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ABSTRACT  

The present study investigates the flexural-torsional struts buckling and beam lateral buckling 

analyses. In the highlight of braced structures, analytical solutions are derived for higher 3D 

buckling modes of simply supported struts with arbitrary cross-sections. Closed-form solutions are 

also investigated for lateral buckling strength of beams with doubly symmetric cross-sections. For 

more general cases, the finite element approach is adopted. In presence of torsion, warping is of 

primary importance. For this aim, 3D beams with 7 degrees of freedom (DOFs) per node are 

adopted in the analysis. The model is able to carry out higher buckling modes of bars under 

compression or lateral buckling modes of beams initially in bending. The analytical and the 

numerical results of the present model are compared to some available benchmark solutions of the 

literature and to finite element simulations of some commercial codes (Abaqus, Adina). The 

efficiency of the closed form solutions and the numerical approach is successfully verified. 

Applications of higher buckling modes in design of braced structures are considered according to 

Eurocode 3 code. A particular attention is pointed out to torsion and flexural-torsional buckling 

modes not considered in bar strength. At the end, some solutions are proposed in order to cover 

the full strength of columns and beams in presence of instabilities. This proposal makes steel 

structures more performant and attractive when effects of instabilities are limited at a minimum. 
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1. Introduction and background 

 

Thin-walled elements as beams, columns and trusses are extensively used in structural engineering 

field, in civil residential buildings and bridges, in aeronautics and mechanical industries. Many 

reasons have contributed to the increasing use of these structures. The main of them are the 

followings: 

- The development of the industrial processes in hot and cold-formed sections permits to design 

any desired section shape. 

- The recourse to high steel quality with increasing the yield stresses is accompanied by a drastic 

reduction in thickness and weight. 

- Interesting solutions are now available for corrosion and connection problems based on 

welding, bolts or by combining the two techniques. 

- The development of numerical methods and codes leads to comprehensive models for 

designers and engineers. 

Most of thin-walled structures have open section shapes. This results in elements with low torsion 

strength, with one or no more axis of symmetry. The overall analysis is complex, because of the 

flexural-torsional coupling and the warping phenomena present with torsion. Moreover, recourse 

to slender elements leads to instabilities that control systematically the behaviour. This is the 

reason that thin-walled research field becomes attractive and is of interest to many researchers 

around the world. First, it is important to know that the classical buckling Euler’s theory [1,2] in 

bending is no longer valid in the stability of thin-walled beams where 3D behaviour is present and 

torsion buckling modes should be present or coupled to bending modes.  To our knowledge, the 

first works on 3D behaviour of thin-walled beams can be found in reference books [1, 3-8]. 
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Numerous studies have investigated the stability of unrestrained beams in 3D context. Papp [9] 

evaluated the buckling behaviour of simply supported beams with arbitrary cross section under 

compressive loads. Based on the semi-analytical finite strip method, Zhang [10] investigated the 

stability problem of bars with open and closed cross-section under axial forces. The obtained 

results have been compared to finite element simulations and proven the efficiency of the model. 

Using the Ayrton-Perry’s formula, Badari [11] investigated the lateral stability of simply supported 

beams under pure bending and proposed a design method in presence of initial imperfections.  

Most of the previous works concerning the stability of thin-walled beam are focused in the first 

buckling mode in bending. They are applied to unrestrained beams and effects of bracing have not 

considered. The stability of thin-walled beams with restraints has been studied by several 

researchers [12-17]. Recently, Nguyen [18] proposed an approximative method to predict the 

critical buckling moment and stiffness requirements of I-section beams with discrete torsional 

bracing. The model is limited to simply supported beams under uniform bending moments. 

Comparisons with finite element shell elements have been made in the validation step. McCann 

[19] investigated the lateral torsional buckling capacity of beams with elastic restraints present 

along the beam. In this work, simply supported beams under uniform moments have been 

investigated and an optimization procedure for the bracing height effect is suggested. The 

equivalent initial imperfection method of structures sensitive to flexural and torsional buckling have 

been investigated in Aguero [20]. More recently, Zhang [21] studied the lateral-torsional buckling of 

cantilever beams in presence of lateral elastic braces. Pezeshky [22] investigated the influence of 

bracing position on LTB capacity of cantilever and simply supported beams and highlighted the 

effect of braces position on beam buckling capacity. 
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The behaviour of columns and beams is predominated by buckling and lateral buckling phenomena. 

Moreover, the buckling strength is influenced in addition to buckling by the material and geometric 

imperfections according to Tetmayer’s approach, Engisser’s theory and Aythron Perry’s failure 

criteria [1, 23, 24]. In design, two strategies are then possible. The first is to adopt in design, 

efficient iterative solvers in solution of the nonlinear problem. Buckling, the geometric and material 

imperfections are all included in the analysis. In this case, the time consuming should be important 

in presence of structures with large DOFs. This procedure is commonly adopted in aeronautics field 

[25, 26]. The second strategy is followed in civil engineering applications as in Eurocodes 3, 4 and 5 

[27-29]. In these codes, buckling loads are first obtained according to linear stability models. 

Analytical solutions are suggested for simple cases and recourse to numerical simulations is 

necessary in more general cases. In this case, buckling loads are obtained by solutions of the 

eigenvalue problem. In this stage, the buckling loads are evaluated in the case of ideal perfect 

elements. Effects of geometric and material imperfections are considered in a second stage of the 

design.  In Eurocode 3 [27], in presence of buckling, the strength of bar with a cross section A and a 

yield stress fy  is affected by a reduction factor . This coefficient is function on bar slenderness 𝜆̅  

and the geometric imperfections provided by the European curves (a0, a-d). More details are given 

in section 4.2 of the present work.  

Moreover, in engineering practices and design, the beam strength against buckling and lateral 

buckling is done according to the first lower buckling mode. When the buckling load is lower than 

the full strength, one can check that the coefficient  is less than 0.5. The loss due to buckling 

should be important and can exceed 50%. The advantage of the thin-walled structures should be 

then less attractive. 
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 In order to limit the buckling effect to a minimum, the value of reduction factor  must be close to 

1. This condition can only be achieved if the buckling load is as high as possible to the full strength. 

One possible solution to improve the beam strength against buckling and lateral buckling is to 

adopt higher profiles or higher steel grade. These solutions are not economic at all.  Another 

possible and efficient strategy to limit the effects of instabilities on the strength capacity is the 

recourse to bracings. In this case, the buckling and lateral buckling are predominated by higher 

modes. Nowadays, this solution is commonly adopted in civil engineering applications as in bridge 

and building design but purely empirical solutions are always followed. 

For this aim, we investigate in the present work an analytical and a numerical procedure for the 

stability of beams with open cross-section according to higher buckling modes. The finite element 

approach of the model is first developed in section 2. 3D beams with 7 DOFs per node are adopted 

in the analysis. The model is able to carry out higher buckling modes of bars under compression or 

lateral buckling modes of beams initially in bending. After in section 3, closed-form solutions are 

derived for buckling and lateral buckling. The analytical and numerical results of the present model 

are compared to some available benchmark solutions of the literature and to finite element 

simulations of the commercial codes Abaqus and Adina, in section 4. Applications of the present 

model in engineering construction as bridge and building design will be studied and applications to 

braced structures are considered for this aim at the end. 
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2. Finite element approach of thin-walled beam buckling 

2.1 Continuum Equilibrium equations 

A straight thin-walled element with slenderness L and an open cross-section A is pictured in figure 

1. A direct rectangular coordinate system is chosen. Let us denote by x the initial longitudinal axis 

and by y and z the first and second principal bending axes. The origin of these axes is located at the 

centroid G. The shear point with coordinates (yc, zc) in Gyz is denoted C. Consider M, a point on the 

section contour with its coordinates (y, z, )being the sectorial co-ordinate introduced in 

Vlasov’s model for non-uniform torsion. Hereafter, it is admitted that there are no shear 

deformations in the mean surface of the section and the contour of the cross-section is rigid in its 

own plane. This means that local and distortional deformations are not included and only slender 

beams are considered. Displacements and twist angle can be large but deformations are assured to 

be small. An elastic behaviour is then adopted. Under these conditions, displacements of a point M 

are derived from those of the shear point as: 

𝑢𝑀 = 𝑢 − 𝑦(𝑣′) − 𝑧(𝑤′) − 𝜔𝜃𝑥
′  

𝑣𝑀 = 𝑣 − 𝑒𝑧𝜃𝑥           𝑤𝑀 = 𝑤 − 𝑒𝑦𝜃𝑥                                  (1a-c) 

With:   𝑒𝑦 = 𝑦 − 𝑦𝑐    𝑒𝑧 = 𝑧 − 𝑧𝑐  

 

 

 

 

 

Fig.1: Open section beam with load and cross-section stress components. 
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The Grain’s tensor strain components are the following: 

𝜀𝑥𝑥 = 𝜀 − 𝑦𝑘𝑧 − 𝑧𝑘𝑦 − 𝜔𝜃𝑥
′′ +

1

2
𝑅2𝜃𝑥

′2  

𝜀𝑥𝑦 = −
1

2
(𝑒𝑧 +

𝜕𝜔

𝜕𝑦
) 𝜃𝑥

′       𝜀𝑥𝑧 =
1

2
(𝑒𝑦 −

𝜕𝜔

𝜕𝑧
) 𝜃𝑥

′                                                           (2a-c) 

In (2a):  

𝜀 = 𝑢′ +
1

2
(𝑣′

2
+ 𝑤′2) − (𝑦𝑐𝑤

′ − 𝑧𝑐𝑣
′)𝜃𝑥

′   

𝑘𝑦 = 𝑤
′′ + 𝑣′𝜃𝑥

′              𝑘𝑧 = 𝑣
′′ −𝑤′𝜃𝑥

′                                                                             (3a-d) 

