) ⊂ R n×p be the Stiefel manifold with 1 ≤ p ≤ n. Let On ⊂ R n×n be the orthogonal group, i.e. On = St(n, n). Let SOn ⊂ R n×n be the special orthogonal group, i.e. the set of orthogonal matrices with determinant 1. We denote by • the Frobenius norm of a tensor or a matrix, or the Euclidean norm of a vector. Tensor arrays, matrices, and vectors, will be respectively denoted by bold calligraphic letters, e.g. A, with bold uppercase letters, e.g. M , and with bold lowercase letters, e.g. u; corresponding entries will be denoted by A ijk , M ij , and u i . Operator •p denotes contraction on the pth index of a tensor; when contracted with a matrix, it is understood that summation is always performed on the second index of the matrix. For instance, (A • 1 M ) ijk = A jk M i . We denote

A(M ) def = A • 1 M T • 2 • • • • d M T
for convenience in this paper. For A ∈ R nו••×n and a fixed set of indices 1 km) the m-dimensional d-th order subtensor obtained from A by allowing its indices to take values in {k 1 , k 2 , • • • , km} only. Problem statement. Let A ∈ symm(R nו••×n ) and 1 ≤ p ≤ n. In this paper, we study the best rank-p orthogonal approximation problem, which is to find

≤ k 1 < k 2 < • • • < km ≤ n, we denote by A (k 1 ,k 2 ,••• ,
C * def = p k=1 σ * k u * k ⊗ • • • ⊗ u * k , (1.1) 
where (σ * 1 , . . . , σ * p , u * 1 , . . . , u * p ) = argmin

[u 1 ,••• ,up]∈St(p,n) σ k ∈R,1≤k≤p A - p k=1 σ k u k ⊗ • • • ⊗ u k . (1.2) 
If p = 1, then (1.2) is the best rank-1 approximation problem [START_REF] Lathauwer | On the best rank-1 and rank-(r1 ,r2 ,. . .,rn) approximation of higher-order tensors[END_REF][START_REF] Kofidis | On the best rank-1 approximation of higher-order supersymmetric tensors[END_REF][START_REF] Kolda | Shifted power method for computing tensor eigenpairs[END_REF][START_REF] Zhang | Rank-one approximation to high order tensors[END_REF][START_REF] Da Silva | A finite algorithm to compute rank-1 tensor approximations[END_REF] of symmetric tensors, which is equivalent to the cubic spherical optimization problem [START_REF] Qi | Z-eigenvalue methods for a global polynomial optimization problem[END_REF][START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF][START_REF] Zhang | The cubic spherical optimization problems[END_REF]. If p = n, by [5, Proposition 5.1] and [24, Proposition 5.2], we see that (1.2) is closely related to the approximate orthogonal diagonalization problem for 3rd and 4th order cumulant tensors, which is in the core of Independent Component Analysis (ICA) [START_REF] Comon | Independent Component Analysis[END_REF][START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF], and finds many applications [START_REF]Handbook of Blind Source Separation[END_REF].

To our knowledge, the orthogonal tensor decomposition was first tackled in [START_REF] Comon | Independent Component Analysis[END_REF], but appeared more formally in [START_REF] Kolda | Orthogonal tensor decompositions[END_REF], in which many examples were presented to illustrate the difficulties of this type of decomposition. As shown in [START_REF] Chen | On the tensor SVD and the optimal low rank orthogonal approximation of tensors[END_REF], the minimum in problem (1.2) exists, and the low rank orthogonal approximation of tensors (LROAT) algorithm and symmetric LROAT (SLROAT) were developed to solve this problem based on the polar decomposition. In the special case p = 1, the two algorithms boil down to the higher order power method (HOPM) and symmetric HOPM (SHOPM) algorithm [START_REF] Lathauwer | On the best rank-1 and rank-(r1 ,r2 ,. . .,rn) approximation of higher-order tensors[END_REF][START_REF] Kofidis | On the best rank-1 approximation of higher-order supersymmetric tensors[END_REF][START_REF] Zhang | Rank-one approximation to high order tensors[END_REF]. More recently, also based on the polar decomposition, a similar algorithm was developed in [START_REF] Pan | Symmetric orthogonal approximation to symmetric tensors with applications to image reconstruction[END_REF] to solve problem (1.2), and this algorithm was applied to the image reconstruction task.

Contribution. The main contributions of this paper can be summarized as follows:

• We propose a Jacobi-type algorithm for solving problem (1.2). This algorithm is exactly the wellknown Jacobi CoM2 algorithm [START_REF]Handbook of Blind Source Separation[END_REF] when p = n, and the same as the Jacobi-type algorithm for Tucker approximation proposed in [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF] when p = 1.

• Under the gradient based ordering defined in [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF][START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF][START_REF] Usevich | Approximate matrix and tensor diagonalization by unitary transformations: convergence of jacobi-type algorithms[END_REF], we prove the global convergence5 of this algorithm for 3rd order tensors of rank p = 2 under some conditions.

• We propose a proximal variant of this Jacobi-type algorithm, and prove its global convergence without any further condition. Organization. The paper is organized as follows. In Section 2, we show that two optimization problems on Riemannian manifold St(p, n) and orthogonal group On are both equivalent to problem (1.2), and then calculate their Riemannian gradients. In Section 3, we propose a Jacobi-type algorithm to solve problem (1.2). This algorithm includes the well-known Jacobi CoM2 algorithm as a special case. In Section 4, we study the global convergence of this algorithm under the gradient based ordering for the 3rd order tensor and p = 2 case. In Section 5, a proximal variant of this algorithm is proposed, and its global convergence is established. In Section 6, we report some numerical experiments showing the efficiency of this algorithm.

Geometric properties 2.1 Equivalent problems

Let A ∈ symm(R nו••×n ) and 1 ≤ p ≤ n. Let X ∈ St(p, n) and W = A(X). One problem equivalent to (1.2) is to find X * = argmax X∈St(p,n) f (X), (2.1) 
where f (X)

def = p i=1 W 2 i•••i . (2.2) Lemma 2.1. ([5, Proposition 5.1]) Let C * be as in (1.2). Then A -C * , u * k ⊗ • • • ⊗ u * k = 0 and σ * k = A, u * k ⊗ • • • ⊗ u * k for 1 ≤ k ≤ p. Moreover, it holds that A -C * 2 = A 2 -C * 2 = A 2 - p k=1 (σ * k ) 2 . (2.3) Remark 2.2. (i) Let C * be as in (1.
2) and X * be as in (2.1). We see from (2.3) that

X * = [u * 1 , • • • , u * p ] and A -C * 2 = A 2 -f (X * ).
In other words, to solve (1.2), it is enough for us to solve (2.1), which is an optimization problem on St(p, n). (ii) If p = 1, then (2.1) is the cubic spherical optimization problem [START_REF] Qi | Z-eigenvalue methods for a global polynomial optimization problem[END_REF][START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF][START_REF] Zhang | The cubic spherical optimization problems[END_REF]. If p = n, then (2.1) is the approximate orthogonal tensor diagonalization problem [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF][START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF].

Let Q ∈ On and W = A(Q). Another problem, equivalent to (2.1), is to find

Q * = argmax Q∈On f (Q), (2.4) 
where

f (Q) def = p i=1 W 2 i•••i . (2.5) In fact, if X ∈ St(p, n) and Q = [X, Y ] ∈ On, then W i 1 •••i d = W i 1 •••i d for any 1 ≤ i 1 , • • • , i d ≤ p.
The equivalence between (2.1) and (2.4) follows from the fact that f (Q) = f (X). p) . Then the objective used in [18, (3.1)] is the sum of squares of all the elements in W, while (2.5) is the sum of squares of the diagonal elements in W. They are the same if p = 1.

Remark 2.3. Let W ∈ symm(R n×n×n ) and 1 ≤ p ≤ n. Let W = W (1,2,••• ,

Riemannian gradient

Definition 2.4.

Let A ∈ symm(R nו••×n ) and 1 ≤ i < j ≤ n. Define σ i,j (A) def = A ii...i A ji...i , d i,j (A) def = σ i,j (A) -σ j,i (A) = A ii...i A ji...i -A ij...j A jj...j .
Theorem 2.5. The Riemannian gradient of (2.5

) at Q is grad f (Q) = Q Λ(Q), (2.6) 
where

Λ(Q) def = d •            0 -d 1,2 (W) ... -d 1,p (W) -σ 1,p+1 (W) ••• -σ 1,n (W) d 1,2 (W) 0 ... -d 2,p (W) -σ 2,p+1 (W) ••• -σ 2,n (W) ... ... ... ... ••• ••• ••• d 1,p (W) d 2,p (W) ... 0 -σ p,p+1 (W) ••• -σp,n(W) σ 1,p+1 (W) σ 2,p+1 (W) ••• σ p,p+1 (W) 0 ••• 0 ... ... ... ... ... ••• ... σ 1,n (W) σ 2,n (W) ... σp,n(W) 0 ••• 0            . (2.7) 
Proof. Note that

f (Q) = p j=1 W 2 jj...j = p j=1 ( i 1 ,i 2 ,...,i d A i 1 ,i 2 ,...,i d Q i 1 ,j Q i 2 ,j . . . Q i d ,j ) 2 . Let V = A • 2 Q T • • • • d Q T . Fix 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then ∂f ∂Q i,j = 2dW jj...j V ij...j
by methods similar to [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Section 4.1]. Note that W = V • 1 Q T . We get the Euclidean gradient of (2.5) at Q as follows:

∇f (Q) = 2dQ      W 11...1 W 12...2 . . . W 1p...p 0 • • • 0 W 21...1 W 22...2 . . . W 2p...p 0 • • • 0 . . . . . . . . . . . . • • • • • • • • • W n1...1 W n2...2 . . . Wnp...p 0 • • • 0               W 1...1 • • • 0 • • • 0 . . . . . . . . . • • • 0 0 • • • Wp•••p • • • 0 . . . • • • • • • . . . . . . 0 • • • 0 • • • 0         
.

By [1, (3.35)], we get that

grad f (Q) = 1 2 Q(Q T ∇f (Q) -∇f (Q) T Q) = Q Λ(Q). (2.8)
Then the proof is complete.

Remark 2.6. (i) If p = 1, we see that Λ(Q) = 0 if and only if

W 21...1 = W 31...1 = • • • = W n1...1 = 0,
which means that the first column of Q satisfies the condition in [28, (2)].

(ii) The definition of Λ(Q) in (2.7) can be seen as an extension of [23, (12)].

Theorem 2.7. The Riemannian gradient of (2.2) at X satisfies

X T grad f (X) = d •      0 -d 1,2 ( W) ... -d 1,p ( W) d 1,2 ( W) 0 ... -d 2,p ( W) ... ... ... ... d 1,p ( W) d 2,p ( W) ... 0      . (2.9)
Proof. The proof goes along the same lines as for Theorem 2.5. Note that

f (X) = p j=1 W 2 jj...j = p j=1 ( i 1 ,i 2 ,...,i d A i 1 ,i 2 ,...,i d X i 1 ,j X i 2 ,j . . . X i d ,j ) 2 . Let V = A • 2 X T • • • • d X T . Fix 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then ∂ f ∂X i,j = 2d W jj...j V ij...j
by the similar methods in [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Section 4.1]. Note that W = V • 1 X T . We get the Euclidean gradient of (2.5) at X as follows:

∇ f (X) = 2d     V 11...1 V 12...2 • • • V 1p...p V 21...1 V 22...2 • • • V 2p...p • • • • • • • • • • • • V n1...1 V n2...2 • • • Vnp...p         W 1...1 • • • 0 . . . . . . . . . 0 • • • Wp•••p     .
It follows by [1, (3.35)] that

grad f (X) = (In -XX T )∇ f (X) + dX •      0 -d 1,2 ( W) ... -d 1,p ( W) d 1,2 ( W) 0 ... -d 2,p ( W) ... ... ... ... d 1,p ( W) d 2,p ( W) ... 0      , (2.10) 
and the proof is complete.

Proposition 2.8. Let A ∈ symm(R nו••×n ) and 1 ≤ p ≤ n. Let X * ∈ St(p, n) and Q * = [X * , Y * ] ∈ On.
Suppose that f is as in (2.2) and f is as in (2.5). Then

grad f (X * ) = 0 ⇔ grad f (Q * ) = 0. Proof. Let W * = A(X * ) and W * = A(Q * ). (⇒)
. By (2.9), we see that

d i,j (W * ) = d i,j ( W * ) = 0 for any 1 ≤ i < j ≤ p. It follows by (2.10) that Y * Y T * ∇ f (X * ) = (In -X * X T * )∇ f (X * ) = 0,
and thus

Y T * ∇ f (X * ) = Y T * Y * Y T * ∇ f (X * ) = 0. Then σ i,j (W * ) = 0 for any 1 ≤ i ≤ p < j ≤ n, and thus grad f (Q * ) = 0 by (2.7). (⇐). By (2.7), we see that d i,j ( W * ) = d i,j (W * ) = 0 for any 1 ≤ i < j ≤ p. Note that σ i,j (W * ) = 0 for any 1 ≤ i ≤ p < j ≤ n. It follows that Y T * ∇ f (X * ) = 0, and thus (In -X * X T * )∇ f (X * ) = Y * Y T * ∇ f (X * ) = 0.
Then grad f (X * ) = 0 by (2.10). The proof is complete.

3 Jacobi low rank orthogonal approximation algorithm

3.1 Algorithm description Let 1 ≤ p ≤ n and C = {(i, j), 1 ≤ i < j ≤ n, i ≤ p}.
We divide C to be two different subsets

C 1 def = {(i, j), 1 ≤ i < j ≤ p} and C 2 def = {(i, j), 1 ≤ i ≤ p < j ≤ n}.
Denote by G (i,j,θ) the Givens rotation matrix, Algorithm 1: JLROA algorithm

G (i,j,θ) =              i j 1 . . . 0 i cos θ -sin θ . . . j sin θ cos θ 0 . . . 1              ,
1: Input: A ∈ symm(R nו••×n ), 1 ≤ p ≤ n, a starting point Q 0 . 2: Output: Sequence of iterations Q k . 3: for k = 1, 2, . . . until a stopping criterion is satisfied do 4:
Choose the pair (i k , j k ) ∈ C according to a pair selection rule.

5:

Solve

θ * k that maximizes h k (θ) def = f(Q k-1 G (i k ,j k ,θ) ). 6: Set U k def = G (i k ,j k ,θ * k ) , and update Q k = Q k-1 U k . 7: end for Remark 3.1.
In JLROA algorithm, one natural way of choosing the index pairs is the following cyclic ordering:

(1, 2) → (1, 3) → • • • → (1, n) → (2, 3) → • • • → (2, n) → • • • → (p, p + 1) → • • • → (p, n) → (1, 2) → (1, 3) → • • • . (3.1)
In this cae, we call JLROA algorithm the JLROA-C algorithm.

Elementary rotations

Let W = A(Q k-1 ) and T (θ) = W(G (i k ,j k ,θ) ).
As in JLROA algorithm, we define

h k : [- π 2 , π 2 ] -→ R + , θ -→ f (Q k-1 G (i k ,j k ,θ) ) = p i=1 T 2 i•••i (θ) (3.2)
where f is as in (2.5). Note that

G (i k ,j k ,θ) = G (i k ,j k ,θ+2π) and T 2 i•••i (θ) = T 2 i•••i (θ + π) for any θ ∈ R and 1 ≤ i ≤ p. We see that h k defined on the whole R is π-periodic. So it is sufficient to determine θ * k ∈ [-π/2, π/2] such that h k (θ * k ) = max θ h k (θ)
, and choose θ * k with the smallest absolute value among all possible θ.

Denote by R = R ∪ {±∞}. Define

τ k : R -→ R + , x -→ h k (arctan(x)). Let x = tan(θ) ∈ R and x * k = tan(θ * k ). Then τ k (x) -τ k (0) = h k (θ) -h k (0) = p i=1 T 2 i•••i - p i=1 W 2 i•••i . Lemma 3.2. Let h k be as in (3.2). Then h k (θ) = -2Λ(Q k-1 G (i k ,j k ,θ) ) i k ,j k .
Proof. We denote by G(θ) = G (i k ,j k ,θ) for convenience. It follows from (2.8) and the methods similar to [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Lemma 5.7] that

h k (θ) = grad f(Q k-1 G(θ)), Q k-1 G (θ) = Q k-1 G(θ)Λ(Q k-1 G(θ)), Q k-1 G (θ) = Λ(Q k-1 G(θ)), G(θ) T G (θ) = -2Λ(Q k-1 G(θ)) i k ,j k .
We distinguish two cases:

Case 1:

(i k , j k ) ∈ C 1 .
In this case the restricted cost function in (3.2) takes the form

h k (θ) = T 2 i k •••i k (θ) + T 2 j k •••j k (θ),
i.e., the elementary updates are exactly the same as in the case of orthogonal diagonalization [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]. In particular, h k (θ) also has a period π/2 by [23, Section 4.3]. In other words, we can choose

θ * k ∈ [-π/4, π/4] to maximize h k (θ). Equivalently, we can choose x * k ∈ [-1, 1] to maximize τ k (x).
Case 2:

(i k , j k ) ∈ C 2 . In this case, h k (θ) is simply h k (θ) = T 2 i k •••i k (θ),
which, in general, has a period π, and is a trigonometric polynomial of degree d in 2π. However, we can use the fact that (T

2 i k •••i k (θ)) = 2(T i k •••i k (θ))(T i k •••i k (θ))
, to find the update, which is given by finding roots of a d-th order real polynomial. Note that this subproblem is related to rank-one approximation, and therefore the expressions can be found in [16, Section 3.5] and [18, Section 3.2].

