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Abstract

Tensors may be seen as multi-dimensional arrays that generalize vectors

and matrices to more than two dimensions. Among tensor decompositions, we

are especially interested in the Canonical Polyadic tensor decomposition, which

is important in various real-world applications, for its uniqueness and ease of

interpretation of its factor matrices.

In this research, we consider the estimation of factor matrices of the Non-

negative Canonical Polyadic (NCP) decomposition in a simultaneous way. Two

proximal algorithms are proposed, the Monotone Accelerated Proximal Gra-

dient (M-APG) and the Non-monotone Accelerated Proximal Gradient (Nm-

APG) algorithms. These algorithms are implemented through a regularization

function that incorporates previous iterations while using a monitoring capa-

ble of efficiently conducting this incorporation. Simulation results demonstrate

better performance of the two proposed algorithms in terms of accuracy for the

normal situation as well as for the bottleneck case when compared to other NCP

algorithms in the literature.
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1. INTRODUCTION

In a large variety of applications, it is necessary to deal with quantities with

multiple indices. These quantities are often expressed as tensors. Generally,

a tensor is treated as a mathematical object that possesses the properties of5

multi-linearity when changing the coordinate system [1]. For our purposes, it

will be sufficient to see a tensor of order N as a multi-dimensional array in which

every element is accessed via N indices. For instance, a first-order tensor is a

vector, which is simply a column of numbers, a second-order tensor is a matrix,

a third-order tensor appears as numbers arranged in a rectangular box (or a10

cube, if all modes have the same dimension), etc. In this present article, we

focus mainly on tensors of order higher than two, since they possess properties

which are not enjoyed by matrices and vectors.

Among tensor decompositions, we shall be mainly interested in the so-called

Canonical Polyadic (CP) decomposition [2], rediscovered forty years and named15

Parafac [3] or Candecomp [4]. As pointed out in [5],[6], the acronym ”CP” de-

composition can conveniently stands for either “Canonical Polyadic” or “Can-

decomp/Parafac”, and we shall follow this terminology. The CP decomposition

has been used in various fields, such as Chemometrics [7, 8], Telecommunica-

tions [9, 10, 11], and also in other recent fields, such as data science, machine20

learning [12] and big data [13, 14]. The most remarkable characteristic of the

CP decomposition is its essential uniqueness for orders strictly higher than two

[15, 16], which enables parameter identification.

There are many algorithms for calculating CP decomposition. The most

popular in the literature is the Alternating Least Squares (ALS) originally pro-25

posed in [4], which is an iterative optimization process that estimates the factor

matrices in an alternating way. The ALS algorithm is designed to converge

towards a local minimum under mild conditions [17]. However, the ALS al-

gorithm is very sensitive to initialisation in some cases, and may suffer from
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bottleneck or swamp phenomena [18, 19, 20] where the error between two con-30

secutive iterations does not decrease, and results in a very low convergence rate.

Various versions of the ALS algorithm [21, 10, 22, 23] have been proposed in

the literature to speed up its convergence. These versions improved the ALS

algorithm speed, but were still failing to increase the very low convergence rate

caused by bottleneck and swamp phenomena. Recent works [11, 19, 24] have35

demonstrated that the introduction of appropriate constraints would avoid these

issues. The proposition in [24] is a direct modification of the ALS, based on the

Dykstra projection algorithm on all correlation matrices. In proposals [11, 19],

the estimation of the factor matrices is performed in a simultaneous way under

a coherence constraint on these factor matrices. Such methods have proven to40

be efficient and stable for calculating the CP decomposition in normal and also

in difficult cases, especially when the factor matrices in one or all modes are

almost collinear i.e., bottleneck or swamp problems arise.

In the current study, we propose two algorithms, namely, the Monotone

Accelerated Proximal Gradient (M-APG) and the Non-monotone Accelerated45

Proximal Gradient (Nm-APG) to improve the accuracy of Nonnegative Canon-

ical Polyadic (NCP) decomposition. These algorithms are based on proximal

methods [25] where we introduce a regularization function that penalizes the

difference between the current and previous factor iterates, by using two differ-

ent strategies capable of efficiently monitoring this regularization. We shall be50

particularly interested in the Accelerated Proximal Gradient (APG) algorithm,

as it satisfies the assumptions of our NCP decomposition formulation problem.

