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May 24, 2021

Abstract

We prove Veech’s conjecture on the equivalence of Sarnak’s con-
jecture on Mobius orthogonality with a Kolmogorov type property of
Furstenberg systems of the M&bius function. This yields a combina-
torial condition on the M&bius function itself which is equivalent to
Sarnak’s conjecture. As a matter of fact, our arguments remain valid
in a larger context: we characterize all bounded arithmetic functions
orthogonal to all topological systems whose all ergodic measures yield
systems from a fixed characteristic class (zero entropy class is an exam-
ple of such a characteristic class). This allows us to show ergodically
that bounded multiplicative functions with zero mean in arithmetic
progressions on a typical short interval satisfy the averaged Chowla
property established earlier by Matomaéki, Radziwitl and Tao.
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1 Introduction

All transformations in this paper are assumed to be invertible. A topo-
logical dynamical system is a pair (X,T'), where T is a homeomorphism
of a compact metric space X. A measure-theoretic dynamical system is a
system of the form (Z,B(Z), k, R) where R is an automorphism (invertible
measure-preserving transformation) of a standard Borel probability space
(Z,B(Z), k).

Sarnak’s conjecture Given a topological dynamical system (X,7T") and
a bounded arithmetic function u: N — C, we consider the corresponding
problem of orthogonality:

Once (1) holds for (X, T'), we say that the system (X, T) satisfies the Sarnak
property with respect to w and write w L (X,7). When a class € of topo-
logical dynamical systems is given, and w 1 (X, T) for each (X,T) € € then
we write u L 4.

The main motivation to study this orthogonality problem is Sarnak’s
conjecture [46] on Mébius orthogonality in which w is the Mobius function g
(or, equivalently [15], the Liouville function A) and ¥ is the class 67zg of zero



topological entropy dynamical systems. Sequences of the form (f(7"x)) with
(X, T) running over ¢zg, f € C(X) and z € X are often called deterministic
sequences. Focusing on a special w in (1), say, being multiplicative, is im-
portant if we count on applications in number theory — the main motivation
of Sarnak himself for the Md&bius orthogonality conjecture was to “attack”
the celebrated Chowla conjecture on auto-correlations of the Mobius func-
tion dynamically (indeed the Chowla conjecture implies Sarnak’s conjecture
[46], see also [2, 49])." However, if we aim at providing an internal char-
acterization of u being orthogonal to %7zg, then dropping the assumption of
multiplicativity of u seems to be reasonable. Let us give an argument for
that. First, note that the class of deterministic sequences equipped with the
coordinatewise multiplication and addition is a ring (this is an easy conse-
quence of the fact that the zero entropy class is closed under taking joinings
and factors). Moreover, the class of bounded sequences u orthogonal to 67zg
is a module over this ring. In other words, even if our “starting” u displays
some additional arithmetic property (like multiplicativity), the characteri-
zation which we aim at must still hold for uw - v, where v is an arbitrary
deterministic sequence.”? Of course, properties like the multiplicativity of
u - v changes dramatically if v is arbitrary, while the characterization we are
looking for has to be stable under such a change of u.

Visible measures and Furstenberg systems Let us now briefly dis-
cuss the matter of the topological and measure-theoretic aspects of choosing
a class €. Recall that M (X)) stands for the set of probability (Borel) mea-
sures on X and M (X,T) is the (always non-empty) subset of T-invariant
measures. Both spaces are compact in the weak-#-topology. There is a
third natural subspace V (X, T) < M(X,T) which is the set of (T-invariant)
vistble measures, i.e. measures possessing a quasi-generic point. Formally,
ve V(X,T) if, for some point x € X and some increasing sequence (Ny), we
have

We also write v € Vp(x) and say that x is generic for v along (Ny). Note that
the set V(X,T) of visible measures contains the set M¢(X,T) of all ergodic

1On a potential equivalence of the Chowla and Sarnak’s conjectures see [26, 46, 49, 50,
51] and a resumé of that in the survey articles [15, 37].

2In what follows, we replace zr by €%, where .Z is a general characteristic class.
Note that the argument u - v | €% whenever u | €2 and v is an arbitrary .%-sequence
(cf. Def. 1.1) persists.

3Not all invariant measures, even in a transitive subshift, have to be visible: let X, c
{0,1,2}" be given by y = 0Ft1*12F1kigk2qk2gk21ke with &y < k2 < ... Let v =
160 + 202 (two fixed points). If A := {z € Xy, : 29 = 0 or 2o = 2}, then v(A) = 1 but no
window in y has the property that the frequency of 0 jointly with 2 on it is close to the
value 1.



measures, but it may be strictly smaller than M (X,T). To illustrate this,
consider the automorphism (z,y) — (2,2 + y) of T? in which each point is
generic (i.e. generic along the whole sequence of natural numbers) and the
corresponding measure-theoretic system is either a rational or an irrational
rotation on the circle. Hence, each visible measure gives rise to a system with
discrete spectrum, while there are many other invariant measures which yield
partly continuous spectrum.

Given a bounded u: N — C, |u| < L, we first extend it to Z by setting
u(—n) = u(n) for n € N, u(0) € Dy := {2z € C: |z|] < L}, and then take
the closure Xy, := {Sku : k € Z} of the orbit of u € D% under the left shift
S: DE — D%, S((vk)kez) = (Vkt1)kez (recall that we only consider invertible
systems). Hence, (X,,S) is the subshift determined by w. By the very
definition, u € X,. FEach measure k € Vg(u) yields a measure-theoretic
system (X, B(Xy), K, S) called a Furstenberg system of u (by some abuse of
vocabulary, we may call x itself a Furstenberg system of u). Fix x € X and
consider the sequence (% 2in<N O(Tne,snu))- By compactness of M (X x Xy,),
we can select an increasing sequence (Vy) so that

1
ﬁ Z 5(T”x,S”u) - P
TLSN[

where p € Vpys((z,u)) € V(X x Xy, T x S). The projections of p on X
and X, are denoted by v and k, respectively, so that p is a joining of v and
K. Since p is a visible measure, so are v and k:

(2) ve VT(.%'),

and k yields a Furstenberg system of u. Now, setting
Xy —C

(3) Mo “
z = (zn)neZ = 20,

we have

g
]
g

S

S
=
£

2

I

. 1
kh_liloff(@md <Ne Z 5(Tnz,snu)>

nSNg

I

ff@wo dp = JEP(ﬂXu) o di.

So, the fact that the limit is 0 in (1), i.e. w L (X, T), depends on the joinings
of measures from V(X,T) with those from Vg(u) — the invariant measures
from M (X, T)\V(X,T) are irrelevant in this context. More precisely, what
will matter is the “geometric position” of the single continuous function
7o in the L?-space of all Furstenberg systems x € Vg(u) for such joinings.
Namely, inside the L?(p)-space, we want 7o to be orthogonal to L?(v) (in



condition (4) we use all continuous functions f on X and we take into account
all v € V(X,T)). Of course, whether this orthogonality can be established
without referring to the (visible) joinings p (and remaining at the level of
k € Vg(u)) is another question. A kind of surprise is that the answer to this
question will turn out to be positive for %z and some other characteristic
classes, see Theorem A, below.

Characteristic classes and Veech’s conjecture With the above in
mind, a knowledge of some fundamental facts on joinings, especially on dis-
jointness in the sense of Furstenberg in ergodic theory, strongly suggests
to consider only the situation when the measures v appearing above yield
measure-theoretic systems (X, B(X), v, T') belonging to one of so called char-
acteristic classes of measure-theoretic dynamical systems.

Definition 1.1. A class .% of measure-theoretic dynamical systems is called
characteristic if it is closed under taking isomorphisms, factors and (count-
able) joinings. Given a characteristic class %, by an . -factor of a measure-
theoretic dynamical system (Z, D, k, R) we call any factor sub-o-algebra of D
on which the action of R yields a system in the class .%#. We denote by €% the
class of topological systems (X, T') for which we have (X, B(X),v,T) € .% for
each v € V(X,T). The sequences of the form (f(7T"x))nez with f € C(X),
x € X and (X,T) € €7 are called .%-sequences.

It follows from the above definition that:

(a) every measure-theoretic dynamical system (Z, D, k, R) has a largest .F -
factor (in the sense of inclusion of sub-o-algebras), which we denote by

Dz,

(b) any joining of (Z, D, k, R) with a system from .% is uniquely determined
by its restriction to the joining of the largest .%-factor D4 of R with the
given system from %

(see Section 2 for details). The class ZE of zero (Kolmogorov-Sinai) entropy
is of course characteristic. The largest zero entropy factor Dzg of (Z, D, k, R)
is called the Pinsker factor and is denoted by II(R) or II(x). Note that (via
the variational principle) the family 47 is precisely the family of all topo-
logical systems whose all invariant measures yield systems in ZE. Returning
to Sarnak’s conjecture, in [52], Veech proves the following result:

Theorem 1.1 (|52]). If
(5) mo L L*(TII(k)) for each Furstenberg system r € Vs(p)

then Sarnak’s conjecture holds, i.e. p L €zp.*

*An ergodic proof (which goes back to a suggestion of Sarnak in [46]) of this result is



Then he formulates the following conjecture (Conjecture 24.3 page 88
in [52]):

Conjecture 1 (Veech’s conjecture). Condition (5) is equivalent to Sarnak’s

conjecture.

One of motivations for the present work was to prove the above conjec-
ture. Let us first formulate (5) in full generality.

Definition 1.2. Given a characteristic class .# we say that a (bounded)
arithmetic function w: N — C satisfies the Veech condition with respect to
F if

(6) mo L L*((B(X4),k)) for each Furstenberg system x € Vg(u).

Given a characteristic class %, we denote by % the class of those au-
tomorphisms R of (Z,D, k) such that a.e. ergodic component of x yields a
system in .Z. Then (see Section 2.3), % is also a characteristic class,

(7) Cy C Cz,

and

8) €z, ={(X,T): (X,B(X),v,T) € Z for each ergodic v e M (X,T)}.
Our main result is the following:

Theorem A. Assume that % is a characteristic class. Let u: N — C be a
bounded arithmetic function. Then w L €z, if and only if u satisfies the
Veech condition (6) (with respect to Fec).

Remark 1.2. A subsequence version of this result also holds: If (Ny) is
an increasing sequence of integers, then w is (/Vy)-orthogonal to €z, (i.e.
N% Yinen, f(IMz)u(n) — 0 for each (X,T) € €y, and all f € C(X), z € X)
if and only if the Veech condition (6) holds for each measure s for which u
is generic along some subsequence of (Ny). The reason for the validity of
this “local” version is that all tools used in the proof of Theorem A work
well on subsequences, see also Remarks 1.4 and 2.20 to cope with the strong
u-MOMO property along subsequences.

See [8] for the validity of the alternative: either there are no Siegel zeros
or there exists a (universal) subsequence along which Sarnak’s conjecture
holds and [27| for a density version of Sarnak’s conjecture.

implicit in [2], where the implication “Chowla conjecture = Sarnak’s conjecture” has been
proved using joinings. Veech cites [2] (which was on arXiv two years before Veech’s lecture
notes [52] appeared) but instead he gives his own (slightly complicated) proof using the
concept of quasi-factors of Glasner and Weiss.



Theorem A for w = p and .# = ZE (note that ZE.. = ZE) has the
following consequence:

Corollary 1.3. Veech’s conjecture holds. Moreover, if Sarnak’s conjecture
holds then all Furstenberg systems k € Vg(p) have positive entropy.

We also generalize Veech’s theorem (Theorem 1.1) to the setting of char-
acteristic classes:

Theorem B. Assume that ¥ is a characteristic class. Let u: N — C be
a bounded arithmetic function. If w satisfies the Veech condition (6) with
respect to F then u | €.

Let us now briefly discuss the methods involved in the proofs of the
above theorems. The proof of Theorem B is provided in Section 4.1. It is a
straightforward application of the above Property (b) of the largest .#-factor
(see Proposition 2.2 for more details). The proof of Theorem A which we
provide in Section 4.2 relies on:

e so called Hansel models [29] of possibly highly non-ergodic measure-
preserving systems,

e our version of a lifting lemma by Conze, Downarowicz, Serafin [9] on
the existence of generic points for joinings, valid in a general context
and using the concept of quasi-generic sequences (Proposition 3.1),

e general joining techniques.

Our first proof of Theorem A was based on a different lifting lemma by
Bergelson, Downarowicz and Vandehey (Theorem 5.16 in [6]) and a recent re-
sult by Downarowicz and Weiss showing the existence, for each zero-entropy
measure-theoretic system, of a special Hansel model which is symbolic [13].
The proof we finally chose to present here does not require the use of this
symbolic model, as our lifting lemma works for all topological systems. Its
additional advantage is that it is also valid in the context of logarithmic
averages (see Section 3.3). This makes all our results also true in the log-
arithmic set up: for example, the logarithmic Sarnak’s conjecture (denoted
as p Liog €zE) is equivalent to the Veech condition for g for all logarithmic

Furstenberg systems x € Véog(u), see Corollary 1.12 for more.

In Theorem A, it is crucial that we deal with a characteristic class of
the form %, since, by Proposition 2.17, u L €z, is equivalent to the so
called strong u-MOMO property for systems in €z,_. This property, whose
definition is recalled below, has been introduced in [3, 27]. We leave as an
open problem whether Theorem A holds for an arbitrary characteristic class.



Definition 1.3. A topological system (X,T) satisfies the strong u-MOMO
property, if

(9) lim N Z Z u(n)foT" =0

k<K ||bp<n<bpi1 C(X)

for each f € C(X) and each increasing sequence (b;) < N such that bg1 —
bk — 0.

Clearly, the strong u~-MOMO property implies (1) uniformly in z € X.
The concept of strong u-MOMO is formally stronger than the usual orthog-
onality. To see the difference between the usual orthogonality and strong
MOMO, consider the system (z,y) — (2,2 +y) on T? whose M&bius orhog-
onality follows easily from the DDKBSZ criterion,” see e.g. [15]) (in fact,
the orthogonality holds even uniformly due to the Davenport estimate [10]) ,
while the strong u-MOMO property (apply the definition to f(z,y) = e>™¥)
yields

1 .
bi Z sup Z u(n)e%rmx 0
K <k €T (b <n<byyq

when K — o0 which is an open problem,’ see Sections 5.4 and 5.5 for more
details.

Remark 1.4. Note that in the definition of the strong u-MOMO property,
convergence (9) can be replaced by

(10) lim% S Y wmfer

N=o k<Kn || bp<n<bi41 C(X)
+ Z u(n)foT" =0,
where ky := max{k : by < N}. As a matter of fact, the definition is

unchanged if we only restrict to sequences (by) which further satisfy the

condition
. br+1 — by
im —/———

=0.
k—o0 br.

(If we have to consider a sequence (by) which does not satisfy the above
condition, we can always add more integers to the set {bx : k = 1} so that

"DDKBSZ stands for Daboussi-Delange-Katai-Bourgain-Sarnak-Ziegler [7], [35].
5In fact, it is open whether a non-periodic, zero entropy, continuous, algebraic auto-
morphism of T? satisfies the strong u-MOMO property.



this convergence holds for the new sequence. And the validity of (9) or (10)
for the new sequence is stronger than the same for the former sequence (by).)

Then it is easy to define also the strong u-MOMO property along an
increasing sequence (INy), by restricting convergence (10) to the subsequence
(Ne).

Veech condition and combinatorics Given a characteristic class %,
Theorems B and A determine a natural strategy to describe the arithmetic
functions u orthogonal to all % -sequences. Namely, we need to describe
the .Z-factors and understand the orthogonality to their L?-space (i.e. the
Veech condition), hoping that this description can be expressed (for mp in
X, and a Furstenberg system & of u) by some asymptotics of the integrals
of continuous functions on X,,. The final step would be to use the definition
of a Furstenberg system to obtain a combinatorial condition on wu itself. The
first part of the strategy should be seen as an extension of the theory of
characteristic factors Z4(T") (given an automorphism 7°) and the Gowers-
Host-Kra (GHK in what follows) seminorms | - ||, for s = 1 [31]. In this
perspective the Veech condition on mp is the counterpart of |m/,s = 0 for
each Furstenberg system x € Vg(u) (and has its combinatorial translation in
terms of the GHK seminorm of w). We will give more details on this shortly.

Let us discuss this strategy for the class ZE, see Section 5.1 for details.
Here, the characteristic factor of a measure-preserving system is the Pinsker
factor. The reader has certainly noticed that even though we study dynam-
ical properties of Furstenberg systems, as a matter of fact, at the end we
deal with a process (mg 0 S™)nez, stationary with respect to k € Vg(u) (each
such measure is invariant in the subshift (X, S)). Now, the Veech condition
leads to the following concept.

Definition 1.4. A centered stationary process X = (X,,) taking finitely
many values is called a Sarnak process if E(Xo | o(Xn, XN+1,.-.)) — 0 in
L? (or a.e.); equivalently E(X, | II(X)) = 0, where II(X) stands for the tail
o-algebra.

Understanding the structure of Sarnak processes seems to be a problem
of an independent interest and it will be studied elsewhere.

Now, when u takes finitely many values, our main result (Theorem B
applied to ZE) can be reformulated in the following manner:

Corollary 1.5. Let u: N — C be an arithmetic function taking finitely
values. Then w L 6z if and only if all stationary processes (my © S™)nez
determined by k € Vs(u) are Sarnak.

From the ergodic theory point of view we are close to the concept of the
relative Kolmogorov property (K-property) which is however perturbed by
the fact that we need this property for a single function. But even though



only mg is involved, the dynamical idea of the equivalence between the K-
property and K-mixing (uniform mixing) works, and we can apply K-mixing
of my against the family of functions depending on finitely many non-negative
coordinates. This leads to studying the asymptotics of integrals of some con-
tinuous functions and finally gives the following combinatorial characteriza-
tion of the orthogonality of u to all deterministic sequences. In the following
corollary, we use the fact that when u takes its values in a finite set, a subset
A < X, depends on finitely many non-negative coordinates if and only if
there exists ¢ = 1 and a set C of blocks of length ¢ appearing in w such that

La(Y) = Liy(),y(1),....u(e-1))eC

Corollary C. Let u: N — C be an arithmetic function taking finitely many
values. Then w L €zp if and only if, for each subsequence (Ny) defining a
Furstenberg system of u and each subset A © X, depending on finitely many
non-negative coordinates, we have the cancellation phenomenon of the values
of w uniformly along sufficiently large shifts of the set of visits of uw in A:
for each € > 0, there exists M = 1 such that for each £ = 1 and each set C
of blocks of length £, we have for each m = M

. 1
(11) Jim N, > w(n) Lw(min) wimint1), . uminte-1)ec| S €

nSNk A
1a (S )

Note that M above depends on (N) and . This combinatorial condition
looks more attractive if we assume that w is generic:

Corollary C’. Let u: N — C be an arithmetic function taking finitely many
values. If w is generic then uw L €zg if and only if

. . 1
Jim | lim | n;VU(n)11(u(m+n),u(m+n+1),...,u(m+n+e—1))ec =0

uniformly in £ =1 and in C, a set of blocks of length €.

Remark 1.6. Note however that the above two corollaries do not say much if
the (clopen) sets C' are already of small measures (e.g., in the most interesting
case of blocks of large length). In fact, condition (11) in Corollary C is
equivalent to the following: for each subsequence (Vi) defining a Furstenberg
system of u we have the conditional cancellation phenomenon of the values
of w uniformly along sufficiently large shifts of the set of visits of u to “typical”
blocks. More precisely, for each € > 0 there exists M > 1 such that

. anN;C u(”)]l(u(m+n),u(m+n+1),...,u(m+n+£—1))=c
lim
ko0 ZnéNk ]l(u(n),...,u(n+ﬁfl)):0

/
™

10



for all m > M, all ¢ sufficiently large and blocks C' of length ¢ forming a
family of measure > 1 — €.
If, additionally, w is generic, then the above condition reduces to

i L 2 W)L (w(mtn) w(means1), .. u(m+ns—1))=C| _

0
m—00 N—a0 anN ]lu(m+n),...,u(m+n+éfl):c

uniformly in m, for “good” blocks of length /¢ sufficiently large.

Remark 1.7. Note the basic difference between the sums

D7 () L) ume), a1y —c = Cl01- D" L) u(na1),.u(nsi—1))—C

nSNk TLSNk

and

Z u(n)]l(u(m+n),u(m+n+1),...,u(m+n+€—1)):cv

n<Ng
namely, the first one does not display any cancellation (that is, along the
return times to a fixed block, we have no cancellation) and in the second
one cancellations are possible and the fact that along further and further
shifts of the set of return times we observe more and more cancellations,
characterizes the Sarnak property.

Veech’s and Sarnak’s conjectures for other characteristic classes
The family of all characteristic classes is enormous, see Section 2 for natural
examples. Here, let us just notice that the discrete spectrum automorphisms
form a characteristic class and it contains uncountably many characteristic
subclasses whose pairwise intersections are equal to the class of all identi-
ties (indeed, discrete spectrum automorphisms whose group of eigenvalues is
contained in Zq, with « irrational, is a characteristic class). Moreover, there
are the largest proper and the smallest non-trivial characteristic classes. In-
deed, although our study of the zero entropy class was originally motivated
by Sarnak’s conjecture, yet, ZE plays a special role since it is the largest
(proper) characteristic class. In fact, we have

(12) {#} cID c .# < ZE < ALL

for each characteristic class .%, where ID stands for the (characteristic) class
of identities (of all standard Borel probability spaces) and ALL stands for
the (characteristic) class of all systems. Note that

ID = {#}ec and ZE = ZEq.
Clearly, the topological class a1, consists of all topological systems and

the only w orthogonal to all of them is u(n) = 0 on a subset of n of full

11



density which is compatible with the Veech condition (which in this setting
means that 7y equals (a.e.) zero for each Furstenberg system).

The topological class €,y consists of topological systems whose all visible
measures are given by fixed points. The reader can check that the Veech
condition here is just SXu modk = 0 for each xk € Vg(u). The combinatorial
condition (11) from Corollary C (equivalent to the Veech condition) in this
setting reduces to imy_.o 2 2in<ny u(n) = 0. Clearly, in this setting, the
latter is nothing but the Sarnak condition.

It is not hard to see that the topological class é1p consists of topological
systems whose only ergodic measures are Dirac measures at fixed points. The
Veech condition here is my L L?(Z,) for each x € Vg(u), where T, stands
for the g-algebra of invariant sets. Finally, the counterparts of Corollaries C
and C’ are the following.

Corollary 1.8. Let u: N — C be a bounded arithmetic function. Then
u L 61p if and only if for each € > 0 and each subsequence (Ny) defining a
Furstenberg system of w, there exists Hy = 1 such that for each H = Hy,

2
1

T Z u(n + h)

h<H

1
(13) lim — 7 <e.

k—oo N NNy

Note that if, additionally, u is generic and it satisfies a non-quantitative
version of the Matoméki-Radziwill [41] convergence on a typical short inter-

val:
2

1
T Z u(n+h) =0

h<H

1
li —
M,H—»ocl)fr]il{=o(M) M Z

n<M

then u L %1p.

Remark 1.9. It is also worth mentioning that the ID-sequences are precisely
the mean slowly varying functions (see Proposition 5.1 in [28]), i.e. (bounded)
arithmetic functions v: N — C for which

.1

dim > w(n +1) —v(n)| = 0.
n<N

Therefore, sequences satisfying (13) are precisely those orthogonal to all

mean slowly varying functions.

Notice that it follows from (12) that, for a non-trivial class .#, the “zero
mean condition on a typical short interval” (13) is a necessary condition for
u 1 €, whereas the condition given by Corollary C is sufficient for u 1 €.

In Section 5.5, we discuss the case % = DISP.., where DISP stands
for the (characteristic) class of discrete spectrum automorphisms. In view
of (8), ¥pisp,. consists of homeomorphisms whose all ergodic measures
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yield systems with discrete spectrum. Let w: N — C be bounded. For an
increasing sequence of integers (Ny), we set

2 T .1 -
1) Tl = Jim, g 2, (fim 5 X wloulo+m)

H <H k—00 IV n<Ni
and, for s > 1,
2s+1 . 1 28
(15) [ulias vy = Jim = D7l +R) w2 vy
h<H
whenever all the above limits exist. If Nj, =k, we set |ullus := [w]ys((v,))-

Corollary 1.10. Let u: N — C be bounded. Then w L 6pisp,. if and only
if |ulu2((nv)) = 0 for each subsequence (Ng) along which w is generic. In
particular, if w is generic then |u|,2 = 0.

The main assertion of Corollary 1.10 is equivalent to |mo[,2(x) = 0 for
each Furstenberg system k € Vg(u). The reason for the validity of this result
is that given an automorphism (Z, D, p, R), we have the equality

Dpisp,. = Z1(R, p)

which is a consequence of DISP.,. = NIL;, where NIL; stands for the class
of automorphisms whose a.a. ergodic components are inverse limits of s-step
nil-automorphisms (see Section 2 for more details).

When we turn to the classes NILg(= (NILg)ec) and return to the orig-
inal Sarnak’s conjecture (for w) then clearly mo L L?(II(k)) implies m L
L?(Z4(k)) for each s > 1. We hence obtain one more necessary condition for
u to be orthogonal to all deterministic sequences:

Corollary 1.11. Letu : N — C be bounded. If w L 6zg then |u,s((n,)) =0
for each s € N (for each subsequence (Ny) along which u is generic).

In Section 2.3.2, we prove that the Sarnak property of w for the fun-
damental (in ergodic theory) class of distal automorphisms is equivalent to
the Veech property of u. We leave as an open problem whether the Veech
property can be expressed combinatorially in the distal case.

The logarithmic Sarnak’s conjecture As we have already noticed, our
results also hold in the logarithmic case. In the corollary below we put
together conditions which are equivalent to the logarithmic Sarnak’s conjec-
ture.”

"Our thanks go to N. Frantizkinakis who pointed out to us one of crucial equivalences:
(iv) < (v).
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Corollary 1.12. Let uw = p or X. The following conditions are equivalent:
(i) w Liog €7k (i.e. zero entropy systems satisfy the logarithmic Sarnak prop-
erty with respect to u),

(ii) w Liog G, for each s =1

(iii) mo L L2(II(k)) for each k € Vgog(u) (i.e. u satisfies the Veech condition
for each logarithmic Furstenberg system of u),

(iv) mo L L%(Z4(k)) for each k € V;vog(u) and s =1,

(v) uw satisfies the logarithmic Chowla conjecture.

The equivalence of (ii) and (iv) is due to Theorem A (in its logarithmic
form), the equivalence of (iv) and (v) (based on the facts proved by Tao [50]
for the equivalence of the logarithmic Sarnak’s and Chowla’s conjectures
for the Liouville function) is formally proved in [16] (implicit in Section 2.7
therein). Other (needed) implications are standard. Recall also that by [27],
(i) is equivalent to the logarithmic strong u-MOMO property of all zero
entropy systems.

Note that the equivalence of (i) and (ii) in Corollary 1.12 yields immedi-
ately the following.

Corollary 1.13. The logarithmic Sarnak’s conjecture holds if and only if
for each s = 1, w is orthogonal to all systems whose all ergodic measures
yield NILg-systems.

Remark 1.14. As Theorem A is true in a larger context, also Corollary 1.12
can be formulated for more general multiplicative functions bounded by 1,
cf. Theorem 1.8 in [16].

Averaged Chowla property Theorem B cannot be applied to the class
%pisp. However, in Section 5.6, we will show that the Sarnak and Veech
conditions are equivalent in this setting for each bounded u: N — C such
that

(16) all circle rotations satisfy the strong u-MOMO property

(strong u-MOMO property has been defined in Definition 1.3).

Corollary 1.15. Assume that w: N — C is bounded by 1 and satisfies (16).
Then u satisfies the Veech condition for the % =DISP. In particular, the
Sarnak and Veech conditions are equivalent for % =DISP. Moreover, for
every sequence (Ng) along which w is generic, u satisfies the averaged 2-
Chowla property:

(17) lim — Z lim — =0

H—o H k—o Nk

Z u(n)u(n + h)

n< Ny
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and, for all sequences v1,...,vy (bounded by 1), we have

1 1 b
18 lim — lim — u(n vi(n + ;)| = 0.
(18)  Jim m%@k% N ZN () [ Twitn+ 1)

Property (18), called the averaged Chowla property (cf. [42]), follows from
(17) — this will be shown in Appendix A. For an alternative approach to
obtain the assertions of the above corollary, see the method in [19]: for (17)
cf. Thm. 4.1 and Prop. 4.3 [19], and for (18) cf. Thm. 2.1 and Prop. 5.1
therein.

Corollary 1.16. Letu: N — C be a multiplicative function bounded by 1. If,
for each Dirichlet character x, u-x satisfies the short interval behaviour (13) ®
then u satisfies the averaged Chowla property (18) (along each sequence (Ny)
for which w is generic).