Subproblems

Let A ∈ symm(R nו••×n ) be of 3rd or 4th order. In the following subsections (Section 3.3.1 and Section 3.3.2) we show the details of how to find θ * k in JLROA algorithm. The derivations in Section 3.3.1 and Section 3.3.2 for (i k , j k ) ∈ C 1 case were first formulated in [START_REF] Comon | Tensor diagonalization, a useful tool in signal processing[END_REF], and can also be found in [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Section 6.2]. We present them here for convenience.

3rd order symmetric tensors

Case 1: (i k , j k ) ∈ C 1 . Take p ≥ 2 and the pair (1, 2) (without loss of generality). Let

a = 6(W 111 W 112 -W 122 W 222 ), b = 6(W 2 111 + W 2 222 -3W 2 112 -3W 2 122 -2W 111 W 122 -2W 112 W 222 ).
Then we have that

τ k (x) -τ k (0) = 1 (1 + x 2 ) 2 (a(x -x 3 ) - b 2 x 2 ), (3.3) 
τ k (x) = 1 (1 + x 2 ) 3 (a(1 -6x 2 + x 4 ) -b(x -x 3 )). Denote by ξ = x -1/x. Then τ k (x) = 0 if and only if Ω(ξ) def = aξ 2 + bξ -4a = 0.
Solve Ω(ξ) = 0 for all the real roots ξ . Then solve x 2 -ξ x -1 = 0 for all and take the best real root as x * k .

T 111 (θ) = W 111 cos 3 θ + 3W 11n cos 2 θ sin θ + 3W 1nn cos θ sin 2 θ + Wnnn sin 3 θ = 1

(1 + x 2 ) 3 2 W 111 + 3W 11n x + 3W 1nn x 2 + Wnnnx 3 ,
and hence

τ k (x) -τ k (0) = T 2 111 (θ) -W 2 111 = 1 (1 + x 2 ) 3 [(W 2 nnn -W 2 111 )x 6 + (6W 1nn Wnnn)x 5 + (-3W 2 111 + 9W 2 1nn + 6W 11n Wnnn)x 4 + (18W 11n W 1nn + 2W 111 Wnnn)x 3 + (-3W 2 111 + 6W 1nn W 111 + 9W 2 11n )x 2 + (6W 111 W 11n )x], (3.4 
)

τ k (x) = 6T 111 (x) (1 + x 2 ) 5/2 [-W 1nn x 3 + (Wnnn -2W 11n )x 2 + (2W 1nn -W 111 )x + W 11n ].
Then we solve

-W 1nn x 3 + (Wnnn -2W 11n )x 2 + (2W 1nn -W 111 )x + W 11n = 0, (3.5) 
and take x * k to be the best point among these real roots and ±∞.

Remark 3.3. (3.5) is similar to equations in [16, Section 3.5], which were for the best rank-1 approximation of a tensor in symm(R 2×2×2 ).

4th order symmetric tensors

Case 1:

(i k , j k ) ∈ C 1 .
Take p ≥ 2 and the pair (1, 2) (without loss of generality). It holds that 

τ k (x) -τ k (0) = T 2 1111 + T 2 2222 -W 2 1111 -W 2 2222 = 1 (1 + x 2 ) 4 ((8W 1111 W 1112 -8W 1222 W 2222 )(x -x 7 ) + (-4W
+ 9W 1122 W 2222 + 12W 2 1112 -36W 2 1122 + 12W 2 1222 ); e = 80(6W 1122 W 1222 -W 1111 W 1222 -6W 1112 W 1122 + W 1112 W 2222 ). Then τ k (x) = 1 (1 + x 2 ) 5 [a(1 + x 8 ) + b(x 7 -x) + c(x 6 + x 2 ) + d(x 5 -x 3 ) + ex 4 ]. Denote by ξ = x -1/x. It follows that τ k (x) = 0 if and only if Ω(ξ) def = aξ 4 + bξ 3 + (4a + c)ξ 2 + (3b + d)ξ + 2a + 2c + e = 0.
Solve Ω(ξ) = 0 for all the real roots ξ . Then solve x 2 -ξ x -1 = 0 for all and take the best real root as x * k .
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Case 2: (i k , j k ) ∈ C 2 . Take 1 ≤ p < n and the pair (1,n) (without loss of generality). It holds that

T 2 1111 (θ) = 1 (1 + x 2 ) 2 W 1111 + 4W 111n + 6W 11nn x 2 + 4W 1nnn x 3 + Wnnnnx 4 ,
and hence 

τ k (x) -τ k (0) = 1 (1 + x 2 ) 4 [(W 2 nnnn -W 2 
τ k (x) = -8T 1111 (1 + x 2 ) 3 [W 1nnn x 4 + (3W 11nn -Wnnnn)x 3 + (3W 111n -3W 1nnn )x 2 + (W 1111 -3W 11nn )x -W 111n ].
Then we solve

W 1nnn x 4 + (3W 11nn -Wnnnn)x 3 + (3W 111n -3W 1nnn )x 2 + (W 1111 -3W 11nn )x -W 111n = 0
and take x * k to be the best point among these real roots and ±∞.

