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CONTROL OF HYPERBOLIC AND PARABOLIC EQUATIONS ON NETWORKS AND

SINGULAR LIMITS

JON ASIER BÁRCENA-PETISCO, MÁRCIO CAVALCANTE, GIUSEPPE MARIA COCLITE, NICOLA DE NITTI,

AND ENRIQUE ZUAZUA

Abstract. We study the controllability properties of the transport equation and of parabolic equations

posed on a tree. Using a control localized on the exterior nodes, we prove that the hyperbolic and the
parabolic systems are null-controllable. The hyperbolic proof relies on the method of characteristics, the

parabolic one on duality arguments and Carleman inequalities. We also show that the parabolic system may

not be controllable if we do not act on all exterior vertices because of symmetries. Moreover, we estimate the
cost of the null-controllability of transport-diffusion equations with diffusivity ε > 0 and study its asymptotic

behavior when ε→ 0+. We prove that the cost of the controllability decays for a time sufficiently large and

explodes for short times. This is done by duality arguments allowing to reduce the problem to obtain
observability estimates which depend on the viscosity parameter. These are derived by using Agmon and

Carleman inequalities.

1. Introduction

In the past few decades, models based on partial differential equations have been very effective in tackling
many problems dealing with flows on networks (e.g. irrigation channels, gas pipelines, blood circulation,
vehicular traffic, supply chains, air traffic management – see [11] for a survey of the topic).

In particular, linear advection-diffusion equations on graphs have been employed to describe the flow of a
fluid with a dissolved contaminant through a network of one-dimensional cracks (see [70]). Following [31], we
represent the network by a finite, directed, and connected graph G = (V, E) with vertices V = {v1, . . . , vn}
and edges E = {e1, . . . , em} ⊂ V × V. For every edge e ∈ E , we define an incidence vector (ne)v∈V by

ne(v) = −1 if e = (v, ·), ne(v) = 1 if e = (·, v), and ne(v) = 0 otherwise.

Here, ne plays the same role as the normal vector for problems in multi-dimensional domains. For any v ∈ V,
we define the set of incident edges E(v) := {e ∈ E : ne(v) 6= 0}; we also distinguish between inner vertices
V0 := {v ∈ V : |E(v)| ≥ 2} and boundary or external vertices V∂ := V\V0. We suppose that for all v ∈ V0

there are e1, e2 ∈ E(v) such that ne1(v) = −1 and ne2(v) = 1. We may model the proposed problem with
the system

(1.1)



ae∂ty
e
ε + be∂xy

e
ε − ε∂2

xxy
e
ε = 0, in (0, T )× e, e ∈ E ,

yeε(t, v) = uvε(t), on (0, T )× V∂ ,
ye1ε (t, v) = ye2ε (t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v)(b

eyeε − ε∂xyeε)ne = 0, on (0, T )× V0,

yε(0, ·) = y0, on E ,

with ae, be, ε > 0 and for a fixed time-horizon T > 0. Each edge is identified with a closed interval [xe, x̃e],
and the left end (resp. right end) is identified with the vertex v such that ne(v) = −1 (resp. ne(v) = 1).
We shall also use the notation yε := (ye1ε , . . . , y

em
ε ) and u = (uv1ε , . . . , u

vk
ε ), where k = |V∂ | and m = |E|. The

boundary condition (1.1)3 is a continuity condition in the internal nodes and (1.1)4 implies that the flux of
the mass is null. Here, yeε denotes the concentration of the contaminant and be the flow rate in each edge of
the graph and ueε is the boundary datum on each boundary vertex of the graph, which we may use as control.
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We additionally assume

(1.2)
∑
e∈E(v)

bene(v) = 0, v ∈ V0,

which is a balance relation for the flow across a junction. In addition to being an assumption used in
the parabolic energy estimate to annihilate the terms at junctions, condition (1.2) is motivated by the
corresponding hyperbolic problem, for which it ensures that energy does not increase at junctions. Such
condition is also pivotal in proving the vanishing viscosