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Abstract

Multidimensional signal analysis has become an important part of many signal

processing problems. This type of analysis allows to take advantage of differ-

ent diversities of a signal in order to extract useful information. This paper

focuses on the design and development of multidimensional data decomposition

algorithms called Canonical Polyadic (CP) tensor decomposition, a powerful

tool in a variety of real-world applications due to its uniqueness and ease of

interpretation of its factor matrices. More precisely, it is desired to compute

simultaneously the factor matrices involved in the CP decomposition of a real

nonnegative tensor, under nonnegative constraints. For this purpose, two prox-

imal algorithms are proposed, the Monotone Accelerated Proximal Gradient

(M-APG) and the Non-monotone Accelerated Proximal Gradient (Nm-APG)

algorithms. These algorithms are implemented via a regularization function

with a simple control strategy capable of efficiently taking advantage of previ-

ous iterations. Simulation results demonstrate better performance of the two

proposed algorithms in terms of accuracy when compared to other nonnegative

CP algorithms in the literature.
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1. INTRODUCTION

Tensors have interested mathematicians and physicists since the 19th cen-

tury. In physics, they offer a practical language for expressing some natural

laws independently of the coordinate system. A famous example is the one

established by Einstein’s theory of general relativity, whose fundamental equa-5

tions are expressed in terms of tensors. In our framework, the motivation to use

tensors is different, as elaborated below.

In our context, a tensor of order N just represents a multidimensional array

where each element is accessible via N indices. Thus, a first-order tensor is a

vector, a second-order tensor is a matrix, and a zero-order tensor is a scalar. The10

analysis of tensors of order greater than two is a matter of multilinear algebra.

Since the sixties, a growing interest in tensors was observed in many scientific

and engineering communities. On can mention the early works in psychometrics

that applied tensor techniques for data analysis purposes [1],[2], and later, the

works on blind source separation that exploited the tensor structure of higher15

order cumulants [3], while numerous works using tensor models were emerging

in a wide variety of applications ranging from component analysis in chemistry

[4] to estimation and location of radiating sources [5]. Today, the growing list

of tensor applications includes problems in computer vision [6], biomedical en-

gineering [7], modeling and identification of dynamical systems [8], big data [9],20

and data mining [10]. This renewed interest in tensor models is mainly due to

their ability to exploit an additional structure of the problem compared to tradi-

tional matrix models. A typical example of this superiority is the estimation of

excitation/emission spectra from fluorescence data in chemometrics using high-

order tensor decomposition techniques [4]. In fact, the main advantage of tensor25

models in these applications is the ability to uniquely identify the parameters

that characterize them, under much weaker assumptions than matrix models.

In this paper, we will mainly focus on the so-called Canonical Polyadic (CP)
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decomposition [11]. One of the most remarkable features of this decomposition

is its essential uniqueness for orders strictly greater than two [12, 13], which30

enables parameter identification. The CP decomposition has been used in vari-

ous fields, such as Chemometrics [14, 15], Telecommunications [16, 17, 18], and

also in other recent fields, such as big data [19, 20] as well as in many machine

learning tasks, including regression analysis with Tensor Regression (TR) [21],

supervised classification with Support Tensor Machine (STM) [22, 23] instead35

of the popular Support Vector Machine (SVM), data pre-processing with tensor

dictionary learning (also known as “sparse coding”) [24, 25] and unsupervised

classification with High-order restricted Boltzmann machines [26].

Many algorithms have been developed to calculate the CP decomposition.

The most popular in the literature is the Alternating Least Squares (ALS) orig-40

inally proposed in [2], in which each factor matrix is updated alternatingly as a

subproblem. The ALS algorithm is well designed to converge to a local minimum

under mild conditions [27]. However, the ALS algorithm remains inappropri-

ate to compute the CP decomposition under positivity constraints, and also in

some situations where factors matrices in one or all modes are collinear, i.e.,45

bottleneck or swamp phenomena [28, 29]. When such phenomena occur, the

error between two consecutive iterations does not significantly decrease, leading

to a very low convergence rate. However, the bottleneck phenomenon is less

often encountered when decomposing nonnegative tensors, because the problem

is well-posed [30, 31].50

Different variants of the ALS algorithm [17, 32, 33] have been specifically

developed in the literature to compute the Nonnegative Canonical Polyadic

(NCP) decomposition. These include, for example, the Hierarchical Alterna-

tive Least Squares (HALS) method, which was designed for large-scale tensor

data [34, 35]. The Alternating Non-negative Least Squares method (ANLS)55

which is a powerful sub-processing for NCP, taking advantage of the efficiency

of many Non-Negative Least Squares methods (NNLS) such as the Active Set

(AS) [36] and the Block Principal Pivot (BPP) [37]. Nevertheless, NNLS often

suffer from rank deficiency due to the sparse effect induced by the projection
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onto the nonnegative orthant, yielding zero components in factor matrices [38].60

Recently, some methods involving proximal methods [39, 40] have been shown

to be effective for such problems, including the alternating proximal gradient

method [41, 42, 43] which has gained popularity for NMF and third-order tensor

decomposition due to its stable convergence.

In this paper, we propose two algorithms, namely, the Monotone Accelerated65

Proximal Gradient (M-APG) and the Non-monotone Accelerated Proximal Gra-

dient (Nm-APG) to improve the accuracy of Nonnegative Canonical Polyadic

(NCP) decomposition. These algorithms are based on proximal methods [44],

where we introduce a regularization function that penalizes the difference be-

tween the current and previous factor iterates, by using two different strategies70

capable of efficiently monitoring this regularization. We shall be particularly

interested in the Accelerated Proximal Gradient (APG) algorithm in the non-

convex case. Indeed, unlike the alternating approach where factor matrices are

computed alternately, leading to simple convex problems, our approach (some-

times referred to as all-at-once) consists in computing all factor matrices simul-75

taneously, which then leads to a continuous non-convex optimization problem.

The rest of the paper is organized as follows. Some notations and definitions

are presented in Section 2. In Section 3 we describe properties of the NCP de-

composition. Some general definitions on proximal mapping and further details

are elaborated in Section 4, where APG is explained for convex and non-convex80

cases. In Section 5 we introduce our optimization algorithms for the NCP de-

composition. In Section 6, we report computer results, and finally Section 7

concludes the paper.

2. NOTATIONS AND DEFINITIONS

Tensors are denoted by calligraphic letters, e.g., T , matrices are denoted85

by boldface capital letters, e.g., M, vectors are denoted by boldface lowercase

letters, e.g., a and scalars are denoted by lowercase letters, e.g., a. In addition,

the pth column of matrix A is denoted by ap, the pth element of a vector a
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is denoted by ap, the entry of a matrix A in position (i, j) is denoted by Aij

and the entry of a tensor T in position (i, j, k) is denoted by Tijk. Operator90

⊗ represents outer product of vectors, and 〈·, ·〉 represents the Euclidean inner

product.

Definition 1. Tensors are mathematical objects derived from multilinear algebra

that generalize scalars and vectors. For our purposes, a tensor of order N will

merely refer to a multidimensional array in which each element is accessible via

N indices {i1, . . . , iN}, 1 ≤ in ≤ In, for all n, 1 ≤ n ≤ N . Such a tensor is a

table of size I1 × · · · × IN , which we denote:

T ∈ RI1×I2×...×IN . (1)

The entries of tensor T are denoted by Ti1,...,iN . The nth dimension of tensor

T , In, is sometimes referred to as the nth mode in the literature.

Definition 2. The outer product of three vectors a ∈ RI , b ∈ RJ and c ∈ RK

produces a third order tensor T ∈ RI×J×K :

T = a⊗ b⊗ c. (2)

The entry (i, j, k) of the simple tensor defined above in (2) is the product

Tijk = aibjck.

A tensor T ∈ RI×J×K is said to be rank-1 (also referred to as a decomposable95

tensor [3]) if each of its elements can be represented as : Tijk = aibjck; in other

words, any tensor expressed as the outer product of three vectors, which will be

denoted in a compact form as in (2), is rank-1.

Definition 3. The scalar product between two tensors with the same size, X , Y

∈ RI×J×K , is defined as:

〈X ,Y〉 =

I∑
i=1

J∑
j=1

K∑
k=1

Xijk Yijk.
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Definition 4. The Frobenius norm ‖.‖F of a tensor T ∈ RI×J×K is derived from

the scalar tensor product:

‖T ‖F =
√
〈T , T 〉 =

√∑
i,j,k

| Tijk |2. (3)

Thus, one can determine the quadratic distance between two tensors X and Y

of the same size I × J ×K by the quantity:

‖X − Y‖2F . (4)

Definition 5. The vectorization operation vec{.} maps a tensor T ∈ RI×J×K

to a vector vec{T } of size IJK, defined by:[
vec{T }

]
i+(j−1)I+(k−1)IJ = Tijk. (5)

3. CP DECOMPOSITION100

The CP decomposition of a 3rd-order tensor X of size I × J ×K is defined

as follows:

X =

R∑
r=1

λr(ar ⊗ br ⊗ cr) (6)

where λ = [λ1, λ2, ..., λR] is a vector containing real positive scaling factors λr

and the three matrices A= [a1,a2, ...,aR] ∈ RI×R, B= [b1,b2, ...,bR] ∈ RJ×R

and C= [c1, c2, ..., cR] ∈ RK×R are referred to as “factor matrices”. When R is

minimal, then it is called the rank of X , and we refer to the above expression

as the CP Decomposition of X [45, 3].105

3.1. Low-rank approximation

Although the tensor of interest is of low-rank, it is frequently necessary to

look for a low-rank approximation (e.g. rank R) of the observed tensor due to

the presence of noise. In noisy cases, the observed tensor is indeed generally of

generic rank, strictly larger than R [3]. In the low-rank approximation problem

[16], the goal is to minimize an objective function Υ of the following form:

Υ(A,B,C;λ) =
∥∥∥X − X̂∥∥∥2

F
(7)
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where X̂ =
R∑
r=1

λr (ar ⊗ br ⊗ cr). Alternatively, the minimization of (7) can be

expressed using vectorization property (5) as:

min
x̂

Υ(x̂) = min
x̂
‖x− x̂‖2F (8)

with x̂ =
∑
r λrar �br � cr, where � represents the Kronecker product [46].

It is worth noting that scaling indeterminacies are present in the expressions

of X̂ or x̂; this fact is well known, see e.g [3] and references therein. Yet, in

numerical optimization, it is desirable to fix these indeterminacies. This is the110

reason why it is often chosen to impose vectors {ar,br, cr} to have a unit norm

(regardless of the norm chosen): λr are then unique, and vectors {ar,br, cr}

are unique up to sign flip when the CP decomposition is unique.

Next, the optimal value λo minimizing the error Υ can be determined by

cancelling the gradient of (7) w.r.t. λ, which then results in the following linear

system:

Gλo = s, (9)

where G is the Gram matrix of size R×R defined by:

Gpq = aTp aq × bTp bq × cTp cq,

and s is the R-dimensional vector defined by:

sr = ΣijkTijkAirBjrCkr.

3.2. Nonnegative CP decomposition

From now on, let us limit ourselves to the case where the components of the115

tensor are non-negative. So in order to extract these significant nonnegative

components, the incorporation of a nonnegative constraint into the decomposi-

tion model is necessary. This gives rise to the Nonnegative Canonical Polyadic

(NCP) decomposition, which is one of the most important tensor decomposition

models with constraints [47, 48, 49, 50, 51]. This decomposition has received120

a great success in several real-world applications, such as the decomposition

of hyperspectral data [47], the decomposition of electroencephalography (EEG)
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data [48], the decomposition of fluorescence excitation-emission matrix (EEM)

data [49, 52], and also the decomposition of neural data [50], as well as many

other multi-channel tensor data [53, 54].125

Formally, given a nonnegative third order tensor X of size I × J × K, the

NCP decomposition consists in solving the following minimization problem:

min
A,B,C;λ

∥∥∥∥∥X −
R∑
r=1

λr (ar ⊗ br ⊗ cr)

∥∥∥∥∥
2

F

s.t. ar ≥ 0,br ≥ 0, cr ≥ 0, r = 1, ..., R.

(10)

where ≥ is understood entry-wise.

According to (10), the most natural way to perform this minimization is

via an alternating approach. Such an approach consists of updating one factor130

matrix at a time while keeping the others fixed. In such a way, the problem to

be solved is then transformed into three simple convex sub-problems. This is

the basis of the most commonly used methods to solve the NCP decomposition.

In the present work, we compute all factor matrices in a simultaneous way.

Note that one of the major consequences of this approach is that the problem135

turns into a non-convex one [55] as we can clearly observe in (8). To the best of

our knowledge, proximal algorithms have not yet been provided in the literature

to simultaneously estimate factor matrices of the NCP. This all-at-once compu-

tation was considered for the CP decomposition in [29, 56] but under a coherence

constraint. One such approach has also been used under the nonnegative con-140

straint in [51] for which the minimization was performed using the Enhanced

Line Search (ELS) and the alternating backtracking with ELS for the gradient

and quasi-Newton algorithms. In addition the latter explicitly incorporates the

nonnegative constraint of the factor matrices in the problem parameterization,

contrary to our proposal in which we impose the non-negative constraint to all145

entries by resorting to proximal algorithms.
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4. PROXIMAL ALGORITHMS

4.1. Proximal operators

Proximal operators are currently powerful and reliable optimization tools

[39, 40], leading to a wide range of algorithms, such as the proximal point150

algorithm, the proximal gradient algorithm and many other algorithms involving

linearization and/or splitting.

Given a function h, the proximal operator (or proximal mapping) [39] maps

an input point x to the minimizer of h restricted to small proximity to x. The

definition of the proximal operator is recalled hereafter.155

4.1.1. Definition

The proximal map of a point x ∈ RN under a proper and closed function h

(with parameter ρ > 0) is defined as:

proxρh(x) = minimize
y∈RN

h(y) +
1

2ρ
‖x− y‖22, (11)

The operator proxρh : RN −→ RN is the proximal operator of h, and parameter

ρ controls the extent to which the proximal operator maps points towards the

minimum of h, with larger values of ρ associated with mapped points near the

minimum, and smaller values giving a smaller movement towards the minimum160

[39, p.125].

As a result, we can see that the evaluation of a proximal operator can be a

valuable sub-step in an optimization algorithm. As a general example, Let us

consider the following optimization problem:

minimize
x∈Rn

f(x) = g(x) + h(x), (12)

where g : RN −→ RN and h : RN −→ RN are closed proper convex and g is

differentiable where h is not necessarily differentiable but rather “simple” in the

sense that its proximal operator can be evaluated efficiently, i.e., its proximal

operator admits a closed form [39]. A natural strategy of this method is to first

reduce the value of g by using iterative optimization methods such as gradient
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descent or Newton’s method following a descent direction dk, then reduce the

value of h by applying the proximal operator to h, (using the same step-size)

and repeat these two steps until convergence to a minimizer. This strategy

yields the following iteration:

xk+1 = proxρkh(xk + ρkdk) (13)

The mentioned strategy describes the general idea of the iterative proximal

gradient method, while its accelerated version proposed by Beck and Teboulle

in [57] involves an extrapolation at each iteration, by taking into account infor-

mation from previous and current iterations.165

First, we report the Accelerated Proximal Gradient (APG) method of Beck

and Teboulle [57] in the convex case. This method consists of the following

steps:

yk = xk +
tk−1 − 1

tk
(xk − xk−1),

xk+1 = proxρkh(yk − ρk∇g(yk)),

tk+1 =

√
4(tk)2 + 1 + 1

2
.

(14)

According to these steps, there is no guarantee that f(xk+1) will be inferior

to f(xk), this is due to the fact that APG is not a monotone algorithm. For

that reason, Beck and Teboulle [57] have proposed a monotone APG consisting

of the following steps:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (15a)

zk+1 = proxρkh(yk − ρk∇g(yk)), (15b)

tk+1 =

√
4(tk)2 + 1 + 1

2
, (15c)

xk+1 =

zk+1 if f(zk+1) ≤ f(xk)

xk otherwise.

(15d)

4.2. APG in the non-convex case

In the recent research, the accelerated proximal gradient has been extended

to solve general non-convex problems. Among these works, one can find those in
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[58, 59, 60], where a monotone descent of the objective value is imposed to ensure

convergence, while on the other hand, the works in [61, 44] introduce a generic170

method for non-smooth non-convex problems based on Kurdyka-Lojasiewicz

theory.

In the present paper, we exploit the rigorous argument provided in [58]

proving that the limit point of the sequence generated by the APG algorithm

is a critical point of the objective function (7).175

We present two APG-type algorithms for general non-convex problems [58],

namely the monotone APG and the non-monotone APG, which we then adapt

to our particular NCP decomposition problem.

4.2.1. Monotone APG

The APG of Beck and Teboulle [57] is not guaranteed to converge in the non-180

convex case due to different reasons; one of them concerns the bad extrapolation

of yk, and another one results from the fact that the sufficient descent condition

is not ensured while it is essential to ensure the convergence to a critical point,

however only the descent property, f(xk+1) ≤ f(xk), is guaranteed in (15).

To overcome these two difficulties, the use of an additional proximal gradient

step of xk as a monitor would be an appropriate choice due to its ability to ensure

the required sufficient descent property [61], which is essential to guarantee

convergence to a critical point and also to correct the bad extrapolation yk.

Basically, the monotone APG algorithm consists of the following steps:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (16a)

zk+1 = proxρyh(yk − ρy∇g(yk)), (16b)

vk+1 = proxρxh(xk − ρx∇g(xk)), (16c)

tk+1 =

√
4(tk)2 + 1 + 1

2
, (16d)

xk+1 =

zk+1 if f(zk+1) ≤ f(vk+1)

vk+1 otherwise,

(16e)
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where ρy and ρx can be either fixed constants satisfying ρy <
1
L and ρx <

1
L ,185

where L is the Lipschitz constant of ∇g, or determined by backtracking line

search method [62].

We can notice that the APG algorithm of Beck and Teboulle in the convex

case ensures only the descent property for which f(zk+1) is compared to f(xk)

in (15), while its extension to the non-convex case ensures the sufficient descent

property when f(zk+1) is compared to f(vk+1) (16), which means that:

f(xk+1) ≤ f(xk)− δ‖vk+1 − xk‖2, (17)

where δ > 0 is a small constant.

4.2.2. Non-monotone APG

In the preceding monotone APG algorithm, it is required to compute vk+1 at190

each iteration to control and correct zk+1, which involves larger computational

cost and CPU time. Moreover, we can directly accept zk+1 as xk+1 if it meets a

particular criterion indicating that yk is a good extrapolation. Only afterwards,

vk+1 is calculated whenever this criterion is not met.

In contrast to the monotone APG, where (17) is guaranteed, in the case of195

non-monotone APG, f(xk+1) is allowed to be larger than f(xk). More precisely,

xk+1 is expected to yield an objective function value less than a relaxation of

f(xk), while not being too far from f(xk). An appropriate way to define a

relaxation parameter ck so as to remain in the vicinity of f(xk) is to consider

the average of f(x1),...,f(xk−1),f(xk) with exponentially decreasing weights as200

in [63]:

ck =
Σkj=1ν

k−jf(xj)

Σkj=1ν
k−j , (18)

where ν ∈ [0, 1) controls the level of non-monotonicity. Practically, ck can be

computed by the following efficient recursion:

qk+1 = νqk + 1,

ck+1 =
νqkck + f(xk+1)

qk+1
,

(19)
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where q1 = 1 and c1 = f(x1).

Therefore, in the non-monotone APG, (17) gives rise to these two conditions205

by the different choices of xk+1:

f(zk+1) ≤ ck − δ‖zk+1 − yk‖2, (20a)

f(vk+1) ≤ ck − δ‖vk+1 − xk‖2, (20b)

Condition (20a) is adopted following the criterion mentioned before. More

precisely, when (20a) is verified, this means that yk is a good extrapolation,

which leads to a direct acceptance of zk+1 without computing vk+1. Otherwise,

when (20a) does not hold, which means that yk is not an appropriate extrapo-210

lation. In that case, we are required to correct this bad extrapolation zk+1 by

calculating the additional variable vk+1 using (16c), which satisfies (20b). In

addition, by using the backtracking method, variables vk+1 satisfying (20b) can

be found in a finite number of steps.

The basic structure of the non-monotone APG algorithm is as follows:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (21a)

zk+1 = proxρyh(yk − ρy∇g(yk)), (21b)

if f(zk+1) ≤ ck − δ‖zk+1 − yk‖2 then (21c)

xk+1 = zk+1

else

vk+1 = proxρxh(xk − ρx∇g(xk)), (21d)

xk+1 =

zk+1 if f(zk+1) ≤ f(vk+1)

vk+1 otherwise

(21e)

end if

tk+1 =

√
4(tk)2 + 1 + 1

2
. (21f)
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5. PROPOSED METHOD215

5.1. Proposed minimization

In contrast to the alternating approach, where factor matrices are computed

in turn, our approach addresses the Nonnegative CP decomposition problem by

estimating all factor matrices simultaneously. In other words, we are looking

for a solution to a minimization problem in which the function to be mini-220

mized is composed of two terms: The first one related to the properties of the

noise, called the “data fidelity term” which is defined in (7) by the cost func-

tion Υ. The second one related to a priori information on model parameters,

called “regularization”, which penalizes the difference of a particular factor in

two successive iterations, and which will be represented by G. In [64], several225

numerical examples show that this regularization can also help the algorithm

to stay away from degenerate cases of bottlenecks or swamps, i.e., from regions

where convergence is slow. In addition, it has also been shown in [27] that the

limit point obtained from the regularized NCP decomposition (23) is a critical

point of the original minimization problem
∥∥∥X − X̂∥∥∥2

F
.230

As indicated in (8) and for the sake of simplicity, columns of factor matrices

are arranged in a single vector x = vec{[AT ,BT ,CT ]}, so that the objective to

be minimized takes the form:

F(x) = Υ(x)︸ ︷︷ ︸
Fidelity

+ G(x)︸︷︷︸
Regularization

, (22)

which can be explicitly written as:

F(x) = min
x̂k≥0

‖x− x̂k‖2F + ηk ‖x̃k−1 − x̂k‖2F , (23)

where x̃k−1 is the predecessor version of xk in the previous iteration and ηk

is a penalty weight that controls the sharpness of the penalty, which decreases

through iterations. We propose two APG-type algorithms as a solution to the

optimization problem defined in (23) by exploiting the convergence analysis

presented in [58].235
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The core of the latter two algorithms is described in the following paragraphs,

and labelled Algorithm 1 and Algorithm 2, respectively.

There are essentially two fundamental steps:

• A gradient step associated with the data fidelity term (function Υ).

• A proximal step related to the penalty term (function G).240

5.2. Gradient step

This step improves the approximate solution, focusing only on the data

fidelity with the exclusion of the penalty function. Two other steps are also

involved in these stages:

(i) First, we calculate the direction of the descent direction d(k) of Υ, leading

to the direction of the steepest decrease, determined by:

d(k) = −∇Υ(A(k),B(k),C(k)) = −∇Υ(x(k)), (24)

where gradient expressions required to determine the direction of descent d(k)

are of the form:
∂Υ

∂A
= 2AMA − 2NA (25)

with

MA
pq

def
=
∑
jk

λpBjpCkpC
∗
kqB

∗
jqλ
∗
q

NA
ip
def
=
∑
jk

TijkB
∗
jpC

∗
kpλ
∗
p

The gradients expressions w.r.t B and C are similar.

(ii) The second stage involves the determination of the step-size ρ(k) ac-

cording to the chosen direction d(k). Among numerous methods of searching

for a good step-size, backtracking is extensively used [62]. It depends on two

parameters α and β, with 0 < α < 0.5 and 0 < β < 1. The idea is to start with

a sufficiently large step-size ρ(k) (e.g. ρ = 1) at the beginning, and then reduce

it as ρ← ρβ, until the following Armijo condition [65] is verified:

Υ(x(k) + ρ(k)d(k)) < Υ(x(k)) + αρ(k)∇Υ(x(k))Td(k). (26)
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To conclude, the gradient step is executed:

z(k) = x(k) + ρ(k)d(k). (27)

5.3. Proximal step

Since the preceding step concerns only the data fidelity term Υ, the proximal

step is expected to readjust the general search direction based on the penalty

function G. For this purpose, we apply the proximal algorithm to the previous

point arising from the preceding step of the gradient, i.e. z(k), as follows:

z(k+1) = proxρ(k)G(x(k) + ρ(k)d(k)) = proxρ(k)G(z(k))

= argmin
x

(G(x) +
1

2ρ(k)
‖x− z(k)‖22)︸ ︷︷ ︸

H(x)

(28)

This step indicates that proxG(z(k)) is a point that compromises between min-

imizing G and being close to z(k).245

Now it remains to calculate the exact proximal operator of G. In order to

do that, the gradient of function H is set to zero, which yields the closed form

of the proximal operator for our regularized function G.

Gradient of H. The cancellation of the gradient of H yields :

∇H(x) = 0 =⇒ ∇G(x) +
1

ρ(k)
(x− z(k)) = 0

=⇒ −2ηk(x̃k−1 − x) +
1

ρ(k)
(x− z(k)) = 0.

(29)

Then, with a simple calculation, the analytical form of the proximal of G is

obtained:

proxρ(k)G(z(k)) =

1
ρ(k) z

(k) + 2ηkx̃k−1
1
ρ(k) + 2ηk

. (30)

Projecting onto the nonnegative orthant. As the approaches of [34, 36, 66], the

nonnegativity constraint is enforced by a simple projection onto the nonnegative

orthant:

zk+1 = max(0, zk+1)
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Extrapolation. The APG algorithm initially extrapolates the point xk by a com-

bination of the current point xk and the previous point xk−1 as:250

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1),

with t0 = 0, t1 = 1 and assuming the update rule:

tk+1 =

√
4(tk)2 + 1 + 1

2
.

As we have stated in the previous section, one of the main difficulties in the

non-convex case lies in the bad extrapolation of yk. This prompts the use of

an additional step of the proximal gradient of xk as a monitor due to its ability

to ensure the required sufficient descent property. The latter being essential

to guarantee the convergence to a critical point and also to correct the bad255

extrapolation of yk. This method is referred to as the Monotone Accelerated

Proximal Gradient (M-APG) algorithm, and is summarized in Algorithm 1.

Note that computing vk+1 at each iteration to control and correct zk+1

is computationally expensive, and costly in terms of CPU time. In order to

provide a more efficient and less costly algorithm, we propose a second method

in which we can directly accept zk+1 as xk+1, if it meets the following particular

criterion:

F(zk+1) ≤ ck − δ‖zk+1 − yk‖2, (31)

which indicates that yk is a good extrapolation. Only afterwards, vk+1 is cal-

culated when (31) is not satisfied. This second method is referred to as the

Non-monotone Accelerated Proximal Gradient (Nm-APG) algorithm, and is260

summarized in Algorithm 2.

6. RESULTS AND DISCUSSIONS

In this section, we provide some experimental results illustrating the per-

formance of the proposed algorithms, compared to the most popular methods

dedicated to nonnegative CP decomposition in the literature.265
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Algorithm 1: Monotone Accelerated Proximal Gradient (M-APG) to

minimize (23)

1 Initialize (A0,B0,C0) by matrices with unit-norm columns, η0, t0 = 0,

t1 = 1 ;

2 Calculate the optimal scaling factor λ∗0 by solving (9) : G0λ
∗
0 = s0;

3 for k ≥ 1 and subject to a stopping criterion do

4 yk = xk + tk−1

tk
(zk − xk) + tk−1−1

tk
(xk − xk−1) ;

5 tk+1 =

√
4(tk)2+1+1

2

1. Gradient Step

(a) Compute the descent direction d(k)
y w.r.t. yk: d(k)

y = −∇Υ(yk)

(b) Compute the descent direction d(k)
x w.r.t. xk: d(k)

x = −∇Υ(xk)

(c) Calculate step sizes ρ
(k)
y and ρ

(k)
x using the backtracking method:

Υ(yk + ρ(k)y d(k)
y ) < Υ(xk) + αρ(k)y ∇Υ(xk)Td(k)

y

Υ(xk + ρ(k)x d(k)
x ) < Υ(xk) + αρ(k)x ∇Υ(xk)Td(k)

x

(d) Update : zk = yk + ρ
(k)
y d(k)

y and vk = xk + ρ
(k)
x d(k)

x

2. Proximal Step

(a) Compute the proximal operator of G at zk and vk using (30) such

as: zk+1 = prox
ρ
(k)
y G

(zk) and vk+1 = prox
ρ
(k)
x G

(vk)

(b) Projecting

zk+1 = max(0, zk+1) and vk+1 = max(0,vk+1)

(c) Monitoring

xk+1 =

zk+1 if F(zk+1) < F(vk+1)

vk+1 otherwise.

3. Extract the three blocks of xk+1: Ak+1, Bk+1 and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. Calculation of the optimal scaling factor λ∗k+1 using (9) such as:

Gk+1λ
∗
k+1 = sk+1

6 end for
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Algorithm 2: Non-monotone Accelerated Proximal Gradient (Nm-APG)

to minimize (23)

1 Initialize (A0,B0,C0), η0, t0 = 0, t1 = 1, δ = ν = 0.2, q1 = 1, c1 = F(x1);

2 Calculate the optimal scaling factor λ∗0 by solving (9) : G0λ
∗
0 = s0 ;

3 for k ≥ 1 and subject to a stopping criterion do

4 yk = xk + tk−1

tk
(zk − xk) + tk−1−1

tk
(xk − xk−1) ;

5 tk+1 =

√
4(tk)2+1+1

2

1. Gradient Step

(a) Compute the descent direction d(k)
y w.r.t. yk: d(k)

y = −∇Υ(yk)

(b) Calculate step sizes ρ
(k)
y and using the backtracking method such:

Υ(yk + ρ
(k)
y d(k)

y ) < Υ(xk) + αρ
(k)
y ∇Υ(xk)Td(k)

y

(c) Update : zk = yk + ρ
(k)
y d(k)

y

2. Proximal Step

(a) Compute the proximal operator of G at zk using (30) such as:

zk+1 = prox
ρ
(k)
y G

(zk)

(b) Projecting

zk+1 = max(0, zk+1)

(c) Monitoring

if F(zk+1) ≤ ck − δ‖zk+1 − yk‖2 then xk+1 = zk+1

else Compute the proximal operator of G at vk using (30) such as:

vk+1 = prox
ρ
(k)
x G

(xk + ρ
(k)
x d(k)

x ) = prox
ρ
(k)
x G

(vk)

vk+1 = max(0,vk+1)

xk+1 =

zk+1 if F(zk+1) < F(vk+1)

vk+1 otherwise.

3. qk+1 = νqk + 1, and ck+1 = νqkck+f(xk+1)
qk+1

,

4. Extract the three blocks of xk+1: Ak+1, Bk+1 and Ck+1

5. Normalize the columns of Ak+1, Bk+1 and Ck+1

6. Calculation of the optimal scaling factor λ∗k+1 using (9) such as:

Gk+1λ
∗
k+1 = sk+1

6 end for
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A comparison is performed with conventional Multiplicative Updating (MU)

[67], Hierarchical Alternative Least Squares (HALS) [34], Nonnegative Alterna-

tive Least Squares with Frobenius norm regularization based on block principal

pivoting (ANLS-BPP) [36], alternating Proximal Gradient (PG alternating) [66]

and gradient in a simultaneous way (Gradient all-at-once) [51] algorithms.270

In addition, we measure the performance of each algorithm based on three

criteria, namely accuracy, CPU time and the best sum congruence, which is a

meaningful criterion to compare two tensors of rank R > 1 [18]. More precisely,

the best sum congruence involves finding the best permutation σ among the

columns of factor matrices by maximizing:

max
σ

R∑
r=1

|aHr âσ(r)|
‖ar‖‖âσ(r)‖

|bHr b̂σ(r)|
‖br‖‖b̂σ(r)‖

|cHr ĉσ(r)|
‖cr‖‖ĉσ(r)‖

(32)

In order to obtain comparable results, all algorithms are initialized with the

same initial points, randomly generated uniformly in [0, 1]. Also, in order to

clearly visualize the behavior of each algorithm, we execute no more than 600

iterations.

In all experiments, the computations are run in Matlab on a computer with275

Intel i5 CPU (2.7GHz) and 8GB memory running 64bit Mac OS. In addition,

the results are obtained from 50 Monte Carlo runs for all experiments.

6.1. Experiment 1

In this experiment, we generate a random NCP model of size 3×4×6 of rank

3, with coherences 1 0.4 ≤ µ(A) ≤ 0.6, 0.4 ≤ µ(B) ≤ 0.6 and 0.4 ≤ µ(C) ≤ 0.6.280

The penalty weight η is varied through iterations. More precisely in this first

experiment, η is initialized to 1, and is divided by 100 when Υ(x) is reduced by

less than 10−4.

Figure 1a reports the reconstruction error (7) as a function of the number

of iterations. It can hence be observed that the Non-monotone Accelerated285

1The coherence of a matrix A is expressed as the the maximum absolute value of the

cross-correlations between the columns of A as : µ(A) = max
i 6=j

|aH
i aj |.
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Proximal Gradient (Nm-APG) and Monotone Accelerated Proximal Gradient

(M-APG) algorithms are more accurate than other algorithms for a given num-

ber of iterations, followed by alternating proximal gradient (PG alternating)

algorithm, then by Gradient all-at-once algorithm, and finally ANLS-BPP, MU

and HALS algorithms.290

This conclusion is based on an equal number of iterations. However, no

conclusion can be drawn on the speed of algorithms, since one iteration of each

algorithm has not the same computational complexity; therefore a study of the

CPU time of all algorithms is required. For this purpose, figure 1b reports some

results for a given CPU time instead. At 2s for example, the Gradient, the PG295

alternating and the proposed Nm-APG algorithms produce the best result in

terms of reconstruction error which is around 10−7 compared to 10−6 for the

M-APG and ANLS-BPP algorithms. On the other hand, the MU and HALS

algorithms still perform poorly compared to all other algorithms.

Another evaluation can be conducted using the congruence (32). An inspec-300

tion of the results reported in table 1 also reveals that the Nm-APG algorithm,

the M-APG algorithm, the Gradient and the PG-alternating algorithm yield

99% of correct estimations, whereas the ANLS-BPP algorithm yields 97% and

finally MU and HALS algorithms produce 95%.

In order to show a deeper comparison between the two proposed algorithms,305

table 1 also indicates that the M-APG algorithm requires more CPU time com-

pared to the Nm-APG algorithm, which is expected due to the high complexity

of the monitoring used in the M-APG algorithm that demands the computation

of additional proximal at each iteration. On the other hand, one can clearly

understand the time reduction in its non-monotone version which avoids the310

computation of the additional proximal at each iteration.

6.2. Experiment 2

In this second experiment, we generate a random CP model of size 4×3×10

with rank 4 and with coherences µ(A) = 0.9, µ(B) = 0.6 and µ(C) = 0.6. This

indicates that the first mode (i.e., A) is chosen to be almost collinear. In this315

21



iterations
0 100 200 300 400 500 600

‖
T

−
T̂
‖
2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

MU
HALS
ANLS-bpp
PG alternating
Gradient All-at-once
M-APG All-at-once
Nm-APG All-at-once

(a) Reconstruction error as a function of the number of iterations

Time (Sec)
0 1 2 3 4 5 6 7

‖
T

−
T̂
‖
2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

MU
HALS
ANLS-bpp
PG alternating
Gradient All-in-ones
M-APG All-in-ones
Nm-APG All-in-ones

(b) Reconstruction error as a function of the CPU time

Figure 1: Reconstruction error as a function of the number of iterations and CPU time. For

the experiment 1.
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Table 1: Performances of the NCP algorithms for experiment 1.

Algorithms AbsErr Time Congruence

MU 2, 13.10−04 2.36 0.95

HALS 1, 28.10−04 2.70 0.95

ANLS-bpp 2, 05.10−06 2.36 0.97

PG alternating 6, 86.10−10 3.79 0.99

Gradient-all-in-ones 6, 70.10−10 3.32 0.99

M-APG 4, 54.10−11 6.89 0.99

Nm-APG 1, 24.10−12 5.23 0.99

experiment, η is initialized to 1.5, and is divided by 10 when Υ(x) is reduced

by less than 10−2.

Figure 2a illustrates the reconstruction error as a function of the number of

iterations. From these results, we can still observe that both MU and HALS al-

gorithms produce mediocre results compared to other algorithms. On the other320

hand, The proposed Nm-APG algorithm produces better results than other

algorithms, when dealing with the difficult situation of first mode collinearity.

Moreover, figure 2b shows that in terms of CPU time and accuracy, the

proposed Nm-APG algorithm still performs better than all other algorithms.

Indeed, for a fixed time of 2s, the Nm-APG is around 10−6 compared to 10−5 for325

the Gradient, the PG alternating and the M-APG algorithms followed by ANLS-

bpp which is about 10−4 then MU and HALS algorithms with low accuracy of

around 10−3.

The accuracy in terms of congruence criteria is also reported in table 2,

which shows that Nm-APG, M-APG, Gradient and PG-alternating algorithms330

provide 99% of correct estimations whereas the ANLS-BPP algorithm yields

96% and finally MU and HALS algorithms that produce 95%.

In light of these results, it can be claimed that proximal algorithms are ap-

propriate choices for the nonnegative CP decomposition problem. In addition,
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Figure 2: Reconstruction error as a function of the number of iterations and CPU time. For

the experiment 2.
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the choice of estimating factor matrices in a simultaneous way proves its effi-335

ciency in terms of accuracy compared to the alternating way. Finally, one may

also point out that the proposed Non-monotone Accelerated Proximal Gradient

algorithm represents a suitable choice, especially when the collinearity of the

modes needs to be faced.

Table 2: Performances of the NCP algorithms for experiment 2.

Algorithms AbsErr Time Congruence

MU 2, 13.10−04 2.36 0.95

HALS 1, 28.10−04 2.43 0.95

ANLS-bpp 8, 15.10−06 5.23 0.96

PG alternating 5, 21.10−07 4.17 0.99

Gradient-all-in-ones 2, 05.10−06 3.26 0.99

M-APG 7, 03.10−08 8.56 0.99

Nm-APG 5, 95.10−09 6.86 0.99

7. Conclusions340

We chose to estimate factor matrices of the Nonnegative Canonical Polyadic

(NCP) decomposition in a simultaneous way. For this purpose, we have opted

for proximal algorithms, based on both Monotone Accelerated Proximal Gradi-

ent (M-APG) and Non-monotone Accelerated Proximal Gradient (Nm-APG),

with a simple and comprehensive monitoring strategy capable of computing the345

minimum NCP decomposition of three-way arrays. We performed a thorough

comparison with other NCP algorithms available in the literature based on com-

putational experiments, which have shown the high performance of the proposed

Nm-APG algorithm in terms of accuracy for the normal situation as well as for

the difficult situation of first-mode collinearity.350
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