JLROA-G algorithm and its convergence 4.1 JLROA-G algorithm

Different from the cyclic ordering (3.1) in JLROA-C, another pair selection rule of Jacobi-type algorithm based on the Riemannian gradient was proposed in [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF]. In this sense, the pair (i k , j k ) at each iteration is chosen such that

|h k (0)| = 2|(Q k-1 grad f (Q k-1 )) i k ,j k | ≥ ε grad f (Q k-1 ) , (4.1) 
where 0 < ε ≤ 2/n is fixed. By [18, Lemma 5.2] and [23, Lemma 3.1], we see that it is always possible to find such a pair if f is differentiable. In this case, we call it the JLROA-G algorithm.

Algorithm 2: JLROA-G algorithm [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF]Theorem 5.4] and [23, Theorem 3.3], we see that every accumulation point of the iterations in JLROA-G is a stationary point of f . (ii) Let A ∈ symm(R n×n×n ) and p = 1. Then JLROA-G is the same with the Jacobi-type algorithm in [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF], which was developed to find the best low multilinear rank approximation of symmetric tensors.

1: Input: A ∈ symm(R nו••×n ), 1 ≤ p ≤ n, 0 < ε ≤ 2/n,
= G (i k ,j k ,θ * k ) , and update Q k = Q k-1 U k . 7: end for Remark 4.1. (i) By
In this section, we mainly prove the following result for JLROA-G. The proof is postponed to Section 4.3. Theorem 4.2. Let A ∈ symm(R n×n×n ) with n ≥ 3. Suppose that p = 2 and Q * is an accumulation point of JLROA-G satisfying

A(Q * ) 2 112 + A(Q * ) 2 122 = 0, (4.2) 
A(Q * ) 333 A(Q * ) 444 • • • A(Q * )nnn = 0. (4.3)
Then either Q * is the unique limit point, or there exist an infinite number of accumulation points. 

Some lemmas

τ (x) = 6 (1 + x 2 ) 2 (3T 2 112 + 2T 111 T 122 -T 2 111 -2T 111 T 112 x). (4.5)
Note that τ (0) = 0. We have W 112 = 0 by (4.4).

(ii) Note that τ (0) ≤ 0. We have 2W 111 W 122 -W 2 111 ≤ 0 by (4.5). To complete the proof, we only need to prove that τ (0) < max x∈R τ (x) if W 111 = 1, W 122 = 1/2 and W 222 = β = 0 without loss of generality. In fact, it can be verified that

τ (x) = (1 + 3 2 x 2 + βx 3 ) 2 (1 + x 2 ) 3 in this case, and max x∈R τ (x) ≥ τ (2β) = (1 + 6β 2 + 8β 4 ) 2 (1 + 4β 2 ) 3 > τ (0) = 1. Definition 4.4. ([24, Definition 3.11]) Let A ∈ symm(R n×n×n ) and 1 ≤ i < j ≤ n. Suppose that A iii A iij = A ijj A jjj .
The stationary diagonal ratio, denoted by γ ij (A), is defined as follows.

γ ij (A) def = 0, if A (i,j) = 0; ∞, if A iii = A jjj = 0 and A 2 ijj + A 2 iij = 0; otherwise, γ ij (A)

is the (unique) number such that

A ijj A iij = γ ij (A) A iii A jjj .
Lemma 4.5. Let W ∈ symm(R 2×2×2 ) and T = W(G (1,2,arctan x) ) with x ∈ R and x = 0. Suppose that diag{W} = diag{T } = 0 and

W 111 W 112 = W 122 W 222 , T 111 T 112 = T 122 T 222 .
Then γ 12 (W) = γ 12 (T ) = -1 or 1/3.

Proof. Note that diag{W} = diag{T } and W = T . We see that

|γ 12 (W)| = |γ 12 (T )|. Let T = W(G (1,2,arctan x) ). Define τ : R -→ R + , x -→ diag{T } 2 = T 2 111 + T 2 222 . Then τ (x) = τ (0) by the condition. It follows by (3.3) that W 2 111 + W 2 222 -3W 2 112 -3W 2 122 -2W 111 W 122 -2W 112 W 222 = 0. (4.6)
After the substitution of W 122 = γ 12 (W)W 111 and W 112 = γ 12 (W)W 222 to (4.6), we get that γ 12 (W) = -1 or 1/3. Note that W = T ((G (1,2,arctan x) ) ). We can similarly get that γ 12 (T ) = -1 or 1/3. Proof. It can be verified that

- x √ 1 + x 2 W 122 = T 223 = 0,
and thus W 122 = 0. It follows by the condition that W 112 = 0. Note that W = T ((G (1,3,arctan x) ) ). We can similarly get that T 112 = T 122 = 0.

Proof of Theorem 4.2

Before proving the main theorem, we recall a result on global convergence from [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF], which is the direct consequence of [START_REF] Schneider | Convergence results for projected line-search methods on varieties of low-rank matrices via lojasiewicz inequality[END_REF]Theorem 2.3].

Theorem 4.7. ([23, Corollary 5.4]) Let f be a real analytic function from On to R. Suppose that {Q k } ∞ k=1 ⊂ On and, for large enough k, (i) there exists σ > 0 such that

|f (Q k ) -f (Q k-1 )| ≥ σ grad f (Q k-1 ) Q k -Q k-1 , (ii) grad f (Q k-1 ) = 0 implies that Q k = Q k-1 . Then the iterations {Q k } ∞ k=1 converge to a point Q * ∈ On.
Next, we provide a useful bound on the difference between cost functions at consecutive iterations.