The rest of the paper is organized as follows. Some notations and defini-

tions are presented in Section 2. In Section 3 we describe properties of the

NCP decomposition as well as some general definitions about proximal map-55

ping. More details are also elaborated, where APG is explained for both convex

and non-convex cases. In Section 5 we introduce our optimization algorithms for

the NCP decomposition. In Section 6, we report computer results, and finally

Section 7 concludes the paper.
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2. NOTATIONS AND DEFINITIONS60

Let us begin by introducing some key notations and definitions that will

be used in this document. Tensors are denoted by calligraphic letters, e.g., T ,

matrices are denoted by boldface capital letters, e.g., M, vectors are denoted by

boldface lowercase letters, e.g., a and scalars are denoted by lowercase letters,

e.g., a. In addition, the pth column of matrix A is denoted by ap, the pth65

element of a vector a is denoted by ap, the entry of a matrix A in position (i, j)

is denoted by Aij and the entry of a tensor T in position (i, j, k) is denoted

by Tijk. Operator ⊗ represents outer product of vectors, 〈 〉 represents inner

product, and symbols J K are used to represent tensor decompositions.

Definition 1. A tensor of order N is a mathematical entity defined on a product70

between N linear spaces, and once the bases of these spaces are fixed, then the

tensor may be represented by a N -way array of coordinates [26].

To simplify writing, we will use the term ’tensor’ in a restricted sense, i.e.,

as a three-dimensional array of real numbers (i.e., N = 3). However, the gen-

eralization to N th order tensors, N ≥ 3, is straightforward.75

Definition 2. The outer product of two vectors a ∈ RI and b ∈ RJ defines a

matrix M ∈ RI×J

M = a⊗ b = abT .

Similarly, the outer product of three vectors a ∈ RI , b ∈ RJ and c ∈ RK

produces a third order decomposable tensor T ∈ RI×J×K :

T = a⊗ b⊗ c. (1)

In (1), the entry (i, j, k) of tensor T is defined by the product

Tijk = aibjck.

A tensor T ∈ RI×J×K is said to be rank-1 (also referred to as a decomposable

tensor [26]) if each of its elements can be represented as : Tijk = aibjck, in other

words, if it can be expressed as the outer product of three vectors, which will

be denoted in a compact form as in (1).

4



Definition 3. The scalar product between two tensors with the same size, X , Y80

∈ RI×J×K , is defined as:

〈X ,Y〉 =

I∑
i=1

J∑
j=1

K∑
k=1

Xi,j,kYi,j,k.

Definition 4. The Frobenius norm ‖.‖F of a tensor T ∈ RI×J×K is derived from

the scalar tensor product:

‖T ‖F =
√
〈T , T 〉 =

√
(
∑
i,j,k

| Tijk |2). (2)

Consequently, the quadratic distance between two tensors X and Y of the same

size I × J ×K can be determined by the quantity:

‖X − Y‖2F . (3)

Definition 5. Let T ∈ RI×J×K be a tensor, then vec{T } ∈ RIJK×1 represents

the column vector defined by :

[
vec{T }

]
i+(j−1)I+(k−1)IJ = Tijk. (4)

3. CP DECOMPOSITION

Let us consider a third order tensor X of size I×J×K, its CP decomposition

is defined as follows:

X =

R∑
r=1

λr(ar ⊗ br ⊗ cr)

= JA,B,C;λK

(5)

where λ = [λ1, λ2, ..., λR] is a vector containing the scaling factors λr and the

three matrices A= [a1,a2, ...,aR] ∈ RI×R, B= [b1,b2, ...,bR] ∈ RJ×R and

C= [c1, c2, ..., cR] ∈ RK×R are referred to as “factor matrices”. When R is85

minimal, then it is called the rank of X , and we refer to the above expression

as the CP Decomposition of X [1].
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3.1. Low-rank approximation

Although the tensor of interest is of low-rank, it is frequently necessary to

look for a low-rank approximation (e.g. rank R) of the observed tensor due to

the presence of noise. In noisy case, the observed tensor is indeed generally of

generic rank, strictly larger than R [26]. In the low-rank approximation problem

[9], the goal is to minimize an objective function Υ of the following form:

Υ(A,B,C;λ) =
∥∥∥X − X̂∥∥∥2

F

=

∥∥∥∥∥X −
R∑
r=1

λr (ar ⊗ br ⊗ cr)

∥∥∥∥∥
2

F

.

(6)

Alternatively, the minimization of (6) can be expressed using vectorization prop-

erty (4) as:

min
x̂

Υ(x̂) = min
x̂
‖x− x̂‖2F , (7)

where factor matrices are contained in a single vector x̂ = vec{[AT ,BT ,CT ]}

and x = vec{X}.90

3.2. Conditioning of the problem

One of the most practical properties of tensors of order greater than two

(N > 2), lies in the uniqueness of their CP decomposition, contrary to matrix

decompositions [3, 27, 10] (the decomposition of a matrix into a sum of rank-1

matrices also exists, but it is not unique, unless some strong constraints are95

imposed, such as orthogonality or nonnegativity).