𝑅2 = 𝑒𝑦
2 + 𝑒𝑧

2        

The present model is applied in the case of an elastic behaviour. In such a context and denoted by E 

and G the Young’s and shear moduli, the relationships between the stress vector components in 

terms of deformation vector components are the followings in the principal axes: 

𝑁 = ∫ 𝐸𝜀𝑥𝑥𝑑𝐴𝐴
= 𝐸𝐴𝜀 +

1

2
𝐸𝐴𝐼0𝜃𝑥

′2           

𝑀𝑦 = ∫ 𝐸𝜀𝑥𝑥𝑧𝑑𝐴𝐴
= −𝐸𝐼𝑦(𝑘𝑦 − 𝛽𝑧𝜃𝑥

′2)                                                               (4a-d) 

𝑀𝑧 = ∫ 𝐸𝜀𝑥𝑥𝑦𝑑𝐴𝐴
= −𝐸𝐼𝑧(𝑘𝑧 − 𝛽𝑦𝜃𝑥

′2)         

𝑀𝑠𝑣 = 2∫ (𝐺𝜀𝑥𝑧(𝑒𝑦 −
𝜕𝜔

𝜕𝑧
 ) − 𝐺𝜀𝑥𝑦(𝑒𝑧 −

𝜕𝜔

𝜕𝑦
 )

𝐴
)𝑑𝐴 = 𝐺𝐼𝑡𝜃𝑥

′   

𝐵𝜔 = ∫ 𝐸𝜀𝑥𝑥𝜔𝑑𝐴 = 𝐸𝐼𝜔(𝜃𝑥
′′ − 𝛽𝜔𝜃𝑥

′2)
𝐴

                                                                                  (4e) 

𝑀𝑅 = 𝐸𝐴𝐼0𝜀 − 2𝐸𝐼𝑧𝛽𝑦𝑘𝑧 − 2𝐸𝐼𝑦𝛽𝑧𝑘𝑦 − 2𝐸𝐼𝜔𝛽𝜔𝜃𝑥
′′ +

1

2
𝐸𝐼𝑅𝜃𝑥

′2                                       (4f) 

Based on stress and strain vectors components defined by: 

{𝑆}𝑡 = {𝑁    𝑀𝑦    𝑀𝑧    𝑀𝑠𝑣    𝐵𝜔    𝑀𝑅}  

{𝛾}𝑡 = {𝜀    − 𝑘𝑦     − 𝑘𝑧    𝜃𝑥
′     𝜃𝑥

′′     
1

2
𝜃𝑥
′2}                   (5a,b) 

The stress-strain relationship is written in matrix shape as: 



    
8 

 

{𝑆} =

{
 
 

 
 
𝑁
𝑀𝑦

𝑀𝑧

𝑀𝑠𝑣

𝐵𝜔
𝑀𝑅}

 
 

 
 

=

[
 
 
 
 
 
 
𝐸𝐴 0 0 0 0 𝐸𝐴𝐼0
0 𝐸𝐼𝑦 0 0 0 2𝐸𝐼𝑦𝛽𝑧
0 0 𝐸𝐼𝑧 0 0 2𝐸𝐼𝑧𝛽𝑦
0 0 0 𝐺𝐼𝑡 0 0
0 0 0 0 𝐸𝐼𝜔 −2𝐸𝐼𝜔𝛽𝜔

𝐸𝐴𝐼0 2𝐸𝐼𝑦𝛽𝑧 2𝐸𝐼𝑧𝛽𝑦 0 −2𝐸𝐼𝜔𝛽𝜔 𝐸𝐼𝑅 ]
 
 
 
 
 
 

{
  
 

  
 

𝜀
−𝑘𝑦
−𝑘𝑧
𝜃𝑥
′

𝜃𝑥
′′

1

2
𝜃𝑥
′2
}
  
 

  
 

= [𝐷]{𝛾} (6) 

{S} and {} are the stress and strain vectors. [D] is the material matrix behaviour. Its terms are 

functions of elastic and geometric characteristics. A denotes the section area. Iy and Iz are second 

moments of area about y and z-axes. It and I are respectively the St-Venant torsion and the 

warping constant  I0 is the polar moment of area about shear point. y, z and are Wagner’s 

coefficients. IR is the fourth moment of area about shear point. Their expressions have been shown 

in Mohri [31] and an efficient numerical method for their computation is described this paper. 

Equilibrium equations are derived from stationary condition of the total potential energy defined 

by: 

𝛿𝑈 − 𝛿𝑊 = 0                                           (7) 

Where U and W are respectively the strain energy and load work variations. The matrix 

formulation of these parts in terms of the displacement and their derivatives are developed 

separately below.  Based on virtual strain deformation components and after integration over the 

cross-section A, the strain energy variation is given by: 

𝛿𝑈 = ∫ (𝑁𝛿𝜀 −𝑀𝑦𝛿𝑘𝑦 −𝑀𝑧𝛿𝑘𝑧 +𝑀𝑠𝑣𝛿𝜃𝑥
′ + 𝐵𝜔𝛿𝜃𝑥

′′ +
1

2
𝑀𝑅𝛿(𝜃𝑥

′)2)𝑑𝑥
𝐿

                             (8a)  

In matrix formulation, according to (5a, b), one can put: 

𝛿𝑈 = ∫ {𝛿𝛾}𝑡{𝑆}𝑑𝑥
𝐿

                (8b) 

For the finite element purpose, vectors andSare split in terms displacement variations. 

According to vector definition in (5a) and according to (2a) and (3) one can write:  

{𝛾} = ([𝐻]+
1

2
[𝐴(𝜃)]− [𝐴𝑐(𝜃)]) {𝜃}                                                                                                            (9) 
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Matrices [H] and [A()] are classical in nonlinear structural mechanics. They have been defined in 

Mohri [32]. The last matrix [Ac()] takes into account for flexural-torsional coupling. The non-

vanished terms of this matrix are: 

𝐴𝑐(1, 4) = 𝑦𝑐𝑤
′ − 𝑧𝑐𝑣

′ 𝐴𝑐(2, 4) = 𝑣′  𝐴𝑐(3, 4) = −𝑤′                                    (10a-c)                     

The components of the vector are the following: 

{𝜃}𝑡 = {𝑢′    𝑣′    𝑤′    𝜃𝑥
′     𝑣′′    𝑤′′    𝜃𝑥

′′    𝜃𝑥}                  (11) 

The variation needed in the strain energy variation (8b) is: 

{𝛿𝛾} = ([𝐻] + [𝐴(𝜃)] − [𝐴𝑐(𝜃)] − [𝐴̃(𝜃)]){𝛿𝜃}           (12) 

The matrix  )(
~
A  results from the variation of [Ac ()]. The non-vanished terms of this matrix are: 

𝐴̃(1, 2) = −𝑧𝑐𝜃𝑥
′       𝐴̃(1, 3) = 𝑦𝑐𝜃𝑥

′         𝐴̃(2, 2) = 𝜃𝑥
′          𝐴̃(3, 3) = −𝜃𝑥

′                     (13a-c) 

The detailed matrix formulation of strain energy variation becomes: 

𝛿𝑈 = ∫ {𝛿𝜃}𝑡([𝐻] + [𝐴(𝜃)] − [𝐴𝑐(𝜃)] − [𝐴̃(𝜃)])
𝑡
{𝑆}

𝐿

0
𝑑𝑥          (14) 

For the external load work variation (W), distributed loads are applied on the cross-section 

contour along the line (pp’, Fig.1). Their components px, py, pz) are supposed to be proportional to 

the load factor. The external load variation is then: 

𝛿𝑊 = 𝜆∫ (𝑝𝑥𝛿𝑢𝑝 + 𝑝𝑦𝛿𝑣𝑝 + 𝑝𝑧𝛿𝑤𝑝(𝑒𝑧))
𝐿

𝑑𝑥               (15) 

In order to take into account for second-order torsion terms of loads pz, the expression of wp are 

derived in presence of quadratic torsion terms Mohri [33]: 

𝑤𝑝(𝑒𝑧) = 𝑤𝑝 − 𝑒𝑧
𝜃𝑥
2

2
                                                                                  (16) 

Doing variation on displacement 3D components, according to the kinematic (1a, b) and (16), the 

external load variation is split into two parts, written as: 

𝛿𝑊 = 𝛿𝑊𝑐 + 𝛿𝑊𝑛𝑐          (17a) 
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Wc is the classical load contribution. Wnc is the load height contribution of the vertical loads to 

the equilibrium. 

𝛿𝑊𝑐 = 𝜆∫(𝑝𝑥𝛿𝑢 + 𝑝𝑦𝛿𝑣 + 𝑝𝑧𝛿𝑤 +  𝑚𝑥𝛿𝜃𝑥 +𝑚𝑦𝛿𝑤
′ +𝑚𝑧𝛿𝑣

′ + 𝑏𝜔𝛿𝜃𝑥
′)𝑑𝑥

𝐿

 

         = 𝜆 ∫({𝛿𝑞}𝑡{𝑝} + {𝛿𝜃}𝑡{𝑚}) 𝑑𝑥                                                                          (17b) 

 𝛿𝑊𝑛𝑐 = −𝜆∫ (𝑝𝑧𝑒𝑦𝜃𝑥𝛿𝜃𝑥)𝑑𝑥𝐿
= −𝜆∫{𝛿𝑞}𝑡[𝑚1] {𝑞}𝑑𝑥                     (17c) 

This part leads to a non-linear torsion moment proportional to (pzezx).  In the previous equations, 

(my = -px z, mz = -px y, mx = -py ez+ pz ey,and b= -px ) define respectively the external bending 

moments, the torsion moment and the bimoment. For the matrix formulation of (W), the 

additional following vectors have been used for the purpose: 

{𝑞}𝑡 = {𝑢 𝑣 𝑤 𝜃𝑥} 

{𝑝}𝑡 = {𝑝𝑥 𝑝𝑦 𝑝𝑧 𝑚𝑥}                      (18a-c) 

{𝑚}𝑡 = {0   𝑚𝑧   𝑚𝑦   𝑏𝜔   0   0   0   0 } 

[m1] is a square (4, 4) matrix.  The non-vanished term of this matrix is m1(4,4) = pzez 

At the end, the matrix form of the external load variation is: 

𝛿𝑊 = 𝜆 ∫ ({𝛿𝑞}𝑡{𝑝} + {𝛿𝜃}𝑡{𝑚})𝑑𝑥𝐿
− 𝜆∫ {𝛿𝑞}𝑡[𝑚1]{𝑞}𝑑𝑥𝐿

                            (19) 

The equilibrium system is carried out from (15) and (19), combined with the material behaviour (6) 

and (9) lead to: 

{
 
 

 
 ∫{𝛿𝜃}𝑡([𝐻] + [𝐴(𝜃)] − [𝐴𝐶(𝜃)] − [𝐴̃(𝜃)])

𝑡
{𝑆}𝑑𝑥

𝐿

−𝜆∫ ({𝛿𝑞}𝑡{𝑝} + {𝛿𝜃}𝑡{𝑚})𝑑𝑥𝐿
+ 𝜆∫{𝛿𝑞}𝑡[𝑚1]{𝑞}𝑑𝑥 

{𝑆} = [𝐷] ([𝐻] +
1

2
[𝐴(𝜃)] − [𝐴𝐶(𝜃)]) {𝜃}      

       ∀{𝛿𝑞}, {𝛿𝜃}                                  (20) 

The finite element formulation of this system is investigated below. 
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2.2 Finite Element Approach of the equilibrium 

In literature about thin-walled beams with open section, warping deformation is of primary 

importance. For this reason, the warping is considered as an additional independent displacement 

with regard to classical 3D beams. In mesh process, 3D beams elements with 14 DOFs are 

commonly utilized. In the present study, the beam of slenderness L is divided into some finite 

elements of length l. Each element is modelled with 3D beams elements with two nodes and seven 

DOFs per node. Linear shape functions are assumed for axial displacements u and cubic functions 

for the other displacements (i.e v, w, x) are used. The vectors {q} and {𝜃} are related to nodal 

variables {r} by: 

{𝑞} = [𝑓(𝜉)]{𝑟}   and    {𝜃} = [𝑔(𝜉)]{𝑟}                   (21a,b) 

Where [f()] is the shape functions matrix and [g()] is the gradient matrix. The variation {q} and 

{} needed in (20) are then straightforward. In the framework of finite element method, at the 

equilibrium, one must fulfil: 

{
⋃𝑒

𝑙

2
(∫ [𝐵(𝜃)]𝑡{𝑆}𝑒𝑑𝜉

1

−1
) − 𝜆{𝐹} + 𝜆{𝐹(𝑟)} = 0

{𝑆}𝑒 = [𝐷] ([𝐵𝑙] +
1

2
[𝐵𝑛𝑙(𝜃)] − [𝐵𝑐(𝜃)]) {𝑟}𝑒

                              (22a,b) 

⋃𝑒denotes the assembling process over basic elements. The matrices and vectors used in (22) are:  

[𝐵(𝜃)] = [𝐵𝑙] + [𝐵𝑛𝑙(𝜃)] − [𝐵𝑐(𝜃)] − [𝐵̃𝑐(𝜃)]                  (23a) 

[𝐵𝑙] = [𝐻][𝑔]   [𝐵𝑛𝑙(𝜃)] = [𝐴(𝜃)][𝑔]              (23b,c)  

[𝐵𝑐(𝜃)] = [𝐴𝑐(𝜃)][𝑔] [𝐵̃𝑐(𝜃)] = [𝐴̃(𝜃)][𝑔]               (23d,e) 

{𝐹} = ⋃𝑒
𝑙

2
∫ {𝐹}𝑒𝑑𝜉
1

−1
= ⋃𝑒

𝑙

2
∫ ([𝑓]𝑡{𝑝}𝑒 + [𝑔]

𝑡{𝑚}𝑒)𝑑𝜉
1

−1
     (24a) 

{𝐹(𝑟)} = ⋃𝑒
𝑙

2
∫ {𝐹1(𝑟)}𝑒𝑑𝜉
1

−1
= ⋃𝑒

𝑙

2
(∫ [𝑓]𝑡[𝑚1][𝑓]𝑑𝜉

1

−1
) {𝑟}        (24b) 
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Matrices [Bl] and [Bnl()] are familiar in nonlinear analysis. The matrices [Bc()] result from flexural-

torsional coupling. {F} is the classical nodal force vector. The additional force vector {F(r)} is not 

constant and depends on displacements and load eccentricities. To solve the nonlinear problem 

(22), the classical incremental-iterative Newton-Raphson procedure is followed. With this aim in 

view, we have to compute the tangent stiffness matrix. If the unknowns of the problem (22) are 

sought in the form: 

{𝑟} = {𝑟0} + {Δ𝑟}       {𝑆} = {𝑆0} + {Δ𝑆}        𝜆 = 𝜆0 + Δ𝜆                       (25a-c) 

And given an initial guess of the solution ({r0}, {S0}, 0), the increments of the problem ({r}, {S}, 

 fulfil the following conditions:  

⋃𝑒
𝑙

2
∫ ([𝐵(𝜃0)]

𝑡{Δ𝑆} + [Δ𝐵(𝜃)]𝑡{𝑆0})
1

−1
𝑑𝜉 − Δ𝜆{F} + Δ(𝜆{𝐹(𝑟)}) = 0        (26a,b) 

with     {Δ𝑆} = [𝐷]{Δ𝛾} = [𝐷][𝐵(𝜃)]{Δ𝑟} 

Due to coupling terms involved in matrix [B()], the increments [B()] in (26a) is not 

straightforward and must be computed with more caution.  According to (26b), one can write for 

the geometric stiffness matrix part. 

[Δ𝐵(𝜃0)]
𝑡{Δ𝑆} = [𝐵(𝜃0)]

𝑡 [𝐷][𝐵(𝜃0)]{Δ𝑟} = [𝐾𝑔]{Δ𝑟} 

The second term leads to the initial stress stiffness matrix. Following the procedure adopted in 

Mohri [32], one arrives to: 

[Δ𝐵(𝜃)]𝑡{𝑆0} = [𝑔]𝑡 ([𝑆0̅] − [𝑆0̿] − [𝑆0̿]
𝑡
) [𝑔]{Δ𝑟} = [𝑔]𝑡[𝑆0][𝑔]{Δ𝑟} = [𝐾𝑠0]{Δ𝑟}       (27) 

In (27) we have put: [𝑆0] = [𝑆0̅] − [𝑆0̿] − [𝑆0̿]
𝑡
.  

The non-vanished terms of the initial stress matrices are the following. 

𝑆0̅(2,2) = 𝑆0̅(3,3) = 𝑁0 ,   𝑆0̅(4,4) = 𝑀𝑅0                                  (28a, b) 
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𝑆0̿(4,2) = −𝑁0𝑧𝑐 +𝑀𝑦0 ,     𝑆0̿(4,3) = 𝑁0𝑦𝑐 −𝑀𝑧0      (28c, d) 

Moreover, in the present study, the applied load displacement dependent. Remind that load 

contribution has been derived in (24) by its classical component {F} (24a) is displacement 

dependent part {F(r)} (24b). So: 

Δ𝜆{𝐹} − Δ(𝜆{𝐹(r)}) = Δ𝜆({𝐹} − {𝐹(𝑟0)}) − 𝜆0{𝐹(Δ𝑟)}        (29a) 

with:  {𝐹(𝑟0)} = ⋃𝑒
𝑙

2
(∫ [𝑓]𝑡[𝑚1][𝑓]

1

−1
𝑑𝜉) {𝑟0} 

{𝐹(Δ𝑟)} = ⋃𝑒
𝑙

2
(∫ [𝑓]𝑡[𝑚1][𝑓]

1

−1
𝑑𝜉) {Δ𝑟} = [𝐾𝐹]{Δ𝑟}                                  (29b,c) 

Finally, the global matrix form of the incremental problem (26) can be written as: 

[𝐾𝑡]{∆𝑟} = ∆𝜆{𝐹}              (30a) 

The tangent stiffness matrix [Kt] is given by  

[𝐾𝑡] = [𝐾𝑔] + [𝐾𝑆0] + [𝐾𝐹]                                                                                   (30b) 

With: 

[𝐾𝑔] = ⋃𝑒
𝑙

2
(∫ [𝐵(𝜃0)]

𝑡[𝐷][𝐵(𝜃0)]
1

−1

𝑑𝜉) 

[𝐾𝑆0] = ⋃𝑒
𝑙

2
(∫ [𝑔]𝑡[𝑆(𝜃0)][𝑔]

1

−1
𝑑𝜉)                                            (30c-e) 

[𝐾𝐹] = 𝜆0 {⋃𝑒
𝑙

2
(∫ [𝑓]𝑡[𝑚1][𝑓]

1

−1

𝑑𝜉)} 

[Kg] is the geometric stiffness matrix and [KS0] is the initial stress stiffness matrix. The matrix [KF] is 

the contribution of eccentric loads to the stiffness. The load height parameter is present in this 

matrix. This part is not classical is structural mechanics where the applied forces are constant and 

independent on displacements. In our case, it leads to load height effects in stability. The system 

(30) can be solved with the help of the iterative methods and the load displacements equilibrium 



    
14 

 

curves can be obtained. This task has been done in more general case and in presence of large or 

finite torsion amplitudes [32, 34]. Moreover, in presence of instabilities, the buckling loads can be 

researched from the singularities of the tangent matrix [Kt].  When this matrix is sought according 

to the geometric and initial stress parts, the buckling loads are carried out according to the solution 

of the eigenvalue problem given by: 

([𝐾𝑔] − 𝜆0([𝐾𝑠0] − [𝐾𝐹])) {𝑟} = {0}
                                                                   

(31) 

and {r} and the buckling loads and the related eigenmodes. They are carried out according to an 

efficient solver of the eigenvalue problem. In Abaqus [30], Lanczos and subspace methods are 

possible. In the present model, an efficient eigenvalue problem solver present in Matlab [35] is 

adopted. The present finite element model is implemented in this code.  It is referenced B3Dw in 

the application part. 
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3. Analytical solutions attempt for higher buckling and lateral buckling modes for unrestrained 

beams 

In the finite element approach investigated previously, 3D load cases are possible. Moreover, in 

presence of buckling and lateral buckling instabilities, loads of interest in the study are the axial and 

the vertical loads (px and pz) that cause respectively in the beam the axial stress forces N and 

bending moment My about the strong axis y. In this context, adapting the strain energy presented 

by Mohri [33], for an unrestrained beam with arbitrary open cross-sections under axial and bending 

loads, the strain energy of the beam in presence of buckling and lateral buckling stabilities is given 

by: 

𝑼 =
1

2
∫ (𝐸𝐴𝑢′

2
+ 𝐸𝐼𝑧𝑣

′′2 + 𝐸𝐼𝑦𝑤
′′2 + 𝐸𝐼𝜔𝜃𝑥

′′2)𝑑𝑥
𝐿

0

+
1

2
∫ (𝐺𝐼𝑡𝜃𝑥

′2)𝑑𝑥
𝐿

0

 

     + ∫ 𝑁 (
1

2
𝑣′

2
+
1

2
𝑤′2 +

𝐼0

2
𝜃𝑥
′2 + 𝑧𝑐𝑣

′𝜃𝑥
′ − 𝑦𝑐𝑤

′𝜃𝑥
′) 𝑑𝑥 +

𝐿

0

∫ 𝑀𝑦(𝑣
′′𝜃𝑥 + 𝛽𝑧𝜃𝑥

′2)𝑑𝑥
𝐿

0
        (32)                                           

 

The work done by the uniformly distributed loads px  and pz is  

      𝑾 = ∫ (𝑝𝑥𝑢 + 𝑝𝑧(𝑤 +
1

2
𝑒𝑧𝜃𝑥

2)
𝐿

0
𝑑𝑥            (33) 

At equilibrium under static loads, one must fulfil the condition (=0).  System (32) and (33) can be 

applied in behaviour and in stability analyses. Moreover, for the buckling study in presence of a 

constant compressive load P, the terms of interest are reduced to: 

𝚷 =
1

2
∫ (𝐸𝐼𝑧𝑣

′′2 + 𝐸𝐼𝑦𝑤
′′2 + 𝐺𝐼𝑡𝜃𝑥

′2 + 𝐸𝐼𝜔𝜃𝑥
′′2)𝑑𝑥

𝐿

0

 

     − 𝑃∫ (
1

2
𝑣′

2
+
1

2
𝑤′2 +

𝐼0

2
𝜃𝑥
′2 + 𝑧𝑐𝑣

′𝜃𝑥
′ − 𝑦𝑐𝑤

′𝜃𝑥
′) 𝑑𝑥

𝐿

0

                     (34)                                           

In lateral buckling analysis in presence of initial bending load pz, the potential is given by: 

𝚷 =
1

2
∫ (𝐸𝐼𝑧𝑣

′′2 + 𝐺𝐼𝑡𝜃𝑥
′2 + 𝐸𝐼𝜔𝜃𝑥

′′2)𝑑𝑥
𝐿

0
+ ∫ 𝑀𝑦(𝑣

′′𝜃𝑥 + 𝛽𝑧𝜃𝑥
′2)𝑑𝑥

𝐿

0
+
1

2
∫ 𝑝𝑧𝑒𝑧𝜃𝑥

2𝑑𝑥
𝐿

0
       (35) 
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Let us remind that in lateral buckling analysis (35), the study includes in addition to bending 

stiffness about the weak axis and torsion and warping stiffness, the contribution of load height 

position from the shear point (ez) and the Wagner’s coefficient (z). To get analytical solutions of 

these problems (34, 35), Galerkin’s or Rayleigh-Ritz methods are possible and the resulting 

algebraic system must be solved using singularity condition. Closed form solutions for higher 

buckling and lateral buckling loads are derived according to a priori known buckling modes. In the 

case of simply supported beams, the bending displacement components v(x), w(x) and the torsion 

angle (x) are approximated by the following shape modes: 

      𝑣(𝑥) = 𝑣𝑘 𝑠𝑖𝑛 (
𝑘𝜋𝑥

𝐿
)  ,  𝑤(𝑥) = 𝑤𝑘 sin (

𝑘𝜋𝑥

𝐿
)    and   𝜃(𝑥) = 𝜃𝑘 sin (

𝑘𝜋𝑥

𝐿
)   k=1…n     (36a-c) 

Where vk, wk and k are the undetermined amplitudes and k is the buckling mode number.  

3.1 Analytical solution for higher buckling modes 

Substitution of the assumed deflection function (36a-c) into the total potential energy expression 

(34) and after integration and needed simplifications, one gets the equilibrium system for a mode k 

given in matrix system by: 

 

 [

𝑃𝑧(𝑘) − 𝑃 0 −𝑧𝑐𝑃

0 𝑃𝑦(𝑘) − 𝑃 𝑦𝑐𝑃

−𝑧𝑐𝑃 𝑦𝑐𝑃 𝐼0(𝑃𝜃(𝑘) − 𝑃)

] {

𝑣𝑘
𝑤𝑘
𝜃𝑘
}={
0
0
0
}         (37) 



In this system, Py(k) and Pz(k) are the buckling loads in pure bending about the strong and the weak 

axes. P(k) is the pure torsion buckling load. They are defined by: 

𝑃𝑧(𝑘) =
𝑘2𝜋2𝐸𝐼𝑧

𝐿2
  ,        𝑃𝑦(𝑘) =

𝑘2𝜋2𝐸𝐼𝑦

𝐿2
  and    𝑃𝜃(𝑘) =

1

𝐼0
(
𝑘2𝜋2𝐸𝐼𝜔

𝐿2
+ 𝐺𝐼𝑡)       (38a-c) 

The buckling loads can be obtained from the nontrivial solutions of Eq. (37). Closed form solutions 

are possible for usual cross sections as doubly symmetric or singly symmetric shapes. However, 
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finding analytical solutions for an arbitrary cross section is a complicated task. Moreover, a semi-

analytical procedure is attempted below. 

For doubly cross sections (yc = zc = 0), the equation (37) is fully uncoupled. The buckling loads for 

the k-mode (k=1… n) are given in (38). The bar can buckle in classical pure bending (Euler’s buckling) 

or in pure torsional buckling mode. One can easily obtain the classical buckling loads used in design 

by putting k=1. In this case, since the buckling load Py is the highest, one understands easily that the 

buckling design load is the minimum of Pz and P.   

Moreover, equations (37) permit to get the buckling loads of a braced beam in terms of the number 

of the braces. According to these solutions, in presence of ny, nz and nbraces equally positioned 

along the beam in the direction y, z and in torsion, higher buckling loads happen, given by: 

𝑃𝑧 = (𝑛𝑧 + 1)
2 𝜋

2𝐸𝐼𝑧

𝐿2
 ,𝑃𝑦 = (𝑛𝑦 + 1)

2 𝜋
2𝐸𝐼𝑦

𝐿2
    and     𝑃𝜃 =

1

𝐼0
((𝑛𝜃 + 1)

2 𝜋
2𝐸𝐼𝜔

𝐿2
+ 𝐺𝐼𝑡)    (39a-c)  

Since the number of braces should be arbitrary, the 3 buckling loads should be then important in 

the design step of braced columns. 

 If there is only one axis of symmetry, say the y-axis, then shear centre lies on the y-axis and the 

shear centre zc=0 (as in channel section). Hence, in this case, the bar can buckle in two possible 

buckling modes namely pure bending in the z-axis or flexural-torsional buckling modes. Solutions of 

system (37) lead to the following buckling loads given by 

𝑃𝑐𝑟 = 𝑚𝑖𝑛(𝑃𝑧(𝑘), 𝑃𝑦𝜃(𝑘))
          

     (40a)            
         

Pz(k) is the pure bending load defined in (38a). Py (k) are the flexural-torsional buckling loads 

defined by                                                                                                                                     

𝑃𝑦𝜃(𝑘) =
𝑃𝑦(𝑘) + 𝑃𝜃(𝑘) ± √(𝑃𝑦(𝑘) + 𝑃𝜃(𝑘))

2

− 4𝑎𝑐 𝑃𝑦(𝑘)𝑃𝜃(𝑘)

2𝑎𝑐  

With:       𝑎𝑐 = (1 −
𝑦𝑐
2

𝐼0
)                                                            (40b-c)             



    
18 

 

If the symmetry axis is the z-axis (as in Tee sections, yc =0), similar closed-form solutions for the 

buckling loads are possible. The buckling loads are given by: 

𝑃𝑐𝑟 = 𝑚𝑖𝑛(𝑃𝑦(𝑘), 𝑃𝑧𝜃(𝑘))
              

(41a)            
         

Py(k) is the pure bending load defined in (38b). Pz (k) are the flexural-torsional buckling loads given 

by
 

𝑃𝑧𝜃(𝑘) =
𝑃𝑧(𝑘) + 𝑃𝜃(𝑘) ± √(𝑃𝑧(𝑘) + 𝑃𝜃(𝑘))

2
− 4𝑎𝑡 𝑃𝑧(𝑘)𝑃𝜃(𝑘)

2𝑎𝑡  

With:       𝑎𝑡 = (1 −
𝑧𝑐
2

𝐼0
)                                                                                        (41b-c) 

It is important to mention that for k=1, one obtains the smallest of each buckling mode used in 

classical design methods. The similar closed form solutions have been carried out in Mohri [31]. Let 

us remind, that according to (40a, b) or (41a, b), three solutions are possible for the buckling loads: 

one in pure bending and two others are flexural-torsional. All the three solutions are necessary for 

higher modes analyses purpose. 