Lemma 4.8. Let A ∈ symm(R n×n×n ). Let h k (θ) be as in (3.2) for k ∈ N. Then there exists δ > 0 such that h k (θ * k ) -h k (0) ≥ δ|h k (0)| 2 (4.7) for any k ∈ N with (i k , j k ) ∈ C 2 in JLROA-G. Proof. Let W = A(Q k-1 ) and T = W(G (i k ,j k ,θ) ). Let (i, j) = (i k , j k ).
It is clear that T iii (θ) is a trigonometric polynomial with a finite degree n 0 for all the iterations in C 2 . By [3, Theorem 1], we see that

T iii (0) 2 ≤ n 2 0 ( T iii 2 ∞ -T 2 iii (0)) = n 2 0 (h k (θ * k ) -h k (0)), when θ = 0. Note that h k (0) = 2T iii (0)T iii (0). Let M > 0 such that |4n 2 0 T 2 iii (0)| < M for all the iterations in C 2 . Then |h k (0)| 2 ≤ 4n 2 0 T 2 iii (0)(h k (θ * k ) -h k (0)) < M (h k (θ * k ) -h k (0)). The proof is complete if we set δ = 1/M .
Remark 4.9. Let A ∈ symm(R n×n×n×n ) be of 4th order. By the similar methods, we can also prove (4.7) for pairs in C 1 , or pairs in C 2 .

Proof of Theorem 4.2. Assume that there exist a finite number of accumulation points, denoted by Q ( ) (1 ≤ ≤ N ). Then any accumulation point is a stationary point by Remark 4.1(i). In other words, it holds that Λ(Q ( ) ) = 0 for all 1 ≤ ≤ N by (2.8). Let Q * = Q (1) . Now we prove that Q * is the unique limit point.

Step 1. We first prove that all the accumulation points satisfy (4.2) and (4.3) if Q * satisfies them. Note that the number of accumulation points is finite. We can see that any two different accumulation points can be connected by finite combination of the following two possible paths. (a) Take the pair (1, 2)

∈ C 1 . If {x * k , (i k , j k ) = (1, 2)
} is finite or converges to 0, this path doesn't appear and we skip it. Otherwise, this set has a nonzero accumulation point ζ and a subsequence converges to it. We assume that {x * k , (i k , j k ) = (1, 2)} → ζ = 0 without loss of generality. Note that {Q k-1 , (i k , j k ) = (1, 2)} has an accumulation point. We assume that

{Q k-1 , (i k , j k ) = (1, 2)} → Q ( 1 )
without loss of generality. Then Q

( 2 ) = Q ( 1 ) G (1,2,arctan ζ) is another different accumulation point. It is clear that A(Q ( 1 ) ) iii = A(Q ( 2 ) ) iii for 3 ≤ i ≤ n. Note that A(Q ( 1 )
) (1,2) and A(Q ( 2 ) ) (1,2) satisfy the conditions in Lemma 4.5. We see that

A(Q ( 1 ) ) 2 112 + A(Q ( 1 ) ) 2 122 = 0, A(Q ( 2 ) ) 2 112 + A(Q ( 2 ) ) 2 122 = 0. (b) Take the pair (1, 3) ∈ C 2 for example. Other pairs in C 2 are similar. If {x * k , (i k , j k ) = (1, 3
)} is finite or converges to 0, this path doesn't appear and we skip it. Otherwise, this set has a nonzero accumulation point ζ and a subsequence converges to it. We assume that {x * k , (i k , j k ) = (1, 3)} → ζ = 0 without loss of generality. Note that {Q k-1 , (i k , j k ) = (1, 3)} has an accumulation point. We assume that

{Q k-1 , (i k , j k ) = (1, 3)} → Q ( 1 )
without loss of generality. Then Q ( 2 ) = Q ( 1 ) G (1,3,arctan ζ) is another different accumulation point. Note that A(Q ( 1 ) ) (1,2,3) and A(Q ( 2 ) ) (1,2,3) satisfy the conditions in Lemma 4.6. We see that

A(Q ( 1 ) ) 112 = A(Q ( 1 ) ) 122 = A(Q ( 2 ) ) 112 = A(Q ( 2 ) ) 122 = 0.
Since Q * satisfies (4.2), we see that path (a) is the only possible path. Then all the accumulation points satisfy (4.2). Note that Q * satisfies (4.3) and A(Q ( 1 ) ) iii = A(Q ( 2 ) ) iii for 3 ≤ i ≤ n in path (a). All the accumulation points satisfy (4.3).

Step 2. Since path (b) in Step 1 doesn't appear, we get that

{x * k , (i k , j k ) ∈ C 2 } → 0 (4.8)
in JLROA-G. Let N (Q * , η) be the neighborhood of Q * = Q (1) in On with radius η > 0 such that there exist no other accumulation points in this neighborhood. If pair (i, j) ∈ C 2 satisfies that

{Q k-1 ∈ N (Q * , η), (i k , j k ) = (i, j)} is infinite, (4.9) 
then A(Q * ) (i,j) satisfies the conditions in Lemma 4.3 by condition (4.3). Then

A(Q * ) iii (A(Q * ) iii - 2A(Q * ) ijj ) = 0. Let ρ 1 def = min |A(Q * ) iii (A(Q * ) iii -2A(Q * ) ijj )|
for all pairs (i, j) ∈ C 2 satisfying (4.9). Then ρ 1 > 0. For other accumulation points, we can similarly get ρ for 1 < ≤ N . Then

ρ def = min ρ > 0. (4.10)
Step 3. Now we show that there exists κ > 0 such that

|h k (θ * k ) -h k (0)| ≥ κ|h k (0)||θ * k | (4.11) for all (i k , j k ) ∈ C 2 . Let W = A(Q k-1
). Denote (i, j) = (i k , j k ). Note that |x * k | < +∞ when k is large enough by (4.8). Then by (3.5) and (4.8), we have that

h k (0) x * k = 6W iii W iij x * k = -6W iii [(2W ijj -W iii ) + (W jjj -2W iij )x * k -W ijj x * k 2 ]
have accumulation points in the set 

{-6A(Q ( ) ) iii (2A(Q ( ) ) ijj -A(Q ( ) ) iii ), pair (i, j) satisfies (4.9), 1 ≤ ≤ N } when k ∈ N with (i k , j k ) ∈ C 2 .
|h k (θ * k ) -h k (0)| = | x * k h k (0) 2(1 -x * k 2 ) | ≥ 1 2 |h k (0)||θ * k | (4.12)
for all (i k , j k ) ∈ C 1 . Let ω = min{κ, 1/2} > 0. By (4.11) and (4.12), we get that

|h k (θ * k ) -h k (0)| ≥ ω|h k (0)||θ * | ≥ √ 2 2 ωε grad f (Q k-1 ) Q k -Q k-1 ,
for all k ∈ N. Then Q * is the unique limit point by Theorem 4.7.