From the definition of CP decomposition, it is obvious that the decomposi-

tion (5) is insensitive to:

• Permutation of the rank-1 terms (due to commutativity of addition), which

refers to the permutation indeterminacy.100

• Scaling of vectors ar, br and cr, provided the product of the scaling factors

is equal to 1, which corresponds to the scaling indeterminacy, inherent in

tensor representations [26].
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In numerical algorithms, it is useful to fix indeterminacies. For instance,

columns of factor matrices can be normalized and their norm stored in scaling

factor λ [27]. Another approach described in [9] and used in this study involves

the calculation of the optimal value of the scaling factor λ to correctly control

the conditioning of the problem. For that purpose, and for given matrices A, B

and C, the optimal value λo minimizing the error Υ is determined by cancelling

the gradient of (6) w.r.t. λ, which then results in the following linear system:

Gλo = s, (8)

where G is the Gram matrix of size R×R defined by:

Gpq = aTp aq × bTp bq × cTp cq,

and s is the R-dimensional vector defined by:

sr = ΣijkTijkAirBjrCkr.

3.3. Nonnegative CP decomposition

In most cases, the tensor components are nonnegative, so in order to extract105

these significant nonnegative components, the incorporation of a nonnegative

constraint into the decomposition model is necessary. This gives rise to the

Nonnegative Canonical Polyadic (NCP) decomposition, which is one of the most

important tensor decomposition models with constraints [28, 29, 30, 31, 32].

This decomposition has received a great success in several real-world applica-110

tions, such as the decomposition of hyperspectral data [28], the decomposition

of electroencephalography (EEG) data [29], the decomposition of fluorescence

excitation-emission matrix (EEM) data [30, 33], and also the decomposition of

neural data [31], as well as many other multi-channel tensor data [34, 35].

Formally, given a nonnegative third order tensor X of size I × J × K, the115

NCP decomposition consists in solving the following minimization problem:

min
A,B,C;λ

‖X − JA,B,C;λK‖2F

s.t. A ≥ 0,B ≥ 0,C ≥ 0.

(9)
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where ≥ is understood entry-wise.

According to (9), the most natural way to perform this minimization is via

the alternating approach. This approach consists of computing factor matrices

by updating each of them individually while keeping the others fixed. In such a120

way, the problem to be solved is then transformed into three simple convex sub-

problems. Such an approach is the basis of the most commonly used methods

to solve the NCP decomposition.

In our present work, we have performed the estimation of factor matrices in

a simultaneous way (referred to as all-at-once way). Note that one of the major125

consequences of this approach is that the problem returns to a non-convex prob-

lem [36] as we can clearly observe in (7). To the best of our knowledge, proximal

algorithms have not yet been provided in the literature to simultaneously esti-

mate factor matrices of the NCP. This all-at-once computation was considered

for the CP decomposition in [19] but under a coherence constraint. One such130

approach has also been used under the nonnegative constraint in [32] for which

the minimization was performed using the Enhanced Line Search (ELS) and the

alternate backtracking with ELS for the gradient and quasi-Newton algorithms.

In addition the latter explicitly incorporates the nonnegative constraint of the

factor matrices in the problem parameterization, contrary to our proposal in135

which we simply impose non-negative constraint by projecting all the entries

onto the non-negative orthant.

4. PROXIMAL ALGORITHMS

4.1. Proximal operators

Proximal operators are currently powerful and reliable optimization tools140

[37, 38], leading to a wide range of algorithms, such as the proximal point

algorithm, the proximal gradient algorithm and many other algorithms involving

linearization and/or splitting.

Given a function h, the proximal operator (or proximal mapping) [37] maps

an input point x to the minimizer of h restricted to small proximity to x. The145
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definition of the proximal operator is recalled hereafter.

4.1.1. Definition

The proximal map of a point x ∈ RN under a proper and closed function h

(with parameter θ > 0):

proxθh(x) = minimize
y∈RN

h(y) +
1

2θ
‖x− y‖22, (10)

The operator proxθh : RN −→ RN thus defined is the proximal operator of h,

and the parameter θ controls the stretch to which the proximal operator maps

points towards the minimum of h. Larger values of θ associated with mapped150

points near the minimum, whereas its smaller values giving a smaller movement

towards the minimum [37].

As a result, we can see that the evaluation of a proximal operator can be a

valuable sub-step in an optimization algorithm. As a general example, Let us

consider the following optimization problem:

minimize
x∈Rn

f(x) = g(x) + h(x), (11)

where g : RN −→ RN and h : RN −→ RN are closed proper convex with g

is differentiable and h is not necessarily differentiable but ”simple” in the sense

that its proximal operator can be evaluated efficiently, i.e., its proximal operator

admits a closed form [37]. A natural strategy of this method is to first reduce

the value of g by using iterative optimization methods such as gradient descent

or Newton’s method following a descent direction dk, then reduce the value

of h by applying the proximal operator to h, (using the same step-size) and

repeat these two steps until convergence to a minimizer. This strategy yields

the following iteration:

xk+1 = proxθkh(xk + θkdk) (12)

The mentioned strategy describes the general idea of the iterative proximal

gradient method, while its accelerated version proposed by Beck and Teboulle

in [39] involves an extrapolation at each iteration, by taking into account infor-155

mation from previous and current iterations.
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First, we report the Accelerated Proximal Gradient (APG) method of Beck

and Teboulle [39] in the convex case. This method consists of the following

steps:

yk = xk +
tk−1 − 1

tk
(xk − xk−1),

xk+1 = proxθkh(yk − θk∇g(yk)),

tk+1 =

√
4(tk)2 + 1 + 1

2
.