 

If there is no axis of symmetry (yc ≠0; zc≠0), from the system (37), closed-form solutions are not 

possible but only semi-analytical solutions are possible. They can be obtained from solution of the 

following cubic equation obtained from system (37): 

(𝑃𝑧(𝑘) − 𝑃)(𝑃𝑦(𝑘) − 𝑃)(𝑃𝜃(𝑘) − 𝑃) − 𝑃
2(𝑃𝑧(𝑘) − 𝑃)

𝑦𝑐
2

𝐼0
− 𝑃2(𝑃𝑦(𝑘) − 𝑃)

𝑧𝑐
2

𝐼0
= 0          (42) 

In this case, all the buckling modes are fully coupled (flexural torsional modes). For a given mode k, 

3 solutions are possible. They are all lower than the uncoupled buckling loads Py(k), Pz(k) and P(k). 

This is the reason why solutions of (42) are more important in design. These 3 solutions are all 

necessary in the context of higher mode analyses. In the present contribution, solutions of (42) are 

implemented on Matlab code [35] for any mode k. Let us remind that in the literature, the available 

solutions for higher buckling loads exist only in the case of pure bending (the classical Euler’s 



    
19 

 

buckling theory [1-2]). The closed-form solutions derived here for flexural torsional buckling are 

original. 

 

3.2 Analytical solution attempts of higher modes for beam lateral buckling  

In the present study, we limit the study to the case of simply supported beams with doubly 

symmetric I-beams under distributed and concentrated load applied at mid-span (Fig.2a, b). These 

load cases are the most important in engineering design applications. Effect of load position (Fig.2c) 

is taken into account in the analysis.  Closed form solutions for higher lateral buckling moment are 

carried out according to the Ritz or Galerkin’s methods.  For this purpose, the potential derived in 

(35) and mode shapes (36a, c) are used.  

 

                                                                                        

 

 

Fig.2: Simply supported beam with doubly symmetric section subjected to  

uniformly distributed (a) and concentrated loads (b) with load position (c). 

 

In the case of uniformly distributed load pz (Fig.2a), the bending moment is the following: 

𝑀𝑦(𝑥) =
4𝑀0

𝐿2
𝑥(𝐿 − 𝑥)                            with  𝑀0 =

𝑝𝑧𝐿
2

8
                                                                 (43) 

In presence of a concentrated load Pz applied at L/2 (Fig.2b), the bending moment expression is  

𝑀𝑦(𝑥) =
2𝑀0

𝐿
 𝑥                               0 ≤ 𝑥 ≤

𝐿

2
  

   

𝑀𝑦(𝑥) =
2𝑀0

𝐿
 (𝐿 − 𝑥)                  

𝐿

2
≤ 𝑥 ≤ 𝐿        with   𝑀0 =

𝑃𝑧𝐿

4
                     (44) 
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For the uniformly distributed load, the mode shapes (36a, c) and equation (43) are used. While in 

the concentrated load case, mode shapes (36a, c) combined with equations (44) are necessary. 

These relationships are respectively included in the potential (35) and after needed integration, the 

buckling moments of the beam are obtained for each load case. Since the Wagner’s coefficient (z) 

vanishes, the new expression for the mode number k, denoted Mcr(k) is the following.  

 

𝑀𝑐𝑟(𝑘) = 𝐶1(𝑘)𝑃𝑧(𝑘) [𝐶2(𝑘)𝑒𝑧 +√(𝐶2(𝑘)𝑒𝑧)2 +
𝐼𝜔

𝐼𝑧
(1 +

𝐺𝐼𝑡𝐿2

𝑘2𝜋2𝐸𝐼𝜔
)]           (45) 

 

Where Pz(k) denotes the Euler’s buckling load defined in (38). The coefficients C1(k) and C2(k) are 

function on load case. For distributed load: 

        𝐶1(𝑘) =
3𝑘2𝜋2

2(𝑘2𝜋2+3)
         𝐶2(𝑘) =

6

𝑘2𝜋2+3
                          (46) 

 

In the case of concentrated load, these terms depend on mode number. 

 

- For odd number mode ( k=1, 3, 5… : symmetric modes):      

       𝐶1 =
2𝑘2𝜋2

(𝑘2𝜋2+4)
         𝐶2 =

8

𝑘2𝜋2+4
                     (47) 

- For even number mode (k=2, 4, 6.. : anti-symmetric modes): 

       𝐶1 = 2                  𝐶2 = 0                (48) 

The relationship (45) is more general and permits to obtain the lateral buckling moment for higher 

modes. Using this expression, the classical compact equation of mode 1, adopted in lateral buckling 

analysis is straightforward, by putting (k=1). One finds: 

𝑀𝑐𝑟 = 𝐶1𝑃𝑧 [𝐶2𝑒𝑧 +√(𝐶2𝑒𝑧)2 +
𝐼𝜔

𝐼𝑧
(1 +

𝐺𝐼𝑡𝐿2

𝜋2𝐸𝐼𝜔
)]                                        (49) 

According to (46) and (47), one gets respectively for the first mode number (k=1: C1=1.15, C2=0.46) 

in the uniformly load case and (k=1: C1=1.42, C2=0.58) for the concentrated load case. These values 

are close to the improved values obtained in Mohri [33] and adopted in EC3. In the present study, 
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the higher lateral buckling modes (k) are researched, all terms depend on the mode number k. The 

mode number k is present in the Euler’s buckling load Pz, in the coefficients C1 and C2 and in the St-

Venant warping ratio (
𝐺𝐼𝑡𝐿

2

𝑘2𝜋2𝐸𝐼𝜔
). Again, the lateral buckling moments (45) derived in the present 

work in terms of load height parameter and higher mode k are then original. 

 

In the present study, the finite element model and the analytical solutions derived for higher modes 

of column buckling and beam lateral buckling will be validated hereafter according to benchmark 

solutions and to other finite element simulations carried out on Abaqus and Adina codes [30, 36]. 

Applications of higher modes in design are presented at the end (section 5), where effects of 

bracing on column buckling and beam lateral buckling strength capacities are considered according 

to the Eurocode 3 design code. Different cross sections and boundary conditions are studied for the 

purpose. 
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4. Comparison examples and numerical simulations 

This section is divided into two main parts. Firstly, column buckling under compressive loads is 

investigated (section 4.1), while the beam lateral buckling is provided in section 4.2. For each 

example, analytical and numerical solutions of higher buckling modes are found and compared. 

4.1 Buckling Analysis 

In order to evaluate the validity of proposed closed solution and the present 3D beam finite 

element model (called B3Dw), bars with different slenderness are considered. Different cross 

sections are also considered: singly symmetric and arbitrary sections. In all the study, steel material 

is adopted with the following elastic constants: Young’s and moduli (E =210, G = 80.77 GPa). For all 

the studied bars, two scenarios are analysed (1): the variation of first buckling load in terms of the 

bars slenderness, (2): higher buckling analysis of the bar for a fixed length. When possible, the 

present analytic and numeric solutions are compared to benchmark solutions or to simulations of 

the commercial software Abaqus [30] in which B31OS beam element with generalized sections 

have been used. Effect of meshing on solution accuracy has been studied initially. The number of 

elements has been increased until the solution becomes insensitive to mesh. In the present study, 

since we have concerned by higher buckling modes of beams with variable slenderness, the optimal 

element length is 10 cm. This means that in presence of a beam with 4 m, 40 elements (287 DOFs) 

are needed. 

The present study is concerned with the overall buckling problem. For this aim, only slender beams 

are considered in the study where this assumption is checked [37-39]. Local buckling is ignored.  For 

this topic, one can see the rich available literature quoted in [40-42]. 

 

  



    
23 

 

Example 1: Buckling of bar with singly symmetric cross sections about the y-axis 

In this example, a singly symmetric cross-section about the y-axis is analysed (namely channel 

section). The dimensions of the section are presented in Fig. 3. The geometric parameters of this 

section are calculated according to Mohri [31]. Table 1 gives a comparison of the predicted buckling 

loads of the bar when the slenderness L varies from 2 to 8 m. The analytical and the numerical 

solutions are presented. The analytical solutions for this case are predicted based on equations 

(40). These solutions are possible from the uncoupled buckling loads of the cross section 

reproduced in the first three columns of table 1 for clarity. The numerical results are related to the 

beam finite element of the present model (B3Dw) and Abaqus element (B31OS).  It is observed that 

the buckling loads decrease when the length increases. The results also indicate that the flexural-

torsional buckling is the dominant buckling modes when the length L<3m. The Euler’s bending 

buckling load is present for lengths higher than 3m. From this, it can be concluded that the buckling 

behaviour of C-section is dependent on the beam length. One observes a good agreement between 

the present analytic and finite element results and Abaqus simulations. The error between B3Dw 

and Abaqus is not higher than 1%. In order to assess the effect of higher buckling modes, the same 

channel section bar is reconsidered with span fixed to L =4 m and the first four buckling modes are 

researched. Comparisons between the predictions of analytic, B3Dw and Abaqus are provided in 

Table 2. For this length, the modes 1 and 4 are pure bending (PB), while the other modes (2 and 3) 

are flexural torsional (FT). The mode shapes of this case are depicted in Fig.A1 of the appendix.  
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Fig.3: Bar with channel section: boundary conditions, load application and cross-section 

dimensions. 

 

L Py Pz P Py Pcr,th Present Abaqus Mode Error 

(m) (kN) min(Pz,Py) B3Dw B31OS type (%) 

2 13717,27 3095,90 2269,38 2104,77 2104,77 2104,78 2117,00 FT 0,58 

3 6 096,56 1375,96 1470,89 1314,88 1314,88 1314,89 1322,00 FT 0,54 

4 3 429,32 773,98 1191,42 1009,65 773,98 773,98 772,77 PB 0,16 

5 2 194,76 495,34 1062,07 838,44 495,34 495,35 494,85 PB 0,10 

6 1 524,14 343,99 991,80 716,99 343,99 343,99 343,75 PB 0,07 

7 1 119,78 252,73 949,43 619,11 252,73 252,73 252,60 PB 0,05 

8 857,33 193,49 921,94 536,04 193,49 193,50 193,42 PB 0,04 

 
Table 1: Channel section: numerical and analytical buckling loads variation versus the length L. 

(FT: Flexural-Torsional mode, PB: Pure Bending mode). 
 
 

Higher buckling loads L=4m 

Mode 
number 

Pcr 
(Theory, kN) 

Present 
B3Dw 

Abaqus 
B31OS 

Mode 
type 

Error 
% 

1 773,98 773,98 772,77 PB 0,16 

2 1009,34 1009,65 1014,60 FT 0,49 

3 2104,13 2104,78 2117,00 FT 0,58 

4 3095,91 3095,92 3076,40 PB 0,63 

 
Table 2: Channel section, numerical and analytical buckling loads of the first four modes. 

(FT: Flexural-Torsional mode, PB: Pure Bending mode). 
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Example 2: Buckling of bar with singly symmetric cross sections about the z-axis 

 The present example is aimed to investigate the buckling behaviour of column with singly 

symmetric about the z-z axis. Two sections are studied. The first is a mono-symmetric I-section and 

the second is a Tee section. Their dimensions are summarized in Fig 4. For the both sections, the 

buckling load variation is analysed with length L varied from 2 until 8m. Table 3a compares the 

buckling loads of the singly-symmetric I-section. Closed form solutions given in (41) are computed 

and compared to finite element models simulations. In the interests of clarity, the uncoupled 

buckling loads of these cross sections are reproduced in the first three columns. The same 

procedure is followed for the Tee cross section and results are summarized in Table 4a. For the two 

sections, it is observed that the flexural-torsional buckling mode controls the bar strength for all the 

considered slenderness. The results of the present model are in excellent agreement with Abaqus 

simulations. The maximum error does not exceed 1.20%. 

The effect of higher buckling modes is also analysed, for this aim, we consider once again the both 

sections, but now the length is fixed to L=4m and the first four buckling modes are sough. The 

resulting buckling loads are illustrated in Table 3b for the singly I section and Table 4b for the Tee 

section. It can be seen that all the higher modes are flexural torsional and no bending mode is 

present in the first four modes. Again, in higher mode analysis, the beam resistance depends only 

on flexural torsional modes. As for channel section, the mode shapes of the Tee section are 

presented in Fig. A2 of the Appendix.  
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Fig.4: bar with singly symmetric I and Tee cross sections, (a): boundary conditions and load 

application, (b): singly-symmetric I section dimensions and (c): Tee section dimensions. 

 

 

L Py Pz P Pz Pcr,th Present Abaqus Mode Error 

(m) (kN) min(Py, Pz) B3Dw B31OS type (%) 

2 31150,40 1758,56 3280,87 1149,96 1149,96 1149,96 1152,70 FT 0,24 

3 13844,62 781,58 2185,65 577,88 577,88 577,88 578,33 FT 0,08 

4 7787,60 439,64 1802,32 354,51 354,51 354,51 354,63 FT 0,03 

5 4984,06 281,37 1624,89 240,42 240,42 240,42 240,46 FT 0,01 

6 3461,16 195,40 1528,52 173,59 173,59 173,59 173,59 FT 0,01 

7 2542,89 143,56 1470,40 130,99 130,99 130,99 131,00 FT 0,01 

8 1946,90 109,91 1432,68 102,21 102,21 102,21 102,21 FT 0,01 

 

Table 3a: Singly-symmetric I-section, numerical and analytical buckling loads variation versus length 
L. (FT: Flexural-Torsional mode). 

 
 

Higher buckling loads L=4m 

Mode 
number 

Pcr 
(Theory, kN) 

Present 
B3Dw 

Abaqus 
B31OS 

Mode 
type 

Error 
% 

1 354,51 354,51 354,63 FT 0, 03 

2 1149,96 1149,96 1152,70 FT 0,23 

3 2354,08 2354,10 2369,20 FT 0,63 

4 4004,48 4004,50 4053,80 FT 1,20 

 
Table 3b: Singly-symmetric I-section, numerical and analytical solutions buckling loads of the first 

four modes.  
  

a b c 

150mm 

10.7mm 

300mm 

7.1mm 
L 

P 

u,v,w,x =0 v,w,x =0 

150mm 
10.7mm 

7.1mm 300mm 

10.7mm 
75mm  



    
27 

 

L Py Pz P Pz Pcr,th Present Abaqus Mode Error 

(m) (kN) min(Py,Pz) B3Dw B31OS type (%) 

2 17934,87 1563,79 459,95 403,15 403,15 403,15 402,99 FT 0,04 

3 7971,05 695,02 447,52 328,30 328,30 328,30 328,07 FT 0,07 

4 4483,72 390,95 443,17 253,51 253,51 253,51 253,31 FT 0,08 

5 2869,58 250,21 441,16 191,03 191,03 191,03 190,90 FT 0,07 

6 1992,76 173,75 440,06 144,90 144,90 144,90 144,82 FT 0,06 

7 1464,07 127,66 439,40 112,09 112,09 112,09 112,04 FT 0,04 

8 1120,93 97,74 438,98 88,64 88,64 88,64 88,61 FT 0,03 

 

Table 4a: Tee section, numerical and analytical buckling loads variation versus length L, 

(FT: Flexural-Torsional mode). 

 

Higher buckling loads L=4m 

Mode 
number 

Pcr 
(Theory, kN) 

Present 
B3Dw 

Abaqus 
B31OS 

Mode 
type 

Error 
% 

1 253,51 253,51 253,31 FT 0.08 

2 403,14 403,15 402,99 FT 0.04 

3 459,86 459,87 460,10 FT 0.05 

4 508,78 508,78 510,02 FT 0.24 

 

Table 4b: Tee section, numerical and analytical solutions buckling loads of the first four modes.  

  



    
28 

 

Example 3: Buckling analysis of beam with arbitrary cross sections  

This arbitrary cross section has been studied by Papp [9]. The properties of this cross-section are 

produced in figure 5. In the present study, the buckling loads have been computed in terms of the 

slenderness L varied from 2 to 8m. The analytical and the numerical buckling loads are summarized 

in Table 5. The present model is compared to Abaqus simulations. Since the cross section is 

arbitrary, the analytical solutions of the buckling load are not straightforward. In the present 

model, they have been obtained numerically by solutions of Eq (42). For this aim, the uncoupled 

buckling loads Py, Pz and P are needed. They are given for the purpose in table 5. The analytical 

results are enclosed in column 5 for comparison.  The analytical and the numerical results of the 

present model concord well. Moreover, Papp [9] considered only the slenderness L=4m and 

obtained a buckling load Pcr=299.16 kN. This result is in good agreement with our model where 

Pcr=299, 07 kN is obtained numerically and 299.06 analytically. Let us remind that for this section, 

all the buckling modes are flexural-torsional buckling. Displacements v, w and the torsion angle x 

are present in all modes.  

For this section effects of higher buckling modes are considered for the beam length L = 4 m. For 

this length, the first four buckling loads have been computed. They are presented in Table 6. It is 

confirmed that all the higher modes are also Flexural-Torsional (FT). A good agreement between 

the different solutions is remarked. The error does not exceed 1%. The first four buckling mode 

shapes of this section are given in Fig. A3 of the appendix.  
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               Fig.5: bar with arbitrary section, boundary conditions, load application and cross-section 
dimensions.  

 

L Py Pz P Pcr,th Present Abaqus Mode Error 

(m) (kN) (Eq,42) B3Dw B31OS type (%) 

2 2429,11 7575,41 808,82 764,32 764,36 771,94 FT 0,98 

3 1079,60 3366,85 452,85 421,51 421,53 421,27 FT 0,06 

4 607,28 1893,85 328,27 299,06 299,07 299,13 FT 0,02 

5 388,66 1212,07 270,60 239,68 239,69 239,35 FT 0,14 

6 269,90 841,71 239,27 204,52 204,52 204,20 FT 0,16 

7 198,29 618,40 220,39 179,58 179,57 179,29 FT 0,16 

8 151,82 473,46 208,13 149,95 149,89 149,89 FT 0,00 

 

Table 5: Arbitrary section, numerical and analytical buckling loads variation versus length L. 

(FT: Flexural-Torsional mode). 

 

 

Higher buckling loads L=4m 

Mode 
number 

Pcr 
(Theory, kN) 

Present 
B3Dw 

Abaqus 
B31OS 

Mode 
type 

Error 
% 

1 299,06 299,07 299,13 FT 0.02 

2 608,91 608,65 607,55 FT 0.18 

3 764,32 764,37 765,22 FT 0.11 

4 1531,36 1531,61 1534,80 FT 0.21 

 

Table 6: Arbitrary section, numerical and analytical buckling loads of the first four modes. 

(FT: Flexural-Torsional mode) 
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4.2 Lateral buckling beam analysis 

In section 3-2, closed form solutions have been attempted for lateral buckling of beam with doubly 

symmetric cross-sections under uniformly and concentrated loads. Load height parameter is taken 

into consideration. These solutions are able to find higher lateral buckling moments of the beam. 

These solutions are checked below following the same procedure as for buckling analysis 

considered previously. For this aim, the analytical solutions for each load case are computed and 

compared to the numerical simulations resulting from the finite element approach of the present 

model (B3Dw), from beam elements of Abaqus and Adina codes. The same material data of the 

steel is used. In the study, the cross-section IPE300 (h=300, b=150, tf =10.7, tw=7.1 mm) is adopted. 

In a first stage, the lower buckling moment variation in terms of the slenderness L and the load 

height position is studied. Load position of the load is on the Shear Centre point (SC), on Bottom 

Flange (BF) or Top Flange (TF). The study is followed by consideration of the effects of higher modes 

and loading applications for a fixed slenderness.  

The variation of the lower buckling moment (k=1) in terms of the slenderness L varied from 4 to 8 

m is depicted in Fig. 7 for the 3 load positions. The uniform load case is in Fig.7a and the 

concentrated load case follows in Fig. 7b.  One remarks that for these load cases, the lateral 

buckling strength is best when load is on (BF) and the lower values are obtained when the loads are 

on (TF) position. 

For each case and load position, a good agreement between the proposed analytical and numerical 

solutions of the present model with the Abaqus beam element. This is true for the two load cases 

and the three load positions. Moreover, Adina’s simulations overestimate the lateral buckling 

strength when load is on bottom flange.  The discrepancy is not important and decreases with the 

slenderness. 



    
31 

 

For higher lateral buckling modes studies, the beam length L=6m is selected in the analysis and the 

first four modes of the beam are researched in terms of load positions for the two load cases. 

Results of the uniformly load case are presented in Fig.8 a-c, followed by the concentrated load 

case in fig. 9a-c. In the ordinate, the non-dimensional buckling moment Mcr(k)/Mcr,ref are reported. 

For each load position, Mcr(k) denotes the buckling moment of mode k and Mcr,ref is the buckling 

moment of the first mode for load position on SC. These values are respectively Mcr,ref =94.23 kNm 

for the uniformly load case and Mcr,ref =113.22 kNm for the concentrated load case. One can check 

again that: 

- All the results have the same tendency in terms of the mode number and load position. A good 

agreement is observed between the present model (theory and B3Dw) and the other finite 

elements codes.  

- A discrepancy is remarked with Adina code for the uniformly distributed load case when 

loadings on top or bottom flange. This finding has been also reported in [43].  The maximum 

error of 8% is obtained for the beam under distributed load for load position on top flange 

(Fig.8b). 

- One remarks that the analytic solutions are accurate for the both load cases and for load 

position on shear and top flange.  Moreover, a small difference is observed for the concentrated 

load when load is on the bottom flange. The difference is not higher than 3%.  

- Important results are obtained on the effect of the variation of the buckling moment in terms of 

the mode number. 

 Under distributed load, the increase of the buckling moment Mcr is very sensitive to load 

positions.  

 For the case of concentrated load, the effects of load position are present for odd number 

mode while for even number mode, the buckling moment is independent of load position. 
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One obtains for k=2 and k=4, the ratio is respectively 3.93 and 15.41 for the three load 

positions (Fig.9a-c). This important result is in agreement with the analytical solutions 

derived in (48). 

- Under uniformly distributed load (Fig.8), the increase of the ratio Mcr(k)/ Mcr,ref in the mode 

number 4 compared to the 1st mode reaches respectively 12.77, 13.30 and 13.86 for TF, SC and 

BF positions.  

- In the concentrated load case (Fig.9), the improvement is higher. At mode 4, the ratio reaches 

the same value 15.41 for all the 3 load positions. 

- One can assess obviously, that this important increase of the beam lateral buckling resistance 

when higher modes are considered can lead to more efficient improvement of the beam 

strength capacity against instability phenomenon.  

 

 

 

 

 

 

 

Fig.6: Simply supported beam under distributed and concentrated loads with load positions on top 

flange (TF), shear centre (SC) and bottom flange (BF).  
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Fig.7: Variation of the lower buckling moments in terms of the slenderness L. (a) uniformly 

distributed load, (b) concentrated load case. 
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Fig.8: Doubly symmetric I beam under uniformly distributed load: theoretical and numerical 

buckling moments of the first four modes in terms of load height position and the mode number k.  

((a): SC, (b): TF and (c): BF)). 
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Fig.9: Doubly symmetric I beam under concentrated load, theoretical and numerical buckling 

moments of the first four modes in terms of load height position and mode number k.  

((a): SC, (b): TF and (c): BF)  

 

 

In all the previous cases, there is an excellent agreement between the proposed methods 

(Analytical, FEM) and those obtained by Abaqus or Adina, confirming the accuracy and efficiency of 

the present methodology. Closed-form solutions are proposed for higher buckling loads. In more 

general cases, the finite element approach should be more efficient. In what follows, effects of 

higher buckling modes in design according to Eurocode 3 [27] are first discussed and applications of 

higher modes in buckling and lateral buckling strength capacity are presented.  
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5. Incidence of higher buckling loads on strength capacity  

5.1.1 Buckling strength capacity 

According to the Eurocode 3 (EC3) [27] adopted in Europe, for a column with a cross section A and 

a yield stress  fy, the strength capacity is computed in terms of the buckling loads according to the 

following relationship: 

𝑵𝒃,𝒓𝒅 = 𝝌𝑨𝒇𝒚                 (50)  

The reduction factor is carried out in terms of the reduced slenderness  𝜆̅ = √
𝐴𝑓𝑦

𝑃𝑐𝑟
  and the 

imperfection curves  , given by:  

𝜒 =
1

𝜙+√𝜙2−𝜆̅2
     Where 𝜙 = 0.5(1 + 𝛼(𝜆̅ − 0.2) + 𝜆̅2)                 (51a,b) 

is an imperfection coefficient. It is function on the cross-section shape and the steel yield stress 

fy. This coefficient is given for 5 reference curves denoted (a0, a, b, c, d). To our knowledge, these 

curves are good only for imperfection and buckling in bending modes only (Euler’s buckling). This 

means that the buckling analysis is under 2D assumption. The choice of the buckling curves is 

function on the cross-section shapes [EC3, Table 6.2]. As an example, in the case of an I-section 

with short flanges (classical I sections, for which the ratio h/b>1.2), the curve a is used when Pcr= Pz 

(i.e axis z-z). The curve b is chosen when Pcr=Py (i.e axis yy).  For I section with large flanges h/b <1.2, 

the curves b and c are used respectively. In 3D buckling analysis, the buckling load should be either 

Py, Pz or P. In the last case, there is no recommendation for the choice of the imperfection curve 

that must be used when Pcr=P.  Similar comment is true for the results of example 3 and 4 where 

all buckling modes are flexural-torsional. To our opinion, since the torsion stresses due to warping 

are more important than the bending stresses, it would be prudent and reasonable to adopt the 

curve d in the presence of pure torsion or flexural-torsional buckling modes. This decision will be 

considered hereafter. In order to evaluate the approach suggested in EC3 to treat buckling strength 
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of thin-walled elements and to illustrate the effect of higher buckling modes on strength capacity 

examples are presented herein. In the analysis, we admit that we are in presence of compact cross 

section (section class 4 not considered). 

 

5.1.2 Examples 

Example 1: Buckling of an unrestrained and braced simply supported beams  

An unrestrained and restrained beam with a total length L=9m with a doubly symmetric cross-

section, namely HP 400*122 (h=34.80, b=39, tf=1.40, tw=1.40) is considered. The steel grade S235 

(fy=235 MPa) is admitted. The strength of the beam is studied under unrestrained (Fig 10, case 1) 

and restrained conditions in presence of braces (Fig. 10, cases 2-4). In the last cases, the braces are 

located at the mid-height of the beam. To isolate the effect of bracing on the beam, null 

flexural and torsional rigidity are imposed at the assembly beam-bracing (i.e. full rigid bracings). 

The adopted boundary conditions at brace positions are illustrated in Fig.9. Linear buckling analyses 

are carried out using B3dw in order to examine the bracing effects on critical load values of the 

beams. These resulting buckling loads are used in design of the beam strength capacity according to 

EC3 strategy. 

The buckling loads of the 4 cases are summarized in table 7. The analytical and the numerical 

buckling loads Py, Pz and P are reported for each load case. The buckling loads are used in the 

computation of the reduction buckling ratio according to (51). The bar strength capacity Nb,rd are 

then obtained for each case. One can remark that for the unbraced beam (case 1), the bar buckles 

according to the first mode. The lower buckling modes are in bending about the weak axis followed 

by the torsion buckling load. Due to these modes buckling, the buckling ratio is near 0.53. The loss 

due to buckling is near 47%. In presence of braces (cases 2-4), the bar buckles according to higher 

modes and the buckling loads increase accordingly. The bar strength is improved efficiency and the 
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loss is only 11% in the last case. This value is acceptable and one can conclude that the buckling 

effect has been reduced a minimum. To reach this improvement, braces in all directions have been 

necessary. 

 

 

 

 

 

 

 

Fig. 10: Boundary conditions of unbraced and braced beams. 

 

case Ly Lz L Afy 
Analytical B3Dw 

Py Pz P Py Pz P 

1 9 9 9 

3664.36 

8896.81 3544.08 6133.80 8896.81 3544.08 6133.79 

2 9 4 .5 4.5 8896.81 14176.33 15643.57 8896.81 14176.33 15643.57 

3 9 3 3 8896.81 31896.75 31493.18 8896.81 31896.75 31493.18 

4 3 3 3 80071 31896.75 31493.18 80071.32 31896.75 31493.18 

 

Tab 

(cont) 

𝜆̅y 𝜆̅z 𝜆̅ y z   
Nb,rd 

present 
crPcr/Afy 

Strength 

loss 

0.642 1.017 0.773 0.816 0.530 0.596 0.530 1942.11 0.97 47% 

0.642 0.508 0.484 0.816 0.838 0.791 0.791 2898.51 4.27 21% 

0.642 0.339 0.341 0.816 0.929 0.893 0.816 2990.12 2.43 18% 

0.214 0.339 0.341 0,99 0.929 0.893 0.893 3272.00 8.59 11% 

 

Table 7: Buckling loads and strength capacity of unbraced and braced beam  

z 

v,w,x =0 u,v,w,x =0 

Case 1 

P x 

9m 

z Case 2 

P x 

4.5m 4.5m z 

y 

3m 3m 

z Case 4 

P x 

3m 3m 3m 

v,x =0 

z Case 3 

P x 

3m 
w =0 w =0 

v,x =0 

v,x =0 
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Example 2: Buckling of an unrestrained and braced cantilever beams 

In this example, effects of braces on buckling and strength of a cantilever beam are studied. At the 

clamped end of the beam, all displacements, rotations and warping are restrained. This means that 

the 7 DOFs of the origin are locked. The cross-section HEA 500 (h=490, b=300, tf=23, tw=12mm) is 

adopted in the study. The unstrained beam (Fig.11, case1) has a span L=12 m. In addition, five 

bracing scenarios are investigated for the beam. Their positions with the conditions are illustrated 

in (Fig.11, case 2-6). For each case, the buckling loads are computed and the bar strength is found 

accordingly.  For these cases, no accurate analytical solutions for 3D buckling loads are available. 

This is the reason why only numerical buckling loads are reported in table 8. They are obtained by 

the beam finite element presented in this model (B3Dw).  The buckling loads are used in the 

computation of the reduction buckling ratio according to (51). The bar strength capacity Nb,rd  are 

then obtained for each case.  

 

In the case of the unrestrained beam (case 1), the lower buckling load is about the weak axis z-z. 

This value is very low (Pz=373 kN). This leads to a very low reduction factor =z=0.073. The loss 

due to buckling is very important (93%).  When the braces are provided in cases 2 and 3, the bar 

strength has been improved and the loss due to buckling decreases to 54% and 48% respectively. 

Moreover, one remarks, that in case 3, the lower buckling is about the strong axis y (min =y=0.52). 

This means, that braces are needed in the 3 directions as adopted in the last cases (case 4-6). The 

strength of the column can be improved as in the case 6 where braces are positioned at 3, 6, 9 and 

12m.In this last case, buckling effect on strength capacity is reduced at minimum (only 13% loss 

with regard to full strength).  

  



    
42 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Boundary conditions and position of unbraced and braced beams. 

case Afy 
B3Dw 

𝜆̅y 𝜆̅z 𝜆̅ 
Py Pz P 

1 

4641 

 

3129.44 373.14 5480.75 1.218 3.527 0.920 

2 3129.44 3053.43 8440.04 1.349 1.436 0.981 

3 3129.44 7730.64 13604.13 1.218 0.775 0.584 

4 25608.15 7730.64 13604.13 0.426 0.775 0.584 

5 1277792 15237.47 21892.69 0.060 0.552 0.460 

6 215635.60 25701.48 33446.18 0.15 0.42 0.37 

 

Tab 

(cont ) 
y z   

Nb,rd 

present 
crPcr/Afy 

Strength 

 loss 

1 0.519 0.073 0.509 0.073 339.80 0.08 93% 

2 0.519 0.461 0.616 0.461 2137.90 0.66 54% 

3 0.519 0.740 0.721 0.519 2408.26 0.67 48% 

4 0.916 0.678 0.714 0.678 3146.58 1.66 28% 

5 1 0.813 0.801 0.801 3719.39 4.71 20% 

6 1 0.884 0.866 0.866 4019.32 7.20 13% 

 

Table 8: Buckling loads and strength capacity of unbraced and braced cantilever beams. 

  

12m 

  6m 6m 

Case 3 
z 

P x 

v ,x=0 

4x3m 3x4m 

12m 

Case 1 
z 

P x 

v ,x=0 Case 2 
z 

P x 

v ,x= 0 Case 5 z 

P x 

v ,x= 0 Case 6 z 

P x 

v,x=0 

  6m 6m 

Case 4 
z 

P x 

Fully clamped conditions 

w=0 w=0 

w=0 w=0 w=0 w=0 w=0 w=0 
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5.2 Beam lateral buckling strength capacity 

According to the Eurocode 3 (EC3) [27], The bending moment resistance of a beam in bending with 

lateral torsional buckling taken into account should be determined with: 

𝑴𝒃,𝒓𝒅 = 𝝌𝑳𝑻 𝑾𝒇𝒚                                                              (52) 

Value of the reduction factor χLT is functioned on non-dimensional slenderness 𝝀̅𝑳𝑻 = √
𝑾𝒇𝒚

𝑴𝒄𝒓
  and the 

imperfection curves given in (51). 

An evaluation of the effect of bracing on the lateral buckling capacity of a simply supported beam is 

of practical importance. For this aim, a thin-walled bisymmetric section (IPE500) beam with length  

L = 12 m is investigated in this example. Unbraced and braced beams are subjected to uniformly 

distributed load at positions SC, BF and TF. The geometry, with boundary conditions and position of 

braces are depicted in Fig. 12 for the studied cases (case1 to 4). The design buckling resistance 

moment Mb,rd are reported in Fig. 13 for each case and normalized to the full bending strength 

moment (Mrd=515.59 kNm).  One remarks that in the unrestrained beam (case 1), the loss of 

bending strength due to lateral buckling is very important and depend on load position. It reaches 

respectively 75.70 and 65% for TF, SC and BF load positions. In presence of bracing, the beam 

strength increases non linearly in terms of the number of bracing and in presence of 3 braces, one 

observes that the loss is only 12%, for the all the load positions. The same study has been 

investigated for the same beam under concentrated load and the same boundary conditions as in 

Fig.12. The same tendency has been observed, but the improvement of the beam strength is best. 

In presence of 3 braces (case 4), the loss is only 9% (Fig.14). 

 The effect of braces in the improvement of beam strength against lateral buckling is then more 

evident and proven. Let us remind that effects of bracing in design are always based on empirical 

assumptions. 
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Fig. 12: Boundary conditions and position of unbraced and braced beams 

 

Fig.13: Beam under uniformly distributed load: Effect of bracing and load position on the lateral 

buckling strength capacity.  
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Fig.14: Beam under concentrated load: Effect of bracing and load position on the lateral buckling 

strength capacity.  

Conclusion 

Higher buckling and lateral buckling of beams with open cross sections have been investigated in 

the present work by analytical and the Finite Element Method approaches. Firstly, improved closed-

form solutions for the buckling of bars according to higher buckling modes are derived for simply 

supported bars with singly symmetric cross-sections. For bars with arbitrary cross-section, a semi-

analytical procedure is attempted. In lateral buckling, analytical solutions attempts have been 

carried out for higher lateral buckling moments of doubly symmetric I beam under uniformly and 

concentrated loads, the influence of load position on the stability of the beam has been included in 

the solution. The analytical and the FEM numerical results of the present model are compared to 

some available benchmark solutions of the literature and to finite element simulations of the 

commercial codes (Abaqus and Adina). The main conclusions of the present contribution can be 

drawn as follows: 
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- By including higher buckling modes, one assesses the behaviour of the unrestrained and the 

braced structures.  

- For singly symmetric, bending or coupled flexural torsional modes should be present. 

- For arbitrary cross sections, fully coupled flexural-torsional modes control the buckling. 

- The present model is in good agreement with benchmark solutions. The analytical solutions are 

original and concord well with the numerical simulations. 

- The large number of numeric examples shown that B3Dw element is successful in higher 

buckling analyses in presence of arbitrary cross sections and any boundary conditions, where 

analytical solutions fail and are limited to simple cases. 

- In buckling strength, the Eurocode 3 solutions are limited to classical bending buckling modes. 

Some improvements are proposed in the present study in presence of torsion modes. 

- In lateral buckling, original results are obtained when higher modes are considered. Under 

distributed load case, the increase of the buckling moment Mcr is very sensitive to load positions 

and mode number. However, for the case of concentrated load, the effects of load position are 

present for odd number mode while for even number mode the buckling moment Mcr is 

independent to load position.  

- Finally, it can be concluded that consideration of higher buckling modes are very important in 

design. They can help the understanding of the behaviour of the braced beams in presence of 

stability phenomena. Effect of braces can be assessed accurately. Their number, their directions 

and positions can be optimized in order to control the stability problem and to cover the full 

strength of bar structures. 
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APPENDIX 

Figure A.1-3 depict the first four mode shapes of the 4m columns with channel section, Tee cross 

section and arbitrary cross section. In the column with channel section (Fig.A1), pure bending 

modes are present in mode 1 and 4. The second and the third are flexural torsional modes (w and 

x coupled). In the column Tee section (Fig.A2), all modes are flexural torsional modes (v and x 

coupled). No pure bending mode is present. The mode shapes of the column with arbitrary cross 

section (Fig.A3) are all flexural-torsional.  All displacements are present (v, w andx coupled). 

 

 

 

 

 

 

  

  

 

Fig. A1: Bar with Channel cross-section, the first four buckling mode shapes (B3Dw element). 
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Fig. A2: Bar with Tee cross-section, the first four buckling mode shapes (B3Dw element). 
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Fig. A3: Bar with arbitrary cross-section, the first four buckling mode shapes (B3Dw element). 
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