5 JLROA-GP algorithm and its convergence

JLROA-GP algorithm

To prove better theoretical convergence results, in this section, we further propose a proximal variant of JLROA-G algorithm, which is called JLROA-GP algorithm. Let γ(θ) : [-π, π] → R + be a C 2 function satisfying that η 1 θ 2 ≤ γ(θ) ≤ η 2 θ 2 for two positive constants η 1 , η 2 > 0. This new variant is shown in Algorithm 3.

Convergence analysis

In this subsection, we mainly prove the following convergence result for JLROA-GP algorithm.

Theorem 5.1. In JLROA-GP algorithm, the iterates {Q k } k≥1 converge to a stationary point Q * .

To prove Theorem 5.1, we first need to show two lemmas. In fact, the proofs of these two lemmas are included in the proof of [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Theorem 6.2]. We present them here for convenience.

Algorithm 3: JLROA-GP algorithm

1: Input: A ∈ symm(R nו••×n ), 1 ≤ p ≤ n, 0 < ε ≤ 2/n, δ > 0, a starting point Q 0 . 2: Output: Sequence of iterations {Q k } k≥1 . 3: for k = 1, 2, . . . until a stopping criterion is satisfied do 4:
Choose a pair (i k , j k ) satisfying the inequality (4.1) at Q k-1 .

5:

Solve θ * k that maximizes hk (θ) = h k (θ) -δγ(θ),

where h k (θ) is defined as in (3.2).

6: Set

U k def = G (i k ,j k ,θ * k ) , and update Q k = Q k-1 U k . 7: end for Lemma 5.2. In JLROA-GP algorithm, there exists σ 1 > 0 such that h k (θ * k ) -h k (0) ≥ σ 1 |θ * k | 2 . (5.2) Proof. Since h k (θ * k ) -h k (0) -δγ(θ * k ) = hk (θ * k ) -hk (0) ≥ 0, we get that h k (θ * k ) -h k (0) ≥ δγ(θ * k ) ≥ δη 1 |θ * k | 2 . (5.
3)

The proof is complete by setting σ 1 = δη 1 .

Lemma 5.3. In JLROA-GP algorithm, there exists σ 2 > 0 such that

|θ * k | ≥ σ 2 |h k (0)|. (5.4) Proof. Define h(θ, Q) = f (QG (i,j,θ) ) -δγ(θ), for θ ∈ [-π, π], Q ∈ On and 1 ≤ i < j ≤ n. Let M def = max Q∈On,θ∈[-π,π],1≤i<j≤n ∂ 2h ∂θ 2 (θ, Q) .
Then M < +∞ since f and γ are both C 2 and On is compact. Therefore, we have that [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Eq. (25)]. By Lemma 5.2, Lemma 5.3 and the inequality (4.1), we have that

|h k (0)| = | h k (0)| = | h k (θ * k ) -h k (0)| ≤ M |θ * k |, for any Q k-1 ∈ On, θ * k ∈ [-π, π] and 1 ≤ i k < j k ≤ n. The proof is complete by setting σ 2 = 1/M . Proof of Theorem 5.1. Note that Q k -Q k-1 ≤ √ 2|θ * k | by
f (Q k ) -f (Q k-1 ) = h k (θ * k ) -h k (0) ≥ σ 1 |θ * k | 2 ≥ σ 1 σ 2 |θ * k ||h k (0)| ≥ ε √ 2 σ 1 σ 2 Q k -Q k-1 grad f (Q k-1 )
.

By Theorem 4.7, we see that there exists

Q * ∈ On such that Q k → Q * . Now we show that Q * is a stationary point. In fact, since h k (θ * k ) -h k (0) → 0, we have θ * k → 0 by (5.
2), and thus h k (0) → 0 by (5.4). It follows by the inequality (4.1) that grad f (Q k-1 ) → 0, and thus grad f (Q * ) = 0. The proof is complete.

Remark 5.4. Compared with the Jacobi-PC algorithm in [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Sec. 6], in this paper, we choose the gradient based pair selection rule, and prove Theorem 5.1 for a general cost function f and a general function γ(θ).

Remark 5.5. We note that the elementary update with the proximal term becomes more difficult. If (i k , j k ) ∈ C 1 , a choice of γ(θ) satisfying the conditions is γ(θ) = 2 sin 2 (θ) cos 2 (θ), which was used in [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]. This choice of γ has advantage that the function remains π/2-periodic, and therefore the complexity of finding the modified update is the same as the one without the proximal term. However, for the case (i k , j k ) ∈ C 2 by adding a proximal term, we destroy the quadratic structure of h k (θ), and we need to find roots of a polynomial of order 2d (instead of order d). where W = A(Q * ). We choose the iteration Q K as the approximation of an accumulation point when K is large enough (K = 500 in this experiment). We randomly generate A ∈ symm(R 10×10×10 ) for 1000 times, and run JLROA-G to see the frequency that ω > 0 (greater than 0.0001). The results are shown in Figure 4, where ω > 0 for 991 times. It can be seen that the conditions (4.2) and (4.3) are satisfied in most cases. 

Lemma 4 . 3 .