(13)

According to these steps, there is no guarantee that f(xk+1) will be inferior

to f(xk), this is due to the fact that APG is not a monotone algorithm. For

that reason, Beck and Teboulle [39] have proposed a monotone APG consisting

of the following steps:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (14a)

zk+1 = proxθkh(yk − θk∇g(yk)), (14b)

tk+1 =

√
4(tk)2 + 1 + 1

2
, (14c)

xk+1 =

zk+1 if f(zk+1) ≤ f(xk)

xk otherwise.

(14d)

4.2. APG in the non-convex case

In the recent research, the accelerated proximal gradient has been extended

to solve general non-convex problems. Among these works, one can find those in

[40, 41, 42], where a monotone descent of the objective value is imposed to ensure160

convergence, while on the other hand, the works in [43, 25] introduce a generic

method for non-smooth non-convex problems based on Kurdyka Lojasiewicz

theory.

In our present paper, we exploit the rigorous argument provided in [40]

proving that the limit point of the sequence generated by the APG algorithm165

is a critical point of the objective function (6).

We present two APG-type algorithms for general non-convex problems [40],

namely the monotone APG and the non-monotone APG, which we then adapt

to our particular NCP decomposition problem.
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4.2.1. Monotone APG170

The APG of Beck and Teboulle [39] is not guaranteed to converge for the non-

convex case due to different reasons, one of them concerns the bad extrapolation

of yk, and another one results from the fact that the sufficient descent condition

is not ensured while it is essential to ensure the convergence to a critical point,

however only the descent property, f(xk+1) ≤ f(xk), is guaranteed in (14).175

To overcome these two difficulties, the use of an additional proximal gradient

step of xk as a monitor would be an appropriate choice due to its ability to en-

sure the required sufficient descent property [43] which is essential to guarantee

convergence to a critical point and also to correct the bad extrapolation yk.

Basically, the monotone APG algorithm consists of the following steps:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (15a)

zk+1 = proxθyh(yk − θk∇g(yk)), (15b)

vk+1 = proxθxh(xk − θk∇g(xk)), (15c)

tk+1 =

√
4(tk)2 + 1 + 1

2
, (15d)

xk+1 =

zk+1 if f(zk+1) ≤ f(vk+1)

vk+1 otherwise,

(15e)

where θy and θx can be fixed constants satisfying θy <
1
L and θx <

1
L , or

determined by backtracking line search method [44]. L is the Lipschitz constant

of ∇g.

We can notice that the APG algorithm of Beck and Teboulle in the convex

case ensures only the descent property for which f(zk+1) is compared to f(xk)

in (14), while its extension for the non-convex case ensures the sufficient descent

property when f(zk+1) is compared to f(vk+1) (15), which means that:

f(xk+1) ≤ f(xk)− δ‖vk+1 − xk‖2, (16)

where δ > 0 is a small constant.
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4.2.2. Non-monotone APG180

In the preceding monotone APG algorithm, it is required to compute vk+1

at each iteration to control and correct zk+1, thus requiring more computation

cost and CPU time. Moreover, we can directly accept zk+1 as xk+1 if it meets

a particular criterion which indicates that yk is a good extrapolation. Only

afterwards, vk+1 is calculated when this criterion is not satisfied.185

In contrast to the monotone APG, where (16) is guaranteed, in the case of

non-monotone APG, f(xk+1) is allowed to be larger than f(xk). More precisely,

xk+1 is expected to yield an objective function value less than a relaxation of

f(xk), while not being too far from f(xk). An appropriate way to define a

relaxation parameter ck and still not to be too far from f(xk) is to consider the190

average of f(x1),...,f(xk−1),f(xk) with exponentially decreasing weights as in

[45]:

ck =
Σkj=1ν

k−jf(xj)

Σkj=1ν
k−j , (17)

where ν ∈ [0, 1) controls the level of non-monotonicity. Practically, ck can

be computed by the following efficient recursion:

qk+1 = νqk + 1,

ck+1 =
νqkck + f(xk+1)

qk+1
,

(18)

where q1 = 1 and c1 = f(x1).195

Therefore, in the non-monotone APG, (16) gives rise to these two conditions

by the different choices of xk+1:

f(zk+1) ≤ ck − δ‖zk+1 − yk‖2, (19a)

f(vk+1) ≤ ck − δ‖vk+1 − xk‖2, (19b)

Condition (19a) is adopted as the criterion mentioned before. Note that

when (19a) is verified, this means that yk is a good extrapolation, which leads

to a direct acceptance of zk+1 without computing vk+1. Otherwise, when (19a)200
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does not hold, which means that yk is not an appropriate extrapolation. In

this case, we are required to correct this bad extrapolation zk+1 by calculating

the additional vk+1 using (15c) which satisfies (19b). In addition, by using the

backtracking method, the vk+1 satisfying (19b) can be found in a finite number

of steps.205

The basic structure of the non-monotone APG algorithm is as follows:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1), (20a)

zk+1 = proxθyh(yk − θk∇g(yk)), (20b)

if f(zk+1) ≤ ck − δ‖zk+1 − yk‖2 then (20c)

xk+1 = zk+1

else

vk+1 = proxθxh(xk − θk∇g(xk)), (20d)

xk+1 =

zk+1 if f(zk+1) ≤ f(vk+1)

vk+1 otherwise

(20e)

end if

tk+1 =

√
4(tk)2 + 1 + 1

2
. (20f)

5. PROPOSED METHOD

5.1. Proposed minimization

In contrast to alternating approaches, where factor matrices are computed

in turn, our approach addresses the Nonnegative CP decomposition problem

through a variational approach in which all factor matrices are estimated si-210

multaneously. In other words, we are looking for a solution to a minimization

problem in which the function to be minimized is composed of two terms: The

first one related to the properties of the noise, called the ‘data fidelity term‘

which is defined in (6) by the cost function Υ. The second one related to a

priori information on model parameters, called ‘regularization‘, which penalizes215
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the difference of a particular factor in two successive iterations, and which will

be represented by G. In [46], several numerical examples show that this regu-

larization can help the algorithm to keep distance from the degenerate cases of

the bottleneck and the swamps, i.e., the degenerate regions, where convergence

is slow. In addition, it has also been shown in [17] that the limit point obtained220

from the regularized NCP decomposition (22) is a critical point of the original

minimization problem
∥∥∥X − X̂∥∥∥2

F
.

As indicated in (7) and for the sake of simplicity, columns of factor matrices

are contained in a single vector x = vec{[AT ,BT ,CT ]}, thus the objective to

be minimized then has the following form:

F(x) = Υ(x)︸ ︷︷ ︸
Fidelity

+ G(x)︸︷︷︸
Regularization

, (21)

Which can be explicitly written as:

F(x) = min
x̂k≥0

‖x− x̂k‖2F + ηn ‖x̃k−1 − x̂k‖2F , (22)

where x̃k−1 is the predecessor version of xk in the previous iteration and ηn

is a penalty weight that controls the sharpness of the penalty, which decreases

through iterations. In this paper, we propose two APG-type algorithms as solu-225

tion to our optimization problem defined in (22) by exploiting the convergence

analysis presented in [40].

The fundamental parts of our proposed methods will be described in the

following paragraphs and will be clearly abstracted in Algorithm 1 and Al-

gorithm 2.230

There are essentially two fundamental steps:

• A gradient step associated with the data fidelity term (denoted by the

function Υ).

• A proximal step related to the penalty term (denoted by the function G).

5.2. Gradient step235

This step improves the approximate solution, focusing only on the data

fidelity with the exclusion of the penalty function. Two other steps are also
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involved in these stages:

(i) First, we calculate the direction of the descent direction d(k) of Υ, leading

to the direction of the steepest decrease, determined as follows:

d(k) = −∇Υ(A(k),B(k),C(k)) = −∇Υ(x(k)), (23)

where gradient expressions required to determine the direction of descent

d(k) are of the form:
∂Υ

∂A
= 2AMA − 2NA (24)

with

MA
pq

def
= ΣjkλpBjpCkpC

∗
kqB

∗
jqλ
∗
q

NA
ip
def
= ΣjkTijkB

∗
jpC

∗
kpλ
∗
p

The gradients expressions w.r.t B and C are similar.

(ii) The second stage involves the determination of the step-size ρ(k) ac-

cording to the chosen direction d(k). Among numerous methods of searching

for a good step-size, backtracking is extensively used [44]. It depends on two

parameters α and β, with 0 < α < 0.5 and 0 < β < 1. The idea is to start with

a sufficiently large step-size ρ(k) (e.g. ρ = 1) at the beginning, and then reduce

it as ρ← ρ ∗ β, until the following Armijo condition [47] is verified:

Υ(x(k) + ρ(k)d(k)) < Υ(x(k)) + αρ(k)∇Υ(x(k))Td(k). (25)

To conclude, the gradient step can be summarized as follows:

z(k) = x(k) + ρ(k)d(k). (26)

5.3. Proximal step

Since the preceding step concerns only the data fidelity term Υ, the proximal

step is expected to readjust the general search direction based on the penalty

function G. For this purpose, we apply the proximal algorithm to the previous

point arising from the preceding step of the gradient, i.e. z(k), as follows:

z(k+1) = proxρ(k)G(x(k) + ρ(k)d(k)) = proxρ(k)G(z(k))

= argmin
x

(G(x) +
1

2ρ(k)
‖x− z(k)‖22)︸ ︷︷ ︸

H(x)

(27)
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This step indicates that proxG(z(k)) is a point that compromises between min-

imizing G and being near to z(k).

Now it remains to calculate the exact proximal operator of G. In order to240

do that, the gradient of the function H is set to zero which gives us the closed

form of the proximal operator for our regularized function G.

Gradient of H. The cancellation of the gradient of H yields :

∇H(x) = 0 =⇒ ∇G(x) +
1

ρ(k)
(x− z(k)) = 0

=⇒ −2 ∗ ηn(x̃k−1 − x) +
1

ρ(k)
(x− z(k)) = 0,

(28)

then, with a simple calculation, the analytical form of the proximal for our

regularized function G would be of the following closed form:

proxρ(k)G(z(k)) =

1
ρ(k) z

(k) + 2 ∗ ηnx̃k−1
1
ρ(k) + 2 ∗ ηn

. (29)

Projecting into nonnegative. As the approaches of [48, 49, 50], the nonnegativity

constraint is enforced by a simple projection onto the nonnegative orthant:

zk+1 = max(0, zk+1)

Extrapolation. The APG algorithm initially extrapolates the point xk by a com-

bination of the current point xk and the previous point xk−1 as:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1),

With t0 = 0, t1 = 1 and according to the following update rule:245

tk+1 =

√
4(tk)2 + 1 + 1

2

As we have stated in the previous section, one of the main difficulties in the

non-convex case lies in the bad extrapolation of yk, this prompts the use of an

additional step of the proximal gradient of xk as a monitor due to its ability

to ensure the required sufficient descent property. The latter being essential

to guarantee the convergence to a critical point and also to correct the bad250
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extrapolation of yk. This method refers to the Monotone Accelerated Proximal

Gradient (M-APG) algorithm as summarized in Algorithm 1.

Note that computing vk+1 at each iteration to control and correct zk+1 is

computationally expensive and costly in terms of CPU time. In order to provide

a more efficient and less costly algorithm, we propose a second method in which

we can directly accept zk+1 as xk+1, if it meets the following particular criterion:

F(zk+1) ≤ ck − δ‖zk+1 − yk‖2, (30)

which indicates that yk is a good extrapolation. Only afterwards, vk+1 is

calculated when (30) is not satisfied. This second method is referred to as to

the Non-monotone Accelerated Proximal Gradient (Nm-APG) algorithm and is255

summarized in Algorithm 2.

6. RESULTS AND DISCUSSIONS

In this section, we illustrate some experimental results for analysing the per-

formance of the proposed algorithms with the most popular and widely applied

methods for nonnegative CP decomposition in the literature.260

A comparison is performed with conventional Multiplicative Updating (MU)

[51], Hierarchical Alternative Least Squares (HALS) [48], Nonnegative Alterna-

tive Least Squares with Frobenius norm regularization based on block principal

pivoting (ANLS-BPP) [49] and alternating Proximal Gradient (PG alternating)

[50] algorithms 1.265

In addition, we measure the performance of each algorithm based on three

criteria, namely accuracy, CPU time and the best sum congruence, which is a

meaningful criterion to compare two tensors of rank R > 1 [11]. As a matter of

form, the best sum congruence involves finding the best permutation σ among

1We would like to thank Deqing Wang, who sent us the MATLAB codes of the methods

[51, 48, 49, 50]. Therefore, the author’s original code was used to obtain the results presented

in all figures in this section.
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Algorithm 1: Monotone Accelerated Proximal Gradient (M-APG) to

minimize (22)

1 Initialize (A0,B0,C0) by matrices with unit-norm columns, η0, t0 = 0,

t1 = 1 ;

2 Calculate the optimal scaling factor λ∗0 by solving (8): G0λ
∗
0 = s0;

3 for k ≥ 1 and subject to a stopping criterion do

4 yk = xk + tk−1

tk
(zk − xk) + tk−1−1

tk
(xk − xk−1) ;

5 tk+1 =

√
4(tk)2+1+1

2

1. Gradient Step

(a) Compute the descent direction d(k)
y w.r.t. yk: d(k)

y = −∇Υ(yk)

(b) Compute the descent direction d(k)
x w.r.t. xk: d(k)

x = −∇Υ(xk)

(c) Calculate step sizes ρ
(k)
y and ρ

(k)
x using the backtracking method:

Υ(yk + ρ(k)y d(k)
y ) < Υ(xk) + αρ(k)y ∇Υ(xk)Td(k)

y

Υ(xk + ρ(k)x d(k)
x ) < Υ(xk) + αρ(k)x ∇Υ(xk)Td(k)

x

(d) Update : zk = yk + ρ
(k)
y d(k)

y and vk = xk + ρ
(k)
x d(k)

x

2. Proximal Step

(a) Compute the proximal operator of G at zk and vk using (29) such

as: zk+1 = prox
ρ
(k)
y G

(zk) and vk+1 = prox
ρ
(k)
x G

(vk)

(b) Projecting

zk+1 = max(0, zk+1) and vk+1 = max(0,vk+1)

(c) Monitoring

xk+1 =

zk+1 if F(zk+1) < F(vk+1)

vk+1 otherwise.

3. Extract the three blocks of xk+1: Ak+1, Bk+1 and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. Calculation of the optimal scaling factor λ∗k+1 using (8) such as:

Gk+1λ
∗
k+1 = sk+1

6 end for
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Algorithm 2: Non-monotone Accelerated Proximal Gradient (Nm-APG)

to minimize (22)

1 Initialize (A0,B0,C0), η0, t0 = 0, t1 = 1, δ = ν = 0.2, q1 = 1, c1 = F(x1);

2 Calculate the optimal scaling factor λ∗0 by solving (8): G0λ
∗
0 = s0 ;

3 for k ≥ 1 and subject to a stopping criterion do

4 yk = xk + tk−1

tk
(zk − xk) + tk−1−1

tk
(xk − xk−1) ;

5 tk+1 =

√
4(tk)2+1+1

2

1. Gradient Step

(a) Compute the descent direction d(k)
y w.r.t. yk: d(k)

y = −∇Υ(yk)

(b) Calculate step sizes ρ
(k)
y and using the backtracking method such:

Υ(yk + ρ
(k)
y d(k)

y ) < Υ(xk) + αρ
(k)
y ∇Υ(xk)Td(k)

y

(c) Update : zk = yk + ρ
(k)
y d(k)

y

2. Proximal Step

(a) Compute the proximal operator of G at zk using (29) such as:

zk+1 = prox
ρ
(k)
y G

(zk)

(b) Projecting

zk+1 = max(0, zk+1)

(c) Monitoring

if F(zk+1) ≤ ck − δ‖zk+1 − yk‖2 then xk+1 = zk+1

else Compute the proximal operator of G at vk using (29) such as:

vk+1 = prox
ρ
(k)
x G

(xk + ρ
(k)
x d(k)

x ) = prox
ρ
(k)
x G

(vk)

vk+1 = max(0,vk+1)

xk+1 =

zk+1 if F(zk+1) < F(vk+1)

vk+1 otherwise.

3. qk+1 = νqk + 1, and ck+1 = νqkck+f(xk+1)
qk+1

,

4. Extract the three blocks of xk+1: Ak+1, Bk+1 and Ck+1

5. Normalize the columns of Ak+1, Bk+1 and Ck+1

6. Calculation of the optimal scaling factor λ∗k+1 using (8) such as:

Gk+1λ
∗
k+1 = sk+1

6 end for
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the columns of factor matrices by maximizing:

max
σ

R∑
r=1

|aHr âσ(r)|
‖ar‖‖âσ(r)‖

|bHr b̂σ(r)|
‖br‖‖b̂σ(r)‖

|cHr ĉσ(r)|
‖cr‖‖ĉσ(r)‖

(31)

In order to obtain comparable results, all algorithms are initialized with

the same initial points which are generated with positive uniformly distributed

random numbers. Also, in order to clearly visualize each algorithm’s behaviour,

we consider only the maximum number of iterations, which is fixed to 600.

In all experiments, The computations are run in Matlab on a computer with270

Intel i5 CPU (2.7GHz) and 8GB memory running 64bit Mac OS. In addition,

the results are obtained from 50 Monte Carlo runs for all experiments.

6.1. Experiment 1

In this experience, we generate a random NCP model of size 3× 4× 6 with

rank 3 with and with coherences 2 0.4 ≤ µ(A) ≤ 0.6, 0.4 ≤ µ(B) ≤ 0.6 and275

0.4 ≤ µ(C) ≤ 0.6. η is varied through iterations. More precisely in this first

experiment, η is initialized to 1, and is divided by 100 when Υ(x) is reduced by

less than 10−4.

Figure 1 reports the reconstruction error (6) as a function of the number of it-

erations. It can hence be observed that the Non-monotone Accelerated Proximal280

Gradient (Nm-APG) and Monotone Accelerated Proximal Gradient (M-APG)

algorithms are more accurate than other algorithms in terms of number of it-

erations, followed by alternating proximal gradient (PG alternating) algorithm,

then by ANLS-BPP algorithm, and finally MU and HALS algorithms.

A further examination in Table 1 also reveals that the Nm-APG algorithm,285

the M-APG algorithm and the PG-alternating algorithm yield 99% of correct

estimations whereas the ANLS-BPP algorithm yields 97% and finally MU and

HALS algorithms produce 95%. From this result, we can clearly see that the

two proposed algorithms are more efficient in terms of accuracy.

2The coherence of a matrix A is expressed as the the maximum absolute value of the

cross-correlations between the columns of A as : µ(A) = max
i 6=j

|aH
i aj |.
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Figure 1: Reconstruction error as a function of the number

of iterations. For the experiment 1.

In order to show a deeper comparison between the algorithms, we explore the290

CPU time criterion to highlight the run time of each algorithm. Table 1 indicates

that the M-APG algorithm requires more machine time compared to the other

algorithms, this drawback comes at the expense of accuracy and is expected due

to the high complexity of the monitoring used in the M-APG algorithm which

demands the computation of additional proximal at each iteration. On the other295

hand, one can clearly understand the time reduction in its non-monotone version

which avoids the computation of the additional proximal at each iteration.

Table 1: Performances of the NCP algorithms for experiment 1.

Algorithms AbsErr Time Congruence

MU 2.1240e-04 2.66 0.95

HALS 6.6760e-05 2.60 0.95

ANLS-bpp 2.0701e-06 4.30 0.97

PG alternating 6.8699e-10 3.77 0.99

M-APG 4.6690e-11 7.04 0.99

Nm-APG 1.2813e-12 5.25 0.99

21



6.2. Experiment 2

In this second experience, we generate a random CP model of size 4×3×10

with rank 4 and with coherences µ(A) = 0.9, µ(B) = 0.6 and µ(C) = 0.6. This300

configuration addresses the problem of bottleneck, where we chose factors of the

first mode (i.e., A) to be almost collinear. In this experiment, η is initialized

to 1.5, and is divided by 10 when Υ(x) is reduced by less than 10−2.

Figure 2 illustrates the reconstruction error as a function of the number of

iterations. From these results, we can still observe that both MU and HALS305

algorithms produce mediocre results compared to other algorithms. On the

other hand, The proposed Nm-APG algorithm has also superior results over

other algorithms in the bottleneck case.
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Figure 2: Reconstruction error as a function of the number

of iterations. For the experiment 2.

Table 2 also reports the accuracy of all proximal algorithms by remarking

that Nm-APG, M-APG and PG-alternating algorithms provide 99% of correct310

estimations with a precision higher than 10−6.

By analysing the execution time of each algorithm in Table 2, we can indeed

notice that although the Nm-APG algorithm requires less machine time than

the M-APG algorithm, the two proposed algorithms still require a little more

machine time than the other algorithms. However, it should be noted that our315
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simultaneous way of estimating factor matrices has provided better accuracy to

the detriment of the machine time. It is also important to point out that in many

applications of nonnegative CP decomposition, accuracy is more important than

execution time; this is the case for the decomposition of hyperspectral images

or electroencephalography data.320

In the light of these results, we can conclude that proximal algorithms seem

to be appropriate choices for nonnegative CP decomposition problem. More-

over, our choice of estimating factor matrices in a simultaneous way proves its

efficiency in terms of accuracy compared to the alternating way. Nevertheless,

the alternating way remains a good choice when execution time becomes a pri-325

ority for some other applications, such as multichannel tensor data where the

estimation of multicode CDMA needs to be processed in real time.

Table 2: Performances of the NCP algorithms for experiment 2.

Algorithms AbsErr Time Congruence

MU 2.1417e-04 2.67 0.95

HALS 1.2933e-04 2.55 0.95

ANLS-bpp 4.4461e-06 4.91 0.96

PG alternating 4.6119e-07 3.71 0.99

M-APG 4.5559e-08 8.11 0.99

Nm-APG 3.4007e-09 6.26 0.99

7. Conclusions

We have opted to estimate factor matrices of the Nonnegative Canonical

Polyadic (NCP) decomposition in a simultaneous way, the proposals are based330

on both Monotone Accelerated Proximal Gradient (M-APG) and Non-monotone

Accelerated Proximal Gradient (Nm-APG), with a simple and comprehensive

monitoring strategy capable of computing the minimum NCP decomposition of
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three-way arrays. We performed a thorough comparison with other NCP algo-

rithms in the literature based on computational experiments, which have shown335

the very high performance of the two proposed algorithms in terms of accuracy

for the normal situation as well as for the bottleneck case when compared to

other NCP algorithms in the literature. Although the proposed algorithms have

high performance, at the same time they are computationally more expensive

in terms of machine time.340
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