The above result with (Ny) being all positive integers has been proved
by Matoméki, Radziwilt and Tao in [42]. Note that to obtain Corollary 1.16
it is enough to show that irrational rotations satisfy the strong u-MOMO
property. Via the DDKBSZ criterion, this follows from the ergodic property
AOP introduced and proved to hold for totally ergodic rotations in [1]. Thus,
we obtain an ergodic proof of the averaged Chowla property for each sequence
(Nk) as above for all multiplicative uw enjoying the special short interval
behavior. In particular, assuming that w is generic, we get a non-quantitative
version of [42].

In Section 6, we prove (see Theorem D) that for each u : N — C taking
finitely many values, if it satisfies the Sarnak property for the class ¥zg, then
no positive entropy system satisfies the strong u-MOMO property (this was
previously known for the Liouville function assuming the Chowla conjecture

[31)-

2 Characteristic classes

2.1 Definition, examples, basic properties

Recall that a class .% of measure-theoretic dynamical systems is characteris-
tic if it is closed under taking isomorphisms, factors and (countable) joinings.
Recall also the following classical result on such classes (see e.g. [45]).

Proposition 2.1. Given a characteristic class F , each automorphism R on
(Z,D, k) has a largest F -factor, denoted by D .

The following result whose proof is based on a fundamental non-disjointness
lemma from [39] will be crucial for us:

8This is equivalent to saying that along arithmetic sequences the averages on a typical
short interval vanish.
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Proposition 2.2 ([45]). Let (X,B,v,T) be a measure-theoretic dynamical
system in the characteristic class F, and let (Z,D,k, R) be any measure-
theoretic dynamical system. Then any joining of R and T is relatively in-
dependent over the largest .#-factor Dy of R. That is: if g € L*(Z, k) is
such that E*[g|D#]| = 0, and if p is a joining of T and R, then for any
fe L3(X,v) we have

(19)

E°(f®g) = 0.

Examples of characteristic classes (some acronyms are used for those
which will be used in the sequel):

ALL: all automorphisms of standard Borel probability spaces;

{*}: the identity on the one-point space;

ID: identity automorphisms (of all standard Borel probability spaces);
DISP: discrete spectrum automorphisms;

RDISP: rational discrete spectrum automorphisms;

DISP(G): discrete spectrum automorphisms whose group of eigenval-
ues is contained in fixed countable subgroup G of the circle;

NIL,: automorphisms whose a.a. ergodic components are inverse limits
of s-step nilautomorphisms. The fact that ergodic joinings of nilsys-
tems remain nil, see Proposition 15, page 186 in the book [31], and
the same holds for inverse limits (this is actually Lemma A.4 in [20]).
Regarding factors of ergodic nilsystems, see Theorem 11 in page 230
[31]. Here s € N.

DIST: distal automorphisms are those which are given as a transfinite
(indexed by ordinals smaller than a fixed countable ordinal) sequence
of consecutive extensions each of which either has relative discrete spec-
trum or (in case of a limit ordinal) is the corresponding inverse limit.
The structural theorem Theorem 6.17 together with the concluding
remark (for Z-actions) on page 139 [22] tell us that each system has
a largest distal factor, hence DIST is closed under countable joinings.
In Lemma 2.15, we note that an automorphism is distal if and only if
a.a. its ergodic components are distal. To see that this class is closed
under taking factors, let us first recall that this fact holds for ergodic
automorphisms (see Theorem 10.18 [25]). If now A < D is a factor of a
distal automorphism (Z, D, k, R) then A (as an R-invariant o-algebra)
is also a factor of a.e. of its ergodic components. So a double use of
Lemma 2.15 together with Theorem 10.18 from [25]| gives that A is
also distal.
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e ZE: zero entropy automorphisms;
e RIG(,,): automorphisms with a fixed sequence (gy,) of rigidity;

e multipliers .#(2") of a class 2+ (2 is any class of automorphisms
and by 2 we mean the set of automorphisms disjoint from all systems
from 2, and by .#(2") we mean the set of systems whose all joinings
with any element of 2+ remain in 21); interesting classes of multipliers
arise e.g. for Z=all weakly mixing (cf. Proposition 5.1 in [38]) or all
mixing automorphisms; see [24], [38].

e the class of factors of all infinite self-joinings of a fixed automorphism
R (the smallest characteristic class containing R); especially in case of
MSJ and simple automorphisms (cf. [25], Chapter 12). Characteristic
classes of such type were used in [40].

Note also that the intersection of any family of characteristic classes
yields again a characteristic class. In Section 2.3, we will show that each
characteristic class . determines another characteristic class %, consisting
of those automorphisms whose ergodic components are in .%.

2.2 The smallest nontrivial and the largest proper charac-
teristic class

An obvious observation has been made already in the introduction that the
family ALL of all automorphisms is the largest characteristic class, while the
one-element {#} family (which is the one-point space automorphism) is the
smallest characteristic class. It is more interesting however that the smallest
non-trivial and the largest proper characteristic classes exist.

Proposition 2.3. ID is the smallest non-trivial characteristic class.

Proof. Let us first notice that the system ([0, 1], Leb, Id) has all other iden-
tities as factors. Indeed, any standard Borel probability space is determined
by a sequence (t;);>0 of non-negative numbers such that >, ,t; = 1 and tg
corresponds to the mass of the continuous part and ¢1, ¢, ... correspond to
the masses of atoms. Then, take the corresponding partition of [0, 1] into
intervals I; of length ¢; and, for each ¢ > 1, the factor map will glue points
in Il

Now, notice that any non-trivial characteristic class % contains a non-
ergodic automorphism. Indeed, suppose that T is ergodic, acting on a non-
trivial space (Y,v). Since Y is non-trivial and so is T, the graph joinings
Ajq and Ap are ergodic and different, so any non-trivial convex combination
of them yields a non-ergodic member of .#. It follows that by taking the
factor Z,, of (a.e.) T-invariant sets (which belongs to .%), we obtain the
identity on a non-trivial standard Borel probability space (Y,7). But then
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the infinite Cartesian product (Y™, 7®%®) is also in .# and this infinite
product is isomorphic to ([0, 1], Leb), which completes the proof. 0O

In order to prove the existence of the largest characteristic (proper) class,
we need to recall some results.

Theorem 2.4 (non-ergodic Sinai’s factor theorem [36, 48]). Assume that
R is an automorphism of (Z,D,p) and let p = SX/I,, pzdm(T) stand for the
ergodic decomposition of p. Assume that

m — essinfzex /7, h(pz, R) = a > 0.
Then a Bernoulli automorphism of entropy « is a factor of R.

In [48] (see Theorem 4.3 therein) the above result is attributed to Kieffer
and Rahe [36], see also [47] p.2 (The non-ergodic factor theorem).

We also need the following well-known result (we include its proof for
completeness).

Proposition 2.5. FEach automorphism R is a factor of a self-joining of the
(infinite entropy) Bernoulli automorphism ([0,1]%, Leb®Z, ).

Remark 2.6. Before we prove the above result, let us notice that any auto-
morphism T of (X, B, 1) has an isomorphic copy in the space ([0,1]%, &, S).”
Consider first the aperiodic part of 7" which is realized on a standard Borel
space. This space is isomorphic to [0, 1], via a Borel isomorphism I. It fol-
lows that the distribution p’ of the process (I 0 S*)iez vields a realization of
the aperiodic part. Now, i/ takes measure zero on the set of periodic points
for the shift. Moreover, the set of periodic points of S can be identified with
a subset of [0, 1], points of period 2 with a subset of [0, 1]? etc., and we can
easily settle an isomorphism of the fixed point subspace for T" with a subset
of [0, 1], period 2 points with a subset of [0, 1], etc. Thus, it suffices to take
k equal to the sum of p’ and the relevant atomic measures corresponding to
the periodic points.

Proof of Proposition 2.5. Fix any automorphism R of (Z, D, p) and take its
isomorphic copy in the space ([0, 1]%, k, S). Take the product space ([0, 1]% x
[0,1]%, Leb®? ® k) and consider the map ¢: [0,1]% x [0,1]% — [0, 1]% given
by

(TnsYn) = (T + Yn)-

Then v, (Leb®” ® k) = Leb®? and clearly the join of the o-algebra of the
first coordinate and of 1y ~!(B([0, 1]®%)) is the product o-algebra in [0, 1]%% x
[0,1]%Z. The result follows. 0O

We now prove the following.

9The same arguments apply to D = {z € C : |z| < 1} instead of [0,1].
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Lemma 2.7. Assume that .F is a characteristic class such that F\ZE # (.
Then # = ALL.

Proof. Fix T € Z\ZE. Because of Proposition 2.5, we only need to prove
that the infinite entropy Bernoulli automorphism is in .%. The first step is to
consider the factor of T that arises by gluing together the periodic part and
the ergodic components from the aperiodic part whose entropy is smaller
than a = A(T). Clearly, this factor remains in .#\ZE. Moreover, in its
ergodic decomposition we have a single point and the remaining part (which
may still be non-ergodic) consists of ergodic components of entropy at least
a. By Theorem 2.4, it follows that as a further factor R € #\ZE we can
obtain a non-ergodic automorphism with two ergodic components: one of
them is a Bernoulli of entropy o and the other one is a fixed point. Finally,
we take the infinite Cartesian product R*®. It is not hard to see that a.e.
ergodic component of this automorphism is a Bernoulli with infinite entropy.
Using once more Sinai’s theorem (Theorem 2.4), we obtain that a Bernoulli
with infinite entropy belongs to % which completes the proof. O

Now, using the lemma we obtain the following.

Proposition 2.8. ZF is the largest proper characteristic class. O

2.3 Characteristic classes given by ergodic components

Assume that .Z is a characteristic class. By .%.. we denote the class of those
automorphisms R such that (a.e.) ergodic components of R are in .%# (or
more precisely, in .# N Erg, where Erg stands for the family of all ergodic
automorphisms). Note that we have

(20) F N Erg = e n Erg.
Lemma 2.9. %.. is a characteristic class.

Proof. The proof has two parts: we need to show that % is closed under
taking factors and joinings.

Factors Let R acting on (Z,D, k) belong to % and fix a factor A ¢ D
of R. Let k = {kzdP(T) denote the ergodic decomposition of . Since the
ergodic components kz are R-invariant measures, A (being an R-invariant
sub-c-algebra) is also a factor of the automorphism (Z,kz, R) and k|4 =
§ k3.4 dP(T) is the ergodic decomposition of x| 4. It follows that the ergodic
components of the factor are factors of ergodic components of R, and since
R e Zec, (kz, R) € F, so also (kz|a, R|4) € F for P-aec. T.
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Joinings Take (X, u, T) and (Y, v, S) from Z. and let p € J(T, S) be their
joining. Let

p= Ll prdP(t), p= Ll e dQ(t), v = fl v dR(t)

0
be the relevant ergodic decompositions. Then

1 1
|, Q) ==l = | plxapio
so since p;|X are also ergodic, these two decompositions are the same. So
for a P-“typical” t € [0, 1], the projection of p; on X is an ergodic component
of T'. The same argument applies on the coordinate Y and we see that the
ergodic components of p are joinings of ergodic components of p and v. It
follows that (X x Y, p, T x S) € F.. The argument extends to countable
joinings. O

2.3.1 Largest characteristic factor

ID, ZE, DISP and RIG(,,) Given a characteristic class %, according
to Proposition 2.1, each automorphism R acting on (Z, D, k) has a largest
F-factor Dg < D. Often, its description is classical:

e the g-algebra of invariant sets for .# = ID,
e the Pinsker factor for .# = ZE,
e the Kronecker factor for .% = DISP,

e the largest factor for which (g,) is a rigidity time for .7 = RIG,,).
DISP.. We will comment now on Dg, when # = DISP, cf. Proposi-
tion 2.12 (ii) and its connections with the theory of nil-factors. Most of
the material presented below is known to aficionados but not necessarily the
material is explicitly present in the literature. Our discussion is based on
[18], [23], [30] and [31]. We provide some details to explain clearly why the
problem of whether g | DISPg. is open, cf. Corollary 1.10, Corollary 2.11
and Remark 5.9.

Recall that according to the Furstenberg-Zimmer theory 23], given R on
(Z,D, k) and a factor C < D, there exists a certain intermediate factor

CcK=K(C)cD,

called the relative Kronecker factor (with respect to C). It is the largest
intermediate factor with the following property (see condition Cg in [23],
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p. 131):

there exists a dense set of functions F' € L?(K, k|x) such that
for each § > 0 there is a finite set g1, ..., gx € L?(K, k|x) such
that for each h € Z,

(21)

in, |F o R — gjlr2(e,) <9

for a.e. y € Z/C, where
(22) e = [ nyduty).
z/c

Whenever condition (21) holds, we speak of relative compactness or of rela-
tively discrete spectrum of the intermediate factor over C.

A particular situation arises when C = Z,, i.e. it is the o-algebra of
invariant sets. Then (22) is nothing but the ergodic decomposition of x and
the conditional measures £, are also R-invariant. In this case condition (21)
yields in a.e. fiber 771(y) (where 7: Z/K — Z/I,, stands for the factor
map) a dense set of functions F|,-1(,) in L*(K, k,) whose orbits under the
unitary action of R are relatively compact. It follows that the (ergodic)
automorphism (R, k,) has discrete spectrum for a.e. y € Z/Z,. In other
words,

K(Zs) < Dpisp..

In fact, the opposite inclusion is also true, i.e.
(23) Dpisp.. = K(Zx),

that is, A := Dpigp,. has relatively discrete spectrum over Z,,. Indeed, by
the definition of A, a.e. ergodic component of R| 4 has discrete spectrum. Fix
F e L*(A,k|4). Fix also €, > 0 and k > 1. Consider the set W, ¢ Z/Z,
of those y for which

min [FoR"—FoR <e

for each n € Z. Since on each fiber R is an ergodic automorphism with
discrete spectrum, the measure of Wy goes to 1, when &k — o0, so it will
be greater than 1 — ¢ for k large enough. It follows that the function F' is

compact as it has been defined in the proof of Theorem 6.15 |23|. Therefore,
F e L2(K(Z,)), which (by [23]) concludes the proof of (23).

Remark 2.10. As a matter of fact, in [5], the Furstenberg-Zimmer theory
is developed without assuming ergodicity (cf. e.g. Proposition 5.7 therein to
obtain the equality Dpigp,. = K(Zy)).
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We will now see that Dpisp,. appears naturally in the classical theory
of characteristic nil-factors [30, 31].1° Recall that if R acting on (Z, D, k) is
ergodic then for a function f € L*(Z, D, k) its u® norms (in fact, seminorms)
are defined in the following way:

(24) Il o= | [ £
25+1 L . i h .7 28
(25) £l = Jim o ];H I o B" - Pl

If R is non-ergodic then instead of (24), we put
1 _
2 h
2= Jim 5y 3 [ o Rt T
h<H

and (25) remains unchanged. Then, by [30, 31], for each s > 1 there is a
special factor Z5 = Z5(R) < B, namely, the largest factor whose

(26) a.e. ergodic component is an inverse limit of s-step nil-systems.

In other words, Z4(R) is the largest (characteristic) NILs-factor of R. More-
over (see Proposition 7 (page 138) and Proposition 13 (page 141) in [31]),

27) [flus+r =0 = f L IL*(Z2) = f L L*(Z4(R,ky)) for k-a.e. y.

A special case arises when our measure-preserving systems are Fursten-
berg systems of a bounded u: N — C. As in (for example) [16], see Sec-
tions 2.4 and 2.5 therein, one can introduce the uniformity norms (along
subsequences of intervals) for w. The definitions are given in (14) and (15).
They are very similar to those (in the non-ergodic case) to the definitions
for functions.

We will now show that

(28) Z1(R) = K(T,).
If R is ergodic then the above means just that
(29) 2, is the Kronecker factor of R.
To see that (29) indeed holds, notice that (27) for s = 1 yields

[fluz =0 = fLL*(21)

10We would like to thank Bryna Kra and Nikos Frantzikinakis for fruitful discussions
and useful references on this subject.
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and it remains to notice that (using the Wiener lemma)

114 = Jim - S 170 R F2 =

h<H

2
dr — Y op({2})%,

2zeT

where o stands for the spectral measure of f.

Let us return to a possibly non-ergodic R. The inclusion Zi(R) < K :=
K(Z,) follows directly by Theorem 5.2 in [18]. To obtain the opposite in-
clusion, one can argue in the following way. Suppose that f L L?(Z;(R))
and |f| < 1. Take g € L?(K), cf. (21) with F = g. We want to show that
§ fgdr = 0. Notice that

ffgd/izf( n;fooT” goTnd/iy> dr(y).

Let gj, 1 < j <k, be as in (21). Then

Z JfoT” goT" dk,

n<N

< D) = fooT - gj dry |+ mjnf|foT"(goT"—gi)\dny.
n<

1<i<k
1<j<k N o= NS

Each term in the average in the second summand is bounded by §. Moreover,

- Z O-fvgjﬁ"fy({z})Qa

zeT

(30) ‘Jf oT™" - g; dfiy
n<N

where o4, ., stands for the spectral measure of the pair f, g; (on the ergodic
component (771(y), xy) given by y). But by (27) and (29), we have

fLL*2) = fLL*21(R,ky)) for ae. y

<= 0y, is continuous for a.e. y

(0 £, stands for the spectral measure of f on the ergodic component (771 (y), ry)
given by ). Since f L L?(Z;) and Ofgiry € Ofr,, it Temains to use the
classical equivalence

for any bounded sequence (a,) < [0,0), to conclude that the limit in (30)
is equal to zero. Thus f | L?(Z)) = f L L*(K).
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Finally, let us compare the above with the notion of relative weak mixing.
Recall that relative weak mixing over Z, for f means that

5 2 [[EG e Tz

h<H

dr — 0.

Moreover,

h;HﬂEf o " 71z m:f< h<HUf o R" - Fdrk,

and, once more by the Wiener lemma,

) an

= 205, ({2})°

zeT

| ot i

h<H ‘

It follows immediately that oy, is continuous for a.e. y if and only if f is
relatively weakly mixing over Z,.

The above discussion can be summarized in the following statement.

Corollary 2.11. Let (Z,D,k, R) be a measure-theoretic dynamical system
and let f € L*(Z,D, k). The following conditions are equivalent:

(i) fLL*2),
(i) f L L*(Dpisp..),
(i) f L L*(K(Zy)),
(i) 0}, is continuous for r-a.e. y,

(v) f is relatively weakly mizing over Z,.

2.3.2 A class vs. its ec-class

Let us continue our observations on the relations between characteristic
classes and the corresponding ec-classes. Note that in general there are
no relations between .# and Z.:

Proposition 2.12. We have:

(i) ZE = ZE¢., ALL = ALLcc, ID = IDg., NIL; = (NILj)ee, {*} & {#}ec;
(ii) DISP < DISP,.;

(11i) RDISP = RDISPg;

(iv) DIST = DISTe;

(v) (R1G(,,)) < RIG,).
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Proof of (i)-(iit).

(i) The first claim follows from the fact that the entropy function is convex,
the other claims are obvious.

(ii) If an automorphism has discrete spectrum then its L2-space is gener-
ated by eigenfunctions. The restrictions (if non-zero) of these (global) eigen-
functions yield orthonormal bases in L?-spaces of ergodic components. The
inclusion is strict since (x,y) — (z,x +y) (on T?, considered with Lebesgue
measure) does not have discrete spectrum while the ergodic components do.
(iii) We want to show that if each ergodic component has rational discrete
spectrum then the whole automorphism has. Given p/q € Q and an ergodic
component ¢, we choose f. a modulus 1 eigenfunction corresponding to the
eigenvalue e2™P/4. Since f, is unique up to a constant of modulus 1, this
choice can be done measurably. In this way, we will create global eigefunc-
tions.!! O

Before we give the proof of (iv), we need to recall some more notions and
facts from the relative ergodic theory, e.g. [23, 25]. Given an automorphism
T of (X, B, p) and its factor S on (Y, C, v) with the factor map 7: X — Y, we
say that this extension is relatively ergodic (rel. erg.) if each f € LY(X, B, i)
satisfying f o T = f (p-a.e.) is m~!(C)-measurable. It follows immediately
from the definition that:

e any composition of relatively ergodic extensions remains relatively er-
godic;

e an inverse limit of relatively ergodic extensions remains relatively er-
godic (as the conditional expectation, with respect to a factor, of an
invariant function remains invariant);

e Y — Y := Y/L, where (Y,V) stands for the space of ergodic
components (on which acts the identity map), is relatively ergodic.

Let p = SY iy dv(y) stand for the disintegration of y over v and let

vV = nydV
Y

denote the ergodic decomposition of v (which is precisely the disintegration
of v over 7). Then the ergodic components of S acting on Y are of the form

(@@, 75, 5)

(the measures Ty are S-invariant). Therefore, we have the following lemma.

"1The same argument works if we consider the characteristic class of automorphisms
having discrete spectrum contained in a fixed countable subgroup of the circle.
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Lemma 2.13. IfT is relatively ergodic over S then the ergodic components
of T are of the form

7 (®)), s dvg(y) | -
( SN <y>>

Note that it follows that the ergodic components of T have as their
factors (via the relevant restriction of ) ergodic components of S, and that
the spaces of ergodic components of T and S are the same (i.e. X =Y).

Lemma 2.14. Let T be relatively ergodic over S. Then the following are
equivalent:

(a) T over S has relatively discrete spectrum.

(b) The ergodic components of T have relatively discrete spectrum over the
ergodic components of S being their relevant factors.

Proof. By Lemma 2.13, we see that the disintegration of an ergodic com-
ponent 71 (71(7)) over @ !(7) (which is its factor) consists of the same
conditional measures p, as the total disintegration of ;1 over v. We proceed
now as in the proof of the equality K(I;) = Dpisp.. (page 21), showing
compactness. 0O

Recall that an automorphism T is distal if it is a limit of a transfinite
(indexed by countable ordinals) sequence of consecutive maximal Kronecker
extensions (if an ordinal is not isolated, we pass to the corresponding inverse
limit). Note that, by the very definition, the o-algebra Inv is contained in the
Kronecker factor of T', so in this transfinite chain of consecutive extensions,
all but (perhaps) the first one are relatively ergodic. By applying Lemma 2.14
and transfinite induction, we obtain the following.

Lemma 2.15. T is distal if and only if all its ergodic components are distal.

Proof of (iv)-(v).

(iv) This follows directly from Lemma 2.15.

(v) Tt is clear that if (g,) is a rigidity time for an a.e. ergodic component, it
is also a rigidity time for the whole automorphisms. Not vice versa however
(for (gy) sufficiently sparsed). We will provide a relevant construction below.
g

RIGec is a proper subclass of RIG Let us first notice that we only need
to construct a continuous measure o on the circle such that

(31) e*™dn" _ 1 in measure o but not o — a.e.

26



Indeed, suppose (31) holds, and consider on T? the automorphism
T(z,y) = (x,y + z) with measure o ® Leb.

If F(x,y) = f(x)e*™ then by (31),

J\F(Tq"(w, y)) — F(z,y)|do(z)dy = f\f(w)\lez’”q”ﬁx —1}do(z) =0

when n — 00. On the other hand, the rotation by x on an ergodic component
{x} x T has (q,) as its rigidity time if and only if ¢,z — 0 mod 1. This is
not true for o-a.e. z € T in view of (31).

We now sketch how to construct such a measure assuming that (gy) is
sufficiently sparsed. Fix 0 < p, < 1 so that p, is decreasing to zero and
Yin=1Pn = ©. Set fn(x) = {goz}. We intend to construct a Cantor set
(together with a Cantor measure ¢ on it). Let

An = fn_l([l/47 3/4])7 Bn = fn_l([07pn])'

Our postulates are:
U(Bn) =1—pn, U(An) = Pn-

In fact, we need to be more precise in description of the measure at stage
n to be able to continue its definition. So at stage n the circle is divided
into intervals of the form [qj—n, %) (many of such intervals are of measure o

equal to zero). We now require that the conditional measures satisfy:

@ o (Bl ) 1o (a2 ) -,

qn  4n n  Qdn

for each j = 0,...,¢q, — 1). Passing to step n + 1, we require that all the

intervals [, ZE1)) contain at least two intervals of the form [—£—, £+L) we
qn’ dn dn+1’ dn+1
J Jtl

choose two of such (of course only in those [, Z=) which are of positive
measure o) and apply the rule (32) to A,+1, Brpy1 with p, replaced with

Pn+1.

Note that §e?™"®do(z) = 1+ O(pp(1 + pn) + 1 - py), so 2™ — 1
in measure . On the other hand o(A,) = p, and the sets A, are almost
independent. Since ;- p, = o0, for o-a.e. z, we have x € A,, for infinitely
many n (by the Borel-Cantelli lemma), so (31) holds.

2.3.3 Strong u-MOMO property of systems whose visible mea-
sures yield systems in an ec-class

While we have seen rather unclear relations between .# and % (cf. Propo-
sition 2.12), on the topological level we always have the following.
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Proposition 2.16. Let # be a characteristic class. Then €z < €z, .

Proof. This follows immediately from the fact that a homeomorphism T
(acting on a compact metric space X) belongs to €z,, if and only if for each

ke M¢(X,T), (X,B(X),k,T)e F. O
Note that in view of Proposition 2.16 and Proposition 2.12,

(33) (gRIG(Qn) = (g(RIG(Qn))eC
The special role of ec-classes stands in the next proposition.

Proposition 2.17. Let % be a characteristic class. Then w 1 €z, if and
only if each element in €z, satisfies the strong u-MOMO property.

The below proof of Proposition 2.17 is an adaptation of the proof of
Corollary 9 in [3]. It uses the following elementary result (see Lemma 18 in

131)-

Lemma 2.18. Assume that (¢,,) < C and (my,) < N. Then if the sequence
(cn) is contained in a closed convex cone which is not a half-plane then

—ch—>0 — — Z lcn| = 0 as N — o0.

'n,<N n<N

Proof of Proposition 2.17. Only one implication needs to be proved. Sup-
pose that u L €z, , and let (Y,S) € €z,.. We fix f € C(Y), an increasing
sequence (bg) in N, with by = 1 and bg1 — by — 0, and a sequence (yi) of
points in Y. We introduce the finite set A := {1,e?7/3 ¢*7/3} "and for each
k = 1, we define e; € A such that the complex number

e Y S gum)

bk n<bk+1
is in the closed convex cone {0} U {z € C* : arg(z) € [—7/3,7/3]}. Then, by

Lemma 2.18, the convergence that we need to prove, i.e.

Z ‘ F(S™ Py u(n) =0
K 52K by<n<bpii -

is equivalent to the convergence

(34) 72 D1 e f (ST P yp)u(n) —— 0.

K
Gy br<n<bii1 -

Consider the dynamical system (X,T), where X := (Y x A)% and T is the
left shift. Let x € X be such that

Ty = (S Py, ep), whenever by, < n < by,
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and x,, = zg is a fixed arbitrary point of Y x A for n < 0.
By setting F := f®Id on Y x A, it easily follows that (34) amounts to

bi Z Z Fomy(T"x)u(n) —— 0.

K
K g 2K b<n<bpii -

To prove the convergence above, we define the subspace X, as the closure of
{T™x : n € Z}. By assumption on u, we only have to check that the system
(X2, T) is in €z,.. So let u be a visible measure in (X,,T), and we first
consider the case where z itself is generic for p, along a sequence (Ny). Set

B = {(vj,aj)jez €X:(v,m) = (SUUa@O)}

Since bg11 — by — 0, we have

= 2 Gra(B) —— 1,

{—00

and since the set B is closed, by the Portmanteau theorem, it must be of
full measure p in (X, 7). Moreover, such a measure g must be T-invariant,
hence,

(35) 1=up (ﬂ T"B) = u({(vj,aj)jez e X :Vy, (vj,a5) = (Sjvo,ao)}>.
nez

Denote by (9 the restriction of u to the zero-coordinate (that is, with the

above notation, the distribution of (vg, ag) under p). Since p is T-invariant,

it follows that (9 is (S x Idy)-invariant. Moreover, Y x A consists of three

copies of Y, each of them is invariant under S x Id,. Thus,

(0) (0)

© © + Qs ",

= Qopy Tt Qi

where ag + a1 +a2 =1, a; > 0 and ugo)(Y X {eQWij/3}) =1forj=0,1,2. It
follows that the ergodic components of (Y x A, w8 x Id,) yield measure-
theoretic systems isomorphic to ergodic measures on (Y, S), hence in .# since
(Y, S) € €7, (this is the moment in our proof where we use the fact that we
deal with a characteristic ec-class and not a general characteristic class .%).
Thus (Y x A, (9,8 x Idy) € Fee. Now, using (35), we see that (X, u, T)
is isomorphic to (Y x A, 198 x Idy), thus is also in Ze..

Now, suppose that p € Vp(z') for some point 2’ in the orbit closure of x,
say ' = lim, o, T""x.

If 2/ = T"x for some n € Z, then p € Vy(z) and we already know that
(Xz, 1, T) € {#} € Foc in this case.

If n, —» —oo, then 2’ = (..., xg, zo, X0, ...) is a fixed point, and pu = § .
In this case, (X, p,T) € {*} € Fec.
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If n, — 40, and if we write ' = (vj,aj)jez = lim,_.on T" z, then as
bi+1—b, — 0, there exists at most one j € Z such that (vj11,a;) # (Svj, q;).
We can then use the same arguments as for  to show that a measure p for
which z is quasi-generic satisfies (X, p, T) € Fec.

We conclude that (X;,T) is in €5,.. O

Remark 2.19. In general, when instead of .#.. we consider .%, u 1 € im-
plies the strong u-MOMO property for each for (Y, S) in which all invariant
measures yield systems in .# (in particular, if (Y, S) € €2 and each invariant
measure is visible).

Question 1. Is Proposition 2.17 true for each characteristic class?

Remark 2.20. A straightforward adaptation of the proof shows that the
subsequence version of Proposition 2.17 also holds: for each characteristic
class .# and each increasing sequence of integers (Ny), u is (Ny)-orthogonal
to €z, if and only if each element in €z, satisfies the strong u-MOMO
property along (Ng). See Remarks 1.2 and 1.4.

3 Lifting lemma

The purpose of this section is to prove Proposition 3.1, which is an alternative
version of Conze-Downarowicz-Serafin lifting lemma from [9] and seems to
be of independent interest. It may seem weaker than the original where the
genericity was lifted to a single orbit, but the main advantage here is that
we do not need assumptions on the nature of the second topological space:
it does not have to be a full shift. The second advantage is that the result
has its extension to the logarithmic case, see Appendix 3.3, while the lifting
lemma of Conze-Downarowicz-Serafin and other results of that type so far
have been proved for Cesaro averages.

Proposition 3.1. Let (Y, S) and (X, T) be two topological systems andu € 'Y
generic along an increasing sequence (Ny,) for some S-invariant measure K
onY. Let p be a joining of k with a T-invariant measure v on X. Then
there exist a sequence (x,) < X and a subsequence (Ny,,) such that:

e the sequence (S™u,xy) is generic for p along (Np,):

1
— P —
Nm[ Z (S U,In) p?

0<n<Npm, oo
o The sequence (xy) is constituted of longer and longer pieces of orbits.

More precisely, {n = 0: xp41 # Txn} is of the form {by <by <--- <
b < bgy1 < ---}, where by — by, — 0.
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3.1 Good sequences of partitions

We need a convenient tool to estimate the weak™-convergence of a sequence
of probability measures to a given measure.

Definition 3.1. Let (E,d) be a compact metric space, and let v be a Borel
probability measure on F, i.e. v € M(FE). We consider a sequence (%) of
finite partitions of E into Borel subsets. The sequence () is said to be
good for (E,v) if the following conditions hold:

e for each ¢, &y, refines &,

o diam(%%) := maxp atom of 2, diam(P) . 0,

e for each ¢ and each atom P of &, v(0P) = 0.

The motivation for introducing this definition comes from the following
result.

Lemma 3.2. If (%) is a good sequence of partitions for (E,v), then a
sequence (vy,) < M(E) converges to v in the weak*-topology if and only if,
for each £ and each atom P of &2y, we have

Un(P) —— v(P).

n—ao0

Proof. If v, —= v, then by the Portmanteau theorem, for each P — E

n—00
such that v(0P) = 0, we have v, (P) — v(P).

Conversely, assume that for each ¢ and each atom P of &2, we have
Un(P) — v(P). Then any weak*-limit 4 of a subsequence of (1) satisfies
(again by the Portmanteau theorem) pu(P) = v(P) for each atom P of &.
But since diam(Z%?;) — 0, the sequence (&) separates points in E, hence
it generates the Borel o-algebra of E. Thus we have u = v, and using the
compactness of M (FE) for the weak* topology, we get that v, %» v. O

Lemma 3.3. For each v € M(E) of a compact metric space (E,d), there
exists a good sequence of partitions for (E,v).

Proof. We first show that, for each £ > 1, there exists a finite partition 2,
in which each atom () satisfies

e diam(Q) < 1/¢,

e v(0Q) =0.
Indeed, by compactness, there exists a finite set {z1,..., 2} < E such that
FE c U B(acz- i)
130

1<i<k
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Then, for each 1 < ¢ < k, there exist at most countably many r > 0 such
that
v (0B(z;,7)) > 0.

Therefore, we can find r € (i, ﬁ) such that

Vi<i<k, v(0B(z;r))=0.

Then the partition 2y generated by the open balls B(z;,7), 1 < i < k,
satisfies the required conditions.
Once we have 2, for each ¢ > 1, we set

Py =1 v v 2,
and we get a good sequence (%) for (E,v). O

Lemma 3.4. Let () be a good sequence of partitions for (Eq,v1), and let
(2) be a good sequence of partitions for (FEa,v2). Then for each coupling p
of v1 and va, (P x 2y) is a good sequence of partitions for (E1 x Ea, p).

Proof. This is obvious, since for each atom P of &y and each atom @ of 2,
O(P x Q) < (0P x Eq) u (F1 x 0Q),

and the marginals of p are 1y and vo. O

3.2 Proof of Proposition 3.1

Without loss of generality, we can (and we do) assume that the measure-
theoretic dynamical system (Y, k,S) is aperiodic. Indeed, if this is not the
case, we consider any uniquely ergodic topological system (Y’,S’) whose
unique invariant measure ' is such that (Y, x’,S") is aperiodic. Then we
take any point v’ € Y/, and we replace Y by Y x Y’, S by S x §’, and u by
(u,u). We also replace (N,,) by a subsequence of (N,,,) along which (u,u’)
is generic, for some measure & whose marginals have to be x and «’. But
then the system (Y x Y’ &, S x §') is aperiodic, because it is an extension
of the aperiodic system (Y’ ', S").

We fix a good sequence of partitions (Zy) for (Y, k) and a good sequence
of partitions (&) for (X,v). Then by Lemma 3.4, (Zy x &) is a good
sequence of partitions for (Y x X, p).

Definition 3.2. Let M > 0. A subset E of N is said to be M -separated if
for each integers n # m, n,me E = |n —m| > M.

The main argument to prove Proposition 3.1 stands in the following
proposition.
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Proposition 3.5. Under the assumptions of Proposition 3.1, and assuming
also that (Y, k, S) is aperiodic (see above), given ty =1 and € € (0, 3), there
exists a sequence () of points in X such that:

e (n=0:xp11 # Ty} is %—Sepamted,

o for each atom A of 24, x Py,, we have

| n
(36) p(A) —e < I%n_goréf N, 2 LA(S"u, zn),
0<n<Np,
and
1
(37) lim sup — Z 1a(S™u, 2y,) < p(A) +e.

M= IM g<n<N,

Proof. Let h be a natural number such that % < &. We claim that for ¢
large enough, we can find a set B < Y which is measurable with respect to

\/Oéjghfl 579y, and such that

e B,SB,...,S" 1B are pairwise disjoint,

Indeed, since (Y, k,S) is assumed to be aperiodic, we can use the Rokhlin
lemma to find a Borel subset B < Y such that B, SB, ..., S" 1B are pairwise
disjoint, and such that

F ~ €
S'B|>1——.
K U 5
0<j<h—1
Then we use the fact that the good sequence of partitions (2;) generates

the Borel g-algebra: it follows that for ¢ large enough, we can find a 2,-
measurable set B’ such that

~ g

For each 1 < j < h — 1, we have
B'n $'B' (B'\B) U ($'B"\$’B),
hence

; g
(38) /‘@(B, M S]B/) < 47]12
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It remains to define B by

B:=B\| |J 9B

1<j<h—1

Then, by construction, B is disjoint from S7B for each 1 < j < h — 1, thus

B,SB,...,S" 1B are pairwise disjoint. Moreover, from (38), we have
€ ~ €
B) > k(B)— — = k(B) — —
W(B) > K(B) ~ 1 = w(B) — o
which implies
w| | 9B |=hu(B) >hm(f3)—%> 1—e¢,

0<j<h—1

and our first claim is proved.

Since u is generic for £ along (Ny,), and since the set (o< )1 SIB is
measurable with respect to \/O<j<2h S92, (in particular, the xk-measure of
its boundary vanishes), we have

1 n 4
= . - J _
(89 - Y LWy 8(8" ) —— U S'B|>1-¢
0<n<Np, 0<j<h—1
This implies in particular that the set Pg(u) := {n > 0 : S"u € B} is
infinite. We number in order the elements of this set:

Pp(u) ={by <by<---<bp<---}

The integers (bg) will correspond to the times when we will be allowed to
change the orbit of the desired sequence. As B is disjoint from S’ B for each
1 <j<h-—1, the set Pg(u) is h-separated, hence %—separa‘ced.

We consider the partition \/Ogjgh—l(:g xiT)_J(.ngix Py,) of Y x X.
Any atom of this partition is of the form @ x P, where @ (respectively P) is
an atom of \/0§j$h_1 S7I 2y, (respectively of \/ o e, T Py,). For such

atoms Q and P, we can write

(40) Q=QonS'Qin-ns "D,
each @); being an atom of 2y, and

(41) P=PnS'Pn---nsVp

each P; being an atom of &,. Since the xk-measure of the boundary of each
involved set is always 0, we again have for each atom @ of \/, j<h—1 S 9y,

(42) Ni S a8 = = Y 1 0(S"u) —— k(B A Q).

m—00
moy N, N genZn., -
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If C is a measurable subset of Y with x(C) > 0, we denote by p¥ the
marginal on X of the conditional probability measure p(-|C x X). Then,
for each measurable A < X, we have

p(C x A) = p((C x X) n (Y x A))
(43) = p(C x X) p(Y x A|C x X)

= K(C) PE(A).

On an appropriate probability space, we construct a sequence (&) of inde-
pendent random variables, taking values in X, such that for each k, & is
distributed according to pgm o’ where @ is the atom of \/c;c) 1S 19y,
containing S%u.
For each atom @ of Vosj<h-1 S99y, and each atom P of Vosj<h-1 TP,
(42), the law of large numbers and (43), with probability 1, we have
g
Ni Z ILQ Sk (gk)—m—_;gli(BﬁQ)p};mQ(P)=,0((B0Q)XP).
N7VL
Let us fix a realization of (&) which satisfies (44) for each atom Q x P of
Vogjch-1(9 X T) (2, x Py,). Then, for each n > 0, we define the point
z, € X as follows:

T bg ifn < by,
Ty 1=
Tr=bg  if by < m < by for some k >

The set of integers n such that z,4+1 # T, is contained in Pp(u), therefore,
it is %—separated.
Now, let A = @ x P be a fixed atom of 2, x &,. We set

R:= U SIB x X,

0<j<h-1

and we observe that

(45) pR)=r| ) &B|>1-=
0<j<h—1

We also note that for each n > by, (S™u,zy,) € R if and only if there exists
k and 0 < j < h— 1 such that n = bg + j. In this case, (S"u,x,) € An R if
and only if the atom Q x P of Vogjcn1(5 x T) (2, x Py,) containing
(S%u, &) satisfies Q; = Q and P; = P (using the notations given in (40)
and (41), and remembering that A = @ x P).
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We can then use (44) to get

1
Ni Z ]lAﬁR(Snu’xn)

™ b <n<Np,

1
(46) N 2o X Lo, p (8™ u, &)
™ by <Nm 0<j<h—1(Q,P): Q;=Q and P;=P
— Z p((Bn Q) x P).

0 R
0<j<h—1(Q,P): Q;=Q and P;=P

But, on the other hand, we can write

p(AnR)= > p(An (9B xX))
0<j<h—1
(47) = 2 p((SijxT*jP)m(BxX))
0<j<h—1

> > p((Bn Q) x P).

0<j<h—1(Q,P): Q;=Q and P;=P
From (46) and (47), it follows that

1 mn
(48) ~ Z Lanr(S"u, zn) — p(ANR).

™ 0<n<Np,

From (39), we get that

. 1
h—I>noo N Z ]l(YxX)\R(Snuv Tn) <€,
" M 0<n<Npm

and since 14 < 1angr + Ly x\g, this yields by (48),

1 1
lim sup — Z 1A(S"u, zy) < limN— Z 1anr(S"u,z,) + €

m—n0 m 0<n<Npm, ML Nm 0<n<Npn,
(AnR)+e¢
(A) + ¢,

p
p

N

and we have (37). On the other hand, using 14 > 14~r, we get by (45)

lim inf —— D 1a(S u,x,) = im —— > Lanr(S"u, )
™ 0<n<Np ™ 0<n<Npm
=p(AnR)
> p(A) —e.

and we have (36). O
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We can now give the proof of Proposition 3.1, in which we use the fol-
lowing obvious fact: if we modify the sequence (z,,) given by Proposition 3.5
on a finite number of terms, we still get (36) and (37).

Proof of Proposition (3.1). We fix a sequence (g¢)¢>1 of numbers in (0, 3),
decreasing to 0, and we construct inductively the desired sequence (z,,) and
the subsequence (N,,,) by a repeated use of Proposition 3.5.

We start by applying Proposition 3.5 with € := ¢ and ¢y := 1. It provides
us with an integer m1, and a finite sequence (2 )o<n<n,,, of points in X such
that

e the set of integers n € {0,..., Ny, — 2} such that x,41 # Tx, is
1
a—separated,

e for each atom A of 21 x £, we have

1
p(A) —e1 <

L4(S"u, zp) < p(A) + 1.

™ 0<n<Nm,

Now, assume that for some ¢ > 1 we have already constructed m; <
- < my and the sequence (xn)0<n<Nm£ of points in X such that

e for each 1 < j < £, the set of integers n € {Np,_,,..., N, — 2} such
that xp1 # Txy, is %—separated (with the convention that Np,, = 0),
J

e for each atom A of 2, x &;, we have

p(A) —ep < b Z 14(S"u,zy) < p(A) + &4

e 0<n<Np,

Then we apply again Proposition 3.5, with € := ¢y,1 and £y := £+ 1. It pro-
vides us with an integer my 1 and a finite sequence of points (z,,) Niny<n<Nm,
in X which satisfy:

e the set of integers n € {Ny,,, ..., Nip,,, — 2} such that x,,1 # Tz, is
agl+1 -separated,

e for each atom A of 2,1 X Py, 1, we have

1
(49)  p(A) —eri1 < D1 La(S™u,m) < p(A) +goi1

M1 0<n<Npm,

(We keep the points (z,)o<n< Ny, already provided by the induction hypoth-
esis, refering to the obvious fact stated before the proof.)

Moreover, we can assume that the sequence (g) decreases sufficiently
fast so that the validity of (49) for each atom A of 2,1 x Py,1 ensures the
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validity of the analog inequalities for each A which is a finite union of atoms
of Zp11 X Pyiq (in particular, for each A which is an atom of the previous
partitions), but with e, instead of €/ 1.

The sequence (zp)p>0 of points in X and the subsequence (Ny,,) we
construct with the above inductive procedure then satisfy the conditions
announced in Proposition 3.1. O

3.3 Logarithmic case

We would like to study the logarithmic version of Proposition 3.1, in which
we replace each arithmetic average of the form

1
~ f(n)
N 0<712<Nm "

by the logarithmic average

(Here we use the notation L(N) := 143 +---++.) In fact, this logarithmic
version, whose statement is written below, is also valid, and the arguments
to prove it are exactly the same as in the arithmetic average case. We just
point out below the few technical changes that need to be made in the proof
for the logarithmic case.

Proposition 3.6. Let (Y,S) and (X, T) be two topological systems and u €
Y, logarithmically generic along an increasing sequence (N,,) for some S-
invariant measure k on 'Y . Let p be a joining of k with o T-invariant measure
v on X. Then there exist a sequence (x,) < X and a subsequence (Np,)
such that:

o the sequence (S™u,xy) is logarithmically generic for p along (Ny,,):

1 1
— S P —
L(Nm/z) 2 n (S"u@n) {—00 Py

lgngng

o the set {n = 0: xnpy1 # Txyn} is of the form {by < by < -+ < by, <
bry1 < -}, where bgy1 — by — 0.

The changes that need to be made to the proof are almost all quite
obvious, they consist in formally replacing the arithmetic average by the
logarithmic average. One point maybe needs some explanations, namely
when we arrive at the proof of the logarithmic analog of (44). We put these
explanations in the form of a lemma, which we will apply in the following
context: (dg) is the ordered sequence of positive integers n such that S™u e
B n Q, and the sequence (py) is defined by py, := 1 5(&).
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Lemma 3.7. Let (dy) be an increasing sequence of positive integers such

that 1 1
— —— ke [0,1],

and let (pi) be a sequence of real numbers in [0,1] such that

1
T Z Pkmpe[(),l]-

1<k<K
Then we have
1 Pk .
L(N,y) dy, mow P

Proof. For each m, let us denote by k,, the largest k such that dp < Np,.
We use the classical identity

Ok 1 1 1
Z 4 Z (d—d)(Pl+"'+Pk)+d(/)1+"'+pkm)-
Ao T kg, NGk Gkl Km

Given € > 0, let K. be such that

1
K>K. — 17 Z pr— p| < E.
1<k<K
We can then write
1 Pk 1 Z P
L(Nm) g, e LNm) 5 di
1 1 1 1
= k{——=—)z(pr+-+p)=—p||+O
T, 2, (&~ a) (G0 =0) 0 ()
1
0]
mer (L(Nm>>

. M Lk,

dk m—0o0

hence we get

S

dk m—0o0
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The last place in the proof where a (very easy) correction should be made
in the logarithmic case is to get the analog of (46): at some point we have
to replace some coeflicients ﬁ by i, which is of no consequence since j
remains bounded between 0 and h—1 here. To be more precise, (46) becomes

(50)
1 Z 1 ]l (S )
—LAAR U, T,
<Nm) b1 Sn<Nm
1 1
=N 2 2 by 2 Lgup(S"u, &)
m) bk <Nm 0<j<h—1 % 71 (Q.P): Q=@ and P;—P

= Z Z bi Z ]IQXP(Sbk%gk) +0(1)

bk<Nm0<]<h 1% (Q,P): Q;=Q and P;=P

— 2 Z p((BmQ)xP).

0<j<h—1(Q,P): Q;=Q and P;=P

4 Proofs of main theorems

4.1 Proof of Theorem B

Proof of Theorem B. Take any topological system (X,7T) € €% and fix f €
C(X), = € X. Take any increasing sequence (Ny) for which, with no loss of
generality, we can assume that Nik Din< N, O(1na,5nu) — p- It follows that

lim — Z f(Imz)u(n) = Jf@ﬂ'[) dp.

But p is a joining of some T-invariant measure v € V(X,T) for which z is
generic along (Ny), and some Furstenberg system « of w. Since (X,T) € €%,
the system (X,v,T) is in %, and the integral on the right-hand side above
vanishes by the Veech condition and Proposition 2.2.

O

4.2 Proof of Theorem A

Before we begin the proof, let us make the following remark concerning
topological models. Given an automorphism (Z, D, k, R), and a fixed subset
of full measure of ergodic components of k, recall that by a Hansel model of
R, we mean a topological system (X,7T") which has a T-invariant measure v
such that, as dynamical systems, x and v are isomorphic and such that each
point z € X is generic for one of these chosen ergodic components. In [29],
it is proved that each automorphism has a Hansel model.
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We assume that u L €z, for some characteristic class .#. Take k € V (u)

and fix (IV,,) so that
1
e Z 68"11, — K.
Nm n<Nm

Denote by A(k) < B(Xy) the largest Zec-factor of (X, ., S), i.e. A(k) =
B(Xu)yec'

Consider the factor (Xu/A(k), A(k), k| 4(x), S) and take a Hansel model
(X,v,T) of it (by choosing in the ergodic decomposition of [ 4(.) only er-
godic measures in .%). By definition,

(51) (X,T) € %s,.

Fix a measure-theoretic factor map J: (X, k,S) — (X,v,T) such that
J7Y(B(X)) = A(k), and let v; denote the corresponding graph joining (of v
and k| 4()). Let U be the relatively independent extension of v to a joining
of v and &: for f e L?(v) and g € L?(k), we have

(52) L Xg@fdajzf E*(g]A(k)) f o J dk.

KXu

Now, by applying Proposition 3.1, we can find (z,) < Y such that
(53) ((xp),u) is generic for U along some subsequence (Np,,),

and the set {n > 0 : z,41 # Tx,} is of the form {b; < by < ---} with
bgt1 — bg — 0.

Since u L €z,., (51) and Proposition 2.17 ensure that the system (Y, .S5)
satisfies the strong u-MOMO property. Therefore, for each f € C(Y) we
have

im S f(an)u(n) =

m—wo N, o
~ m

lm —— Y S AT ) | <o,

=0 me k<K, br<n<bri1
and it follows from (53) that { f ® mod; = 0. Using (52), we get

f E* (mo|A(k)) f o Jdr = 0.

u

But {foJ: fe C(X)}is dense in L?(A(k)) and therefore my L L?(A(k)),
which is the Veech condition for u with respect to the characteristic class Zec.
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5 Combinatorics

5.1 Orthogonality to zero entropy systems
5.1.1 Cancellations. Proof of Corollaries C and C’

We need the following interpretation of the Veech condition in terms of
relative uniform mixing (K-mixing) of the function mg. For n € N, let 7, :=
T © S,

Proposition 5.1. Let k € Vg(u) and {modk = 0. Then the following con-
ditions are equivalent:

(a) mo L L*(I(k)),

(b) mo is relatively K-mizing, i.e. for each € > 0, there exists N such that

Uﬂo]lc dk — fﬂ'o d/{f]lod/@

for each set C € o(my, Tpi1,...) and n = N.

=U71'0]lcd/£ <e

If we additionally assume that u takes values in a finite set E < C and (M)
1s a sequence along which we have a Furstenberg system k then the above
conditions are equivalent to

(¢) for each € > 0 there exists N = 1 such that for any s = 1 and any

function f depending on coordinates N < n,n+1,...,n+s, | flcx,) <
1, we have
1
lim sup |[— Z u(m)f(S™u)| < e.
k—o0 k m<M

Proof. (a) = (b). Assume that E(m|II(k)) = 0. Let C' € o(mp, Tpt1, .- .)-
We have

U molodk

_ UHCE(WW(M,MH, ) dr
< J‘E(WO‘U(Wn,Wn_A,_l, .2)| dk.
Hence, we have an upper bound which does not depend on C'. Since
E(mo|o(7n, T, -..)) = E(mo|II(k)) = 0
k-a.e. and thus also in L', which is precisely the relative K-mixing for 7.
(b) = (a). Suppose that 7 is relatively K-mixing. Then, in particular,

we have (5.1) for each C' € II(k). In fact, since € > 0 is arbitrary, { 7ol dk =
0 for each C € II(k). Whence E(mo|II(k)) = 0.
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(a) = (c). Since

Mi 3 u(m)f(smu)zMi S (mof)(S™u) — L rof d,

mng mng

we can repeat the same argument as was used to prove (a) = (b) (replacing
Lo by f).

(¢) = (b). Suppose that ‘SXH o f dm‘ < &, whenever f depending on
coordinates n,n + 1,...,n + s with n > N is bounded by 1. Consider all
blocks on coordinates n,n + 1,...,n + s that is all

B={xeXy: x,=0by,...,Tn4s = bs}

with b; € E. Let C be any union of such blocks. Then 1¢ is a (continuous)
function depending on coordinates n,...,n + s and is bounded by 1 and, by

assumption,
‘ f molo dk

Note that with N fixed and s arbitrary, the family of C defined above is
dense in the o-algebra o(myN, TN+1,...). Hence, given D € o(mn, TN+1,---)
and € > 0, we first find s > 0 and then C' as above (a union of blocks “sitting”
on coordinates N,..., N + s) such that K(CAD) < ¢ and find that

<eE.

Uwo]lp dkK + k(CAD) < 2e.

< ‘JWOHC dk

O

Now, since each clopen set is a finite union of cylinders of a fixed length,
Corollary C’ follows directly by the above proposition. Corollary C’ is a
special case of Corollary C.

5.1.2 Conditional cancellations. Remark 1.6

The “cancellation law” of the values of u along large shifts of the return times
to a block (for most of the blocks) claimed in Remark 1.6 is a consequence
of a refinement of Proposition 5.1.

Proposition 5.2. Let k € Vg(u) and {modk = 0. Then the following con-
ditions are equivalent:

(a) mo L L*(I(k)),

(d) for each € > 0 there exist N = 1 and L = 1 such that for each ¢ > L
there is a family of “good” £-blocks C € o(mN,TN+1,-- ), i-e. of blocks

satisfying
‘f ]lc - T dk
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whose measure is > 1 — e. In other words, for a “good” ¢-block C,
‘Sﬂ'o dnC’ < g, where ko stands for the conditional measure on C.

Proof. (a) = (d). Fix € > 0 and note that E*(mo|o(7n, TN +1,...)) — 0
k-a.e. This implies convergence in measure, i.e., we can find a set A, of
measure at least 1 — ¢ such that for IV large enough,

|E™(molo (N, TN 41, --.))(z)| < e for all x € A..
Fix such an N. There is M > 1 large enough such that
K(ANAM)Y < ¢

where AgM) € o(m_pr1, T—p+1, - - -) and note that SNJFMAgM) E (TN, TN+1y---)-

Now, for ¢ large enough, we can approximate SN+M AgM) by a (disjoint)

union of ¢-blocks belonging to o(mn, TN 41, ---),
L
R(SVMAMDA ) <.
jedJ
But #(SVHMAMAAL) < 2¢, s0
(| ON\AL) < s(Aa (] ) < 3e.
jed jeJ

Consider those j € J for which /i(CJ(»é)\Ag) > \/EE(CJ@ ). Then the measure
m of the union of such blocks has to satisfy y/em < 3¢, so m < 34/e. In

other words “most” (in measure) of the CJ(-K)’S are “good”, i.e. they satisfy
/<;(CJ(.£) NA)>(1- 3\/5)/@(0]@)). Take such a “good” C. We have

‘f]lc : 7T0dl<.7

< J‘]10|EH(7T0’J(7TN,7TN+1, .. ))’ dk

:JA ]lCEH(TFQ|O’(7TN,7TN+1,...))|dl€+J 1o |E¥(molo(mn, TN +1,---))| dk
e A

E < ek(C) + 3y/ex(0).

(d) = (a). Fix A € II(k) of positive measure k. Then for ¢ > 0,
we can find N such that for all £ large enough “most” of the ¢-blocks in
o(mN, TN+1 < ...) is “good” in the sense that

'J]lc BINI] dk

Since A € o(mN, TN 41, --.), We can approximate it by unions of ¢-blocks (for
¢ sufficiently large) and most of the used blocks is “good”. Whence

‘fﬂA'Wodﬁ

and since ¢ > 0 was arbitrary, o L L?(II(x)). O

< k(CO)e.

< 2,
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5.2 Orthogonality to %ip. Proof of Corollary 1.8
We recall that (Proposition 2.12)

©p = 61D, -

Since the characteristic factor is represented by the o-algebra of invariant
sets, by Theorems B and A, we obtain immediately that:

Corollary 5.3. u | %1p if and only if for each Furstenberg system x of u,
7o L L2(Z,,).

Let us now pass to a combinatorial characterization of the Veech con-
dition. Assume that & is given as the limit of N%c Zn<Nk Ognqg. In view of
Corollary 5.3, we need to decipher E(m|Z;) = 0. By the von Neumann
theorem, we have

1
T Z m 0 8" — E(mo|Z,) in L?,

h<H
i.e.
2
. 1 h
h}Hn T Z mpo S dk =0
T IXy h<H

as E(mo|Zx) = 0. So, given £ > 0,

f %Zﬂ'oOSh
Xu

h<H
The latter is equivalent to

2
drk < e for all H > H..

2
1 1
lim — Z — 2 m 0 S (S"u) < e,
k—0o0 Nk n<N: HhéH
that is,
1 1 ?
lim — — u(n+h)| <e.
k—o0 Nk n;\fk H h;H
The proof of Corollary 1.8 follows immediately. O

Remark 5.4. Hence, the Matoméki-Radziwill theorem [41] on the behaviour
of a strongly aperiodic multiplicative function u on a typical short interval
implies w 1 %p. However, as shown in [28], the aperiodic multiplicative
functions defined in [42] do not satisfy the assertion of Corollary 1.8.
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In Corollary 5.3, the Veech condition (for w) equivalent to w L %p is
written as mo L L?(Z,). If we look at it more spectrally, we obtain immedi-
ately that

(54) u L %p if and only if oy, . ({1}) =0

for all k € Vg(u), i.e. the spectral measure of 7y (with respect to each Fursten-
berg system) has no atom at 1. Classically (by a simple computation), we
have:

Lemma 5.5. If o is a measure on the circle S' then
1 H-1
7 3 800 = o((1)

Hence, the Veech condition is equivalent to

1 H-l
Vi Z on-moshdnao.
h=0

Combinatorially, we obtain

1 & 1
(55) — > lim — w(n)@(n +h) — 0
H =0 k—o0 Nk NNy
for each sequence (N) defining a Furstenberg system .
It follows that (55) is equivalent to the short interval behaviour (13). In
other words, condition

2
1

o > u(n+h)

h<H

=0

1
li lim —
Hl—r>noo k1—>Hc}o Nk 2

TLSNk
is equivalent to

. 1 . 1 _
P 3 (3wt -0).

k nSNk

5.3 Orthogonality to 4pisp(q) with G countable

Let G = S! be a countable subgroup and recall that DISP(G) stands for the
(characteristic) class of discrete spectrum automorphisms whose groups of
eigenvalues are contained in G. Since z € S! is an eigenvalue of (Z, D, k, R)
if and only if it is an eigenvalues of a subset of positive measure of ergodic
components, it is not hard to see that

Ipisp(a) = (Fpisp(@))ec-
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It follows that

wl CKPJDISP(G

, if and only if o7 x(G) = 0,

i.e. the spectral measure of 7y has no atoms belonging to G (for each Fursten-
berg system k € Vg(u)).
Suppose that e?™* e G. Consider v(n) := €2™"?y(n) for n € N. Note
that 1 )
N > v(n)w(n + h) = 6*27""“%F > u(n)ua(n + h).

nst k ’nSNk

. . 1 .
So, if we have a subsequence (Vi) alon.g which both &>}, y, dsnw with
w = u, v converge to k, k' respectively,'? then

Ong,x = (562m'a * Omo k'

whence '
Tro i ({€279}) = 0 if and only if oy . ({1}).

By our previous subsection it follows that the latter condition is equivalent

to:
2
1

T Z v(n + h)

h<H

lim lim i Z

=0
H—ow \ k—w Nk e ’
X{VEk

that is,

2
i Z 62wi(n+h)au(n+h)

h<H

. . 1
lim lim — Z
H—w | k—owo Ny
n<Nk

which is the strong u-MOMO condition for the irrational rotation by «.'?

5.4 Furstenberg systems and the strong u-MOMO property

The following proposition helps us to exclude some measure-theoretic sys-
tems from the list of Furstenberg systems of an arithmetic function.

Proposition 5.6. Let u : N — C be a bounded arithmetic function. Then

no Furstenberg system k € Vg(u) has a topological model which is strongly
u-MOMO.

12Note that these common sequences yield all Furstenberg systems for both v and v.
3Note that if f(t) = €*™* then

1
bk

1

f(Razr)u(n)| = b

k<K |bp<n<bpi1 k<K |bp<n<bpii

eZwinau(n) | )
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Proof. Suppose (X, k,S) has a topological model (Z, v, R) which satisfies
the strong u-MOMO property. Let J : Z — X,, settles a measure-theoretic
isomorphism and let v; be the corresponding graph joining. We assume that
N%- Znij dsny — k. From Proposition 3.1 we can find a sequence (z,) € Z
consisting of pieces of orbits of different points: {n : Rz, # zp+1} = {bg :
k > 1} with by — by — 00, and a subsequence (IN;,) such that

1
N Z 5(zn,S"u) - V.

Je ngNjg

Then, by the strong u-MOMO property of (Z, R),

ff@m dvy = lim —— (D fER Rz, )u(n) = 0.

/—
®© bKZ k<K, bp<n<bpii

Hence, {E"7(f|Xy)modr = 0 for each continuous f on Z, and we obtain a
contradiction since E/(L?(v)|X,) = L?*(k). O

Corollary 5.7. Assume that for each (by) with byyq — by — o0,

1 .
(56) lim — Z sup Z u(n)e?™on| = 0.
K—o by = aeR |, _
r<n<bpyi
Then the unipotent system (z,y) — (x,y + x) (on T?2) is not a Furstenberg
system of u.

Proof. Since condition (56) is the strong u-MOMO property of the unipotent
system, the result follows from Proposition 5.6. O

Remark 5.8. Corollary 5.7 brings a better understanding of Problem 3.1
(due to Frantzikinakis) of the workshop [4]:
The system (z,y) — (z,y + x) is not a Furstenberg system of the Liouville
function
(see also slide no 6 in [17]).

We recall that in [42] (see Theorem 1.3 therein), it is proved that

1 TIMQ
Y Z A(m)e? =0,

n<m<n+M

lim i 1
im limsupsup — Z
M—® Ny ek N n<N

so the sup has changed the place! The strong A-MOMO property for the
unipotent system remains hence open.
For the equivalence of

1 .
M Z u(m) eQmma

n<m<n+M

. . 1
lim limsup — Z sup
M- N_w n<N C€R

=0,

with (56) see the appendix in [34] - only in the arXiv version of the paper.
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5.5 Orthogonality to %pisp,.. Proof of Corollary 1.10

In view of Corollary 2.11 (see also (23)) and Theorem A, in order to obtain
u | Cpisp,, it is sufficient and necessary to have u | L?(K(Z,)) for each
Furstenberg system x of wu.

By our previous results, for the class of all topological systems whose
all ergodic measures yield discrete spectra, Sarnak and Veech conditions
are equivalent. We now write the Veech condition combinatorially, i.e., we
provide the proof of Corollary 1.10.

Proof of Corollary 1.10. By Corollary 2.11, we need to show that for each s
being a Furstenberg system of u, we have
(57) JHZuhoos -To|Ze))? dk — 0.

h<H

By the von Neumann theorem,

J‘]E(T(‘O OSh -ﬁ0|I )

Lk — lim Z Jmosh 70) 0 8™ - mp 0 S - 7o dis.

Now N

Therefore, (57) is equivalent to

. ]- 7*
hm— thEJ (mo 0 8" -Tg) 0 8™ - mg 0 St - Ty dk = 0.

H N
—00 —00 n<N

Let (My) be such that k = limg_, o, ﬁk stMk Ogmaq. It follows immediately
that (57) is equivalent to

1 1
lim — Z lim — Z lim — Z u(m+n+h)u(m + n)u(m + h)u(m) =0
h<H <N

which is precisely |u[,2((az,)) = 0. Now, it suffices to use (27). O

Remark 5.9. In fact, already Frantzikinakis [17] (see slide no 10) showed
that if w is generic then |u|,2 = 0 if and only if

1 1 .
lim hmsupN Z sup [— Z u(m)e?™me| = (.
M=% N—w <NO‘€]R n<m<n+M

We recall that this condition is equivalent to the strong u-MOMO property
of the unipotent system (z,y) — (z,y + z).

Remark 5.10. Note that for each (bounded) w: N — C satisfying |u|,2 = 0
the system

(58) (z,y) — (2,2 +y) on (T? Leb ® Leb)
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cannot appear (up to isomorphism) as a Furstenberg system of u (because mg
is orthogonal to the L?(KX(Z.)) but for the unipotent system (58) the whole
system is relative Kronecker over the o-algebra of invariant sets).

In particular, if [A[,2 = 0 holds for the Liouville function then (58) is not
its Furstenberg system — this would answer a question by N. Frantzikinakis
asked in 2016 (it is an official Problem 3.1 in [4]). However, the problem of
whether |Al,2 = 0 (or more generally |A[,s = 0) seems to be difficult. The
best known results [43, 44] require a quantitative dependence between the
parameters M and N, i.e. M = N?, for arbitrary small, but fixed § > 0.

If |All,2 = 0 holds then Sarnak’s conjecture holds for all (zero entropy)
systems whose ergodic measures yield discrete spectrum. So far it is only
known that Sarnak’s conjecture holds for systems whose all invariant mea-
sure yield discrete spectrum [15, 32, 33].

Ruling out (58) (or, more generally, nilpotent type systems) from the list
of potential Furstenberg systems of A is important in view of Frantzikinakis
and Host’s results [20, 21] concerning the structure of Furstenberg systems of
multiplicative functions (although, for the moment, this structure is known
only for the logarithmic case).

In the light of [42], it would be also interesting to know whether ||ul,2 = 0
holds for some classical multiplicative functions. Note that this is not the
case for the class of aperiodic multiplicative functions defined in [42] since
as shown in [28] they have the unipotent system as a Furstenberg system'*
(see also Remark 5.4).

5.6 Orthogonality to %épisp. Averaged Chowla property for
multiplicative functions

The assumptions of Theorem B are not satisfied for the class épisp. In
this section we will show however that the assertion of this theorem holds
whenever u: N — C satisfies the following additional property:

() all rotations on the circle satisfy the strong u-MOMO property.
We will need the following fact (see, e.g., [14]):
(59)  each discrete spectrum automorphism is a factor of R, x Idg 1y,

for some ergodic rotation by o € G on a compact (Abelian) metric group G.
Our key tool will be the following lemma.

Lemma 5.11. Suppose that (x) holds. Then Ry x Idjg 1) satisfies the strong
u-MOMO property.

"In fact, for such functions u we have already [u[,1((n,) > 0 (for some (Ny)), see
Corollary 6.5 in [28].
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Proof. Tt is enough to check the strong u-MOMO for functions F* of the form
X ® f, where x € G and f € C([0,1]). We have

AN S A0 e w)utn)

K k<K |b<n<bysi

— S Y (R furuln)

K k<K |by<n<bii:

—o(= N Y xtmajuln)

K k<K |bp<n<bysi:
Our claim follows from (x). O

Theorem 5.12. Assume that u enjoys the property (). Then u L €prsp
if and only if o L L2(K(k)) for each k € Vs(u) (iff the spectral measure oy,
is continuous for each Furstenberg system k).

Proof. We only need to show that u | €pysp implies 79 L L2(K(x)) for each
k€ Vs(u).'> Using (59), let p settle a factor map from R, x Id[p,1] acting on
(G x [0,1],mg ® Leb) and (Xu/K(k), K(k), k|xc(x)). Let (me ® Leb), stand
for the corresponding graph joining and p for the relatively independent
extension of it to a joining of (G x [0, 1], mg®Leb, R, x Id) with (X, &, S).

Now, by Proposition 3.1, the integral §{ F®mq dp can be computed using a
quasi-generic sequence ((gy), (S™u)). Since, by Lemma 5.11, our topological
system R, x Id satisfies the strong u-MOMO property, this integral vanishes.
On the other hand, for each F' € C(G x [0, 1]),

fF@ﬂ'o dp = JE(F|XU)7TQ dr

and since EP(C(G x [0,1])|X4,) is dense in L?(K, k|x) (in view of the defini-
tion of p), it follows that w9 L L2(K(k)). O

Proof of Corollary 1.15. Note that in the proof of Theorem 5.12, we have
shown that our original assumption () already implies the Veech condition.
In particular, the Sarnak and the Veech properties are equivalent. Condi-
tion (17) is just rewriting the Wiener condition combinatorially. Finally, the
last part (18) is proved in Appendix A. 0O

Proof of Corollary 1.16. By Corollary 1.15, we only need to show that irra-
tional rotations satisfy the strong u-MOMO property. This follows from the
fact that irrational rotations satisfy the AOP property [1| and that the AOP
property implies the strong u-MOMO property [3]. O

15KC(k) stands for the Kronecker factor of (X, %, S).
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6 No strong u-MOMO in positive entropy

In this section we discuss the problem of orthogonality to é7zg and the re-
versed problem of the absence of orthogonality to an arbitrary positive
entropy systems, following some ideas from [3]. Recall that the following has
been proved in [3].

Proposition 6.1 ([3]). Let u: N — C be a bounded arithmetic function.
The following are equivalent:

(a) u L CKZE,

(b) For each (X,T) of zero entropy and f € C(X), (1) holds uniformly in
reX.

(¢) Each zero entropy (X,T) satisfies the strong u-MOMO property.

On the other hand, it follows from the results of Downarowicz and Ser-
afin |11, 12| that for each u 1 6zg there exists (X, T') such that

(60) wl (X,T) and (X,T) ¢ ZE.

In fact, one can get a positive entropy system (X,7T') in which for every
feC(X) (1) holds uniformly in x € X.

We prove however that (60) fails if orthogonality is replaced by the strong
u-MOMO property. To avoid technical details, we restrict ourselves to the
case of an arithmetic function u taking finitely many values.

Theorem D. Let u: N — C be an arithmetic function taking finitely many
values. Assume that w L €z5. Then no positive entropy topological dynami-
cal system satisfies the strong u-MOMO property.

6.1 Proof of Theorem D

We fix a bounded arithmetic function u: N — C. We need a series of results
from [3] in some modified forms. In [3], the equivalence of certain three
properties (P1), (P2) and (P3) of an ergodic measure-theoretic dynamical
system (Z,B(Z),r,R) was proved. Condition (P1) was nothing but the
strong u-MOMO for some topological system being a model of the system
given by k. Instead of recalling (P2), let us formulate red its subsequence
version:

Assume that (X, T) is any topological system and let z € X.
If x is generic along (Ng) for a measure which is isomorphic
(as dynamical systems) to x then

limy_, o N%c 2inen, [(T"z)u(n) = 0 for each f e C(X).

(P2)
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The proof of the implication (P1) = (P2’) is a repetition of the proof of
(P1) implies (P2). In Lemma 17 in [3], we need to consider the sequence
(Ng) instead of N and start with lim sup along this sequence.

As a consequence of the above, we obtain the following version of Corol-
lary 12 from |[3].

Corollary 6.2. Assume that k is an ergodic shift-invariant measure on D%,
and that there exists y € ]D%, generic along (Ny) for k, correlating with
u along (Ny), i.e. the sequence (Nik Ynen, Y(n)u(n)) does not go to zero.
Then the strong u-MOMO property fails for any uniquely ergodic model of
(D%, K, S).

Then, by repeating the proof from [3|, we obtain the following form of
Corollary 14 in [3].

Corollary 6.3. Assume thaty is generic along (Ny) for a Bernoulli measure
v, and that y and uw correlate along (Ny). Then the strong u-MOMO property
fails for any (X,T) with h(X,T) > h(v).

We also need the following crucial probabilistic lemma whose proof we
postpone to the next subsection.

Lemma 6.4. Assume that X = (X,)nez 1S a a stationary process of posi-
tive entropy, taking finitely many complex values. Then for any non-trivial
probability distribution B concentrated on a finite subset of R, there exists a
stationary coupling of X with a Bernoulli process Y = (Y, )nez of distribution
B such that E[XoYo] # E[Xo]E[Yo].

We now assume that u takes finitely many values and satisfies the Veech
condition: mg L L?(II(k)) for each Furstenberg system & of u.

Lemma 6.5. For each h > 0 there exists a sequence y, generic for a
Bernoulli measure of entropy h along some increasing sequence (Ng), and
correlating with w along (Ny).

Proof. Let k be a Furstenberg system of w, and (My) such that w is generic
for k along (M,). By assumption, the entropy of the stationary process
defined by 7y under & is positive. Take a real-valued Bernoulli shift of entropy
h (Bernoulli measure denoted by v). Using Lemma 6.4, find a joining of x and
v for which 7y (in L?(X4, )) is not orthogonal to mo in L?(v): {mo®@mo dp #
0. Now, use a subsequence version of the lifting lemma (Theorem 5.16 in [6])
to find y in the subshift defining the Bernoulli automorphism such that (u, y)
is generic, along a subsequence (Ny) = (M, ), for p. Then

1 n n 1
Oaéfw(]@ﬂodp: lim A Z mo(S"u)mp(S"y) = lim — Z u(n)yn

k—o0 n<N, k—o0 Nk n<N:
which means that w and y correlate along (Ng). O
Now the proof of Theorem D is a straightforward consequence of Lemma 6.5

and Corollary 6.3.
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6.2 Proof of Lemma 6.4

Let X = (X,,)nez be a positive entropy stationary process as in the statement
of the lemma. Without loss of generality (considering its real or imaginary
part), we can assume that this process takes its values in a finite subset
{x1 < 29 < -+ < x,} of R. We also consider a given probability measure
B supported on a possibly different finite subset of R {y; < yo < -+ < ys},
which is supposed to be non trivial (i.e. not reduced to a Dirac measure).
Thus we can assume that s > 2, and B(y;) > 0 for each 1 < j < s. The
purpose of this section is to show how we can construct a stationary coupling
of X with a Bernoulli process Y whose distribution is %%, in such a way
that for each n € Z,

(61) E[Xnyn] > E[Xn] E[Yn]

We observe that the validity of the preceding inequality is unchanged if we
replace Y, by Y,, + C for a fixed C'. Thus we can and we do assume without
loss of generality that the probability 8 is such that E[Y,,] = 0.

To construct the announced coupling, we just assume that, on the prob-
ability space where the process X is defined, we also have an i.i.d. process
V' = (Vi )nez such that

e cach V}, is uniformly distributed on [0, 1],
e V is independent of X.

The construction will be divided into two steps: first we construct an aux-
iliary (uniform i.i.d.) process U and then we use it to construct ¥ which
satisfies the assertion of Lemma 6.4.

Step 1: uniform i.i.d. process U

For n € Z and j € {1,...,r}, we consider the random variable P;, defined
by
Pjn:=P(X, = 2j | (Xn)men-1)-

When j is fixed, (Pjn)nez is a stationary process. On the other hand, if
we fix n, then (Pyp,..., P, ,) is the conditional distribution of X,, given
(Xm)m<n—1, in particular we have almost surely 0 < P;j,, < 1, and

.
DI Pin=1.
j=1

This allows us to define a random partition of [0, 1] into disjoint subintervals
Iy, ..., I, where for each j, I, is the interval of length P;, defined by

Iy = Z P, ; Z P.l.

1<i<j—1 1<i<j
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UrL (V;n Ly, (XTTL)’HLS’IL71>.

Un (Vna Ly, (Xm)mgnfl),

Un (Mn T, (»Xv'm)'mgnfl>I

L o Lo Iy

Figure 1: Definition of U,

Then we can define the random variable U,, by
T
Up = Z ]an=x]- ( Z F’i,n + Vnﬂ,n) .
j=1 1<igj—1

Informally, if X,, = x;, we pick U, uniformly at random (using V},) inside
I (see Figure 1). Therefore,

L (Un | (Xm)mzn—1, (Vi) msn—1) = u[0,1]7

i.e., it is uniform on [0,1]. But all U,,, m < n — 1, are measurable with
respect to (X )m<n—1 and (Vi,)m<n—1, thus we also have

(62) L (Un | (Un)msn—1) = Ujp1) and L (Un) = Ujg 1)-

Indeed, this is just the application of the tower property of conditional expec-
tations: to obtain the left equality, notice that for any measurable A < [0, 1],
we have

P(Un € A| (Un)msn—1)
= E[P(Un eA ‘ (Xm)mSn—lv (Vm)mén—l) | (Um)mgn—l]

- v
"

Leb(A)

= Leb(A).

Moreover, it also follows from (62) that U is i.i.d.
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Note that by construction, U, is a measurable function of V,,, X,, and
(Xm)m<n—1, which we abusively write as

Un = Un (Vna Xna (Xm)m<n71) .

x

Moreover, whenever we fix realizations £ of (X, )m<n and v of V,, then U,
as a function of its second argument is increasing:

(63) Un(v,25,,8) < Un(v,xj,,&), whenever z, < zj,.

Step 2: process Y as a function of U

We want to define Y}, for a given n € Z. We use another partition of [0, 1]
into subintervals, according to the probability distribution 8 intended for
Y,: for 1 < k < s, set By := B(yx) and define the interval Jy := [51 +-+
Br_1;81+- -+ 0Ok [ Then we simply define Y,, as a function of U, by setting

Yn = Z yk]le(Un)
k=1

It follows by the choice of the intervals Ji and by L(U,) = Ujo1) that Y}, is
distributed according to 8. Moreover, by the independence of U, we have the
independence of Y. Thus, Y is a Bernoulli process with distribution S®%.

It remains to prove the announced inequality (61). Observe that Y, is,
like U, constructed as a measurable function of V;,, X, and (X,)m<n—1,
which we also abusively write as

Yn = Yn (er Xnv (Xm)mgn—l) .

Since Y, is a non-decreasing function of Uy, we get from (63) that for a fixed
realization & of (Xy,)m<n—1 and v of V,,, we have for 1 < j; < ja <r

(64) Y, (v,z,,8) <Y, (v,25,§)
and it follows that the map
ze A E[Y, | (Xm)men—1 = & Xn = z
is non-decreasing. Moreover, by the construction of Y, we have
‘C(Yn | (Xm)ménfl) = E(Yn) =0,
whence
(65) E[Yy | (Xm)m<n—1] = E[Y] = 0.
Thus there exists jo € {1,...,r} (depending on &) such that

E[Yn | (Xo)men—1 = & Xy = 2] <0 for 1 < j < jo,

) <5<
E[Yn ‘ (Xm)mén—l =§ X, = a;j] >0forjo+1<j<r
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We then have, using (65) and (66),

E[Xnyn | (Xm)mgnfl = 6] = E[(Xn - -'Ejo)Yn ‘ (Xm)mgnfl = 5]

Jo
= (xj - ij)E[Yn | (Xm)mgnfl =£ X, = xj]
j=1
(67> + Z (xj - 'rjo)E[Yn ’ (Xm)mgnfl =& X, = l‘j]
J=jo+1
=0

Now, we claim that the announced result is a consequence of the following
lemma.

Lemma 6.6. If the realization & of (Xn)m<n—1 1S such that the conditional
distribution L( Xy | (Xm)men—1 = §) is non-trivial, then

E[X”Yn | (Xm)ménfl = §] > 0.

Indeed, since X has positive entropy, £(X,, | (Xm)m<n—1) is non-trivial
with positive probability, and thus we can conclude that

E[X,Y5] = E[E[X0Yo | (Xm)men-1]| > 0.

Proof of Lemma 6.6. We fix a realization £ of (X,;)m<n—1 such that the
conditional distribution E(Xn | (X)) m<n—1 = f) is non-trivial. Then the
random variables P;, and the intervals I;, are fixed, because their values
only depend on £. Setting

g1 = min{j e{l,...,r}: Pj,> 0},

and jo = max{j e{l,...,r}: P> 0},
we have j; < jo. Moreover the intervals I, , and I, , are respectively of
the form [0, Pj, »[ and [1— P}, n, 1[, with 0 < P}, , < 1— P}, , < 1. We now

discuss according to the relative position of the interval I, , with respect to
the interval J; (used to define Y5,).

Case 1: Ji n 1, = J (see Figure 2). Then we have

(68) P(Yy = y1 | (Xm)men—1 = & Xn = x5,) = 0,
whereas
(69> ]P)(Yn =4 ‘ (Xm)mSn—l =§Xp = l‘jl) > 0.

Moreover, notice that (68) is equivalent to

(70) P(Ya > y1 | (Xm)men-1 = & Xo = 2j,) = 1,
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i Ijl,?’b Ijg,ns
- Ji [ o J, o
Y, =W

Figure 2: Case 1 (J1 N I}, = &)

Uy (for X,, =x;,) U, (for X,, =x;,)
Ljjm - Ljzm '
' i '...{ J, X
~—_——
Y, =ys

Figure 3: Case 2 (J1 n Ij,, # &)

It follows from (69) and (70) that there exists a V,,-measurable event A of
positive probability such that, on A,
Y, (Vn7 Zjg s 5) >y = Ya (Vna Ljy, 5) .

Remembering (64), we get
(71)
E[Yn | (Xm)men—1 = & Xn = 2j] > E[Yn | (Xm)men—1 = & Xn = 2, |-

Case 2: Jinlj,, # & (see Figure 3). Then I, , < Jiy and Ij, N Js = .
It follows that

P(Yn =Ys | (Xm)mgnfl =& Xp = $j1) =0,
whereas

P(Yn = UYs | (Xm)mgn—l = gvXn = sz) > 0.

In this case, we get a V,-measurable event A of positive probability such
that, on A,

Yn(vnaxj27§) =Ys > Yn (Vn,$j1,§),
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and as before we conclude that (71) holds.
Now, since (71) always holds, and since

r
E[Yn | (Xm)mgnfl = g] =0= Z Pj,n ]E[Yn | (Xm)mgnfl =§,Xp = ':Uj]a
j=1
we deduce that

E[Yn | (Xm)ms<n—1 =& Xpn = sz] > 0.

It follows that in the sum (67), at least the term corresponding to j = ja is
positive, and this yields

E[X”Yn ’ (Xm)ménfl = §] > 0.
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Appendix

A From averaged double to averaged multiple cor-
relations

This section follows some arguments from [42].

Remark A.1. In the proof below we will use the following standard fact:
let (x(n)) be a sequence of complex number bounded by 1. Then

is equivalent to

S Jz(m)]? = o(M).

m<M

The little “o” is uniform with respect to M. °

We have the following general lemma:

Lemma A.2. Let (Ny)gen be a sequence of natural numbers. For k € N let
a,by,...bp: N — C be sequences bounded by 1. Assume that a satisfies

1 . 1
(72) I—}linooﬁ Z eli»r?o ﬁe‘ Z a(n)a(n + h)‘ =0.
<H TLSN[
Then
1 k
(73) lim —- lim — i = 0.
H—-wo H B ,hk\ NS Ng W, z:l

Proof. Notice first that (73) can be rewritten as the following: for every
€ > 0, there exists H. such that for H > H. and all ¢ sufficiently large
(depending on H), we have

-

A=

i(

k
H hi,.. ,hkéH n<N[ i:1

YIf £ := 5 2}, [2(m)]? then by Markov’s inequality

1 1
Hm <M fenl? 2 Y < e =
and then
1
S Z lz(m)| = M > je(m)| + 57 > lz(m)] < e'/? +&'/*,
m<IM m<M,|z(m)|=el/4 m<M,|z(m)|<el/4
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Now, notice that for any H, N,, H and any h’ < H’, by shifting the

summation over n < Ny by b/ (for every fixed choice of hy, ..

\Zam)f

hi,...hxg<H n<Ny i=1

3 ) 3 ﬁbzn+h)

Ry shi<H R <n<Np+h! i=1
k

Z ‘ Z (n+h) Hbzn+h + 1)

hi,...hx<H n<Ny =1

i

+O(H* - 1) =

+ O(H* - 1)

. hi), we have

and O(H* - n') = O(H* - H'). Notice that as h; is taken from [0, H], then
hi+ 1 is taken from [h’, H + h'] (which is a small shift of [0, H] if A’ is much

smaller than H). So putting A’ to the summation over h;, we get

k
Z ‘ Z aln + 1) Hbzn-i-h +h)
=1

hi,....,hix<H n<Np

Z ‘Z (n+h)

h'<hi,....,hpy<H+h' n<Np =1

k
3 ‘ S aln+ 1) [ [ bilnthi)
=1

hi,....hpg<H n<Ny

k

Z

((h/Hk—1+ (h/)QHk—2_|_

+ (W)

and O (WH* '+ (W)2H" 2 + ...+ (W)*)N) = O((H")*H*"'N,). Putting

the two displayed equations together we get that for every h' < H'

!/

A=—

Z (n+h)

k
7‘ (
hi,.. 7hk<H n<Ny i=1

Averaging the above equation over all ' < H’, we get that

Azﬁ > H’Z NK‘Z aln +h)G(n )‘+O( >+O(

hy,...hy<H n<Ny

where G(n) = [T, bi(n + hy).

We will now estimate

(74) LQ‘ D a(n+h')a(n)f=

/
H W<H' Né n<Ny

% Z( 2 n+ W)a(w + 1)) G(n)

¢ nn/<N,
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which will be easier to handle than the above expression for A (and then use
Remark A.1 to get rid of the squares). Clearly, to obtain an upper bound
for (74), it suffices to obtain an upper bound for

1 1 -
(75) = 2 | X ate+ Wal ),
£ nn/<Ng R <H'

Again, it will be easier to deal with

1 1 —_?
(76) 2 Z i) Z a(n + h)a(n' + h)
¢ nn'<N, W<H'

(and use Remark A.1 to get rid of the squares). Expanding the square again
we get that (76) is equal to

1 1 - _—
N7 Z 7 Z a(n + ha(n’ + h)a(n+ h") -a(n’ + 1) =
14 n,n' <Ny h' W <H'

1 1 —_— —_—
N2 2 g Z a(n + h)a(n + h")a(n’ + h")a(n’ + 1').
C <N, W W <H'

The sum in the last term by exchanging the order of summation is equal to

- 2
‘7 a(n + W)a(n + ")

Y hr<H <,
Z ‘ Z H/2
a(n)a(n+ h" — 1) +O( —5)-
h/ h//<H/ Né n<N[ N

Finally, grouping according to h = h” — h/, we get that that the above is
equal to

12

1 ) 1 ST o
O IH =] N D a(n)a(mh)] +0(37) <

H/2

> |5 & atwaGr | + 0y
|h|<H’ n<Ne

)

That is, the expression from (76) equals

— |2
(77) 171[/ v Snen, a(n)a(n + h)

H N,
|h|<H' ¢

+o<<§fv;f>.

Now, by the assumption of our lemma, it follows that

| o [Seewalmatn+ B)
P

N,
\h|<H’ ¢

= 0(1)7
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which, by Remark A.1, is equivalent to

—2
1 3 2N, Am)a(n +h) 1 o(1).

7
|h|<H' Ne

Therefore, (77) (and, thus, also (76)) is of the order of o(1) + O (“1{;2)2)
4

Using again Remark A.1, we conclude that also (75) is of the same order. It
follows immediately that also the order of (74) is the same.
Thus, we have proved that

A—o(1)+0<(€{v;2)2) +O<f[;> +O((H;k>.
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