 43 Let W ∈ symm(R 2×2×2 ) and T = W(G (1,2,arctan x) ) with x ∈ R. Define τ : R → R + sending x to T 2 111 . Suppose that W 222 = 0 and τ (0) = max x∈R τ (x). Then (i) W 111 = 0, W 112 = 0, (ii) W 111 (2W 122 -W 111 ) < 0. Proof. (i) It is clear that |W 222 | ≤ |W 111 | since τ (0) ≥ τ (±∞). Then W 111 = 0. Let θ = arctan x. We have that dT 111 dθ = 3T 112 , dT 112 dθ = 2T 122 -T 111 by straightforward differentiation [23, Page 10]. It follows that

Lemma 4 . 6 .

 46 Let W ∈ symm(R 3×3×3 ) and T = W(G (1,3,arctan x) ) with x ∈ R and x = 0. Suppose that |W 111 | = |T 111 | > 0 and W 111 W 112 = W 122 W 222 , T 111 T 112 = T 122 T 222 , W 113 = W 223 = T 113 = T 223 = 0. Then W 112 = W 122 = T 112 = T 122 = 0.

Figure 1 :

 1 Figure 1: Distributions of points (JVal, SVal) in Example 6.1. The points are blue when JVal is greater, and red when SVal is greater.

Figure 2 :

 2 Figure 2: Results of Example 6.2.

Figure 4 :

 4 Figure 4: Results of Example 6.4. Blue points mean that ω > 0, while red points mean that ω = 0.

  as defined e.g. in[START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF] Section 2.2]. Now we formulate the Jacobi low rank orthogonal approximation (JLROA) algorithm for problem (2.4) as in Algorithm 1.

  12W 1122 W 2222 )(x 2 + x 6 ) + (48W 1112 W 1122 + 8W 1111 W 1222 -48W 1122 W 1222 -8W 1112 W 2222 )(x 3 -x 5 ) 3W 1122 W 2222 ); c = 8(18W 1112 W 1122 -7W 1111 W 1112 + 3W 1111 W 1222 -18W 1122 W 1222 -3W 1112 W 2222 + 7W 1222 W 2222 ); d = 8(9W 1111 W 1122 -32W 1112 W 1222 -2W 1111 W 2222

	2 1111 + 12W 1122 W 1111 + 16W 2 1112 + 16W 2 1222 -4W 2 2222 + + (-6W 2 1111 + 4W 1111 W 2222 + 72W 2 1122 -6W 2 2222 + 64W 1112 W 1222 )x 4 ).
	Denote by
	a = 8(W 1111 W 1112 -W 1222 W 2222 );
	b = 8(W 2 1111 -3W 1122 W 1111 -4W 2 1112 -4W 2 1222 + W 2 2222 -

  It follows from (4.10) that there exists υ > 0 such that |h k (0)| ≥ υ|x * k | when k is large enough with (i k , j k ) ∈ C 2 .. Then we get (4.11) by Lemma 4.8. Step 4. If {x * k , (i k , j k ) = (1, 2) ∈ C 1 } is finite, we skip it. Otherwise, by [23, (27)], we know that

Table 2 :

 2 NumG NumS NumE RatioG RatioSExample 6.4. Let A ∈ symm(R 10×10×10 ) and p = 2. Suppose that Q * is an accumulation point of JLROA-G. To check the frequency of conditions (4.2) and (4.3) being satisfied, we define ω = min{|W 112 |, |W 122 |, |W 333 |, • • • , |Wnnn|},

	p = 1	125	0	875	211.7822	-
	p = 2	395	360	245	5.0299	0.9986
	p = 5	431	555	14	1.0016	0.9987
	p = 8	393	604	3	1.0011	0.9992
	p = 10	35	962	3	1.0002	0.9995

the iterations converge to a unique limit point for any starting point.

the difference is smaller than 0.0001.

the difference is smaller than 0.0001.
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Numerical experiments

In this section, we make some experiments to compare the performance of JLROA algorithm with the LROAT and SLROAT algorihtms in [START_REF] Chen | On the tensor SVD and the optimal low rank orthogonal approximation of tensors[END_REF], and Trust region algorithm by Manopt Toolbox in [START_REF] Boumal | Manopt, a matlab toolbox for optimization on manifolds[END_REF]. When p = 1, LROAT and SLROAT are exactly the HOPM and SHOPM algorithms in [START_REF] Lathauwer | On the best rank-1 and rank-(r1 ,r2 ,. . .,rn) approximation of higher-order tensors[END_REF][START_REF] Kofidis | On the best rank-1 approximation of higher-order supersymmetric tensors[END_REF], respectively. We use the cyclic ordering of JLROA-C algorithm for simplicity except Example 6.4. The LROAT and SLROAT algorihtms are both initialized via HOSVD [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF], because we find they generally have better performance in this case. Example 6.1. We randomly generate 1000 tensors in symm(R 10×10×10 ), and run JLROA and SLROAT algorithms for them. Denote by JVal and SVal the final value of (2.2) obtained by JLROA and SLROAT, respectively. Set the following notations. (i) NumG : the number of cases that JVal is greater than SVal; (ii) NumS : the number of cases that JVal is smaller than SVal; (iii) NumE : the number of cases that JVal is equal 6 to SVal; (iv) RatioG : the average of JVal/SVal when JVal is greater than SVal; (v) RatioS : the average of JVal/SVal when JVal is smaller than SVal. The results are shown in Table 1 and Figure 1. It can be seen that JLROA algorithm better performance when p > 2. They always get the same result when p = 1. (i) NumG : the number of cases that JVal is greater than TVal;

(ii) NumS : the number of cases that JVal is smaller than TVal;

(iii) NumE : the number of cases that JVal is equal 7 to TVal;

(iv) RatioG : the average of JVal/TVal when JVal is greater than TVal;

(v) RatioS : the average of JVal/TVal when JVal is smaller than TVal.

The results are shown in Table 2 and Figure 3. It can be seen that RatioG is very large when p = 1, 2, which means that Turst region is not so stable as JLROA in these two cases. Correspondingly, Trust region algorithm has generally better performance when p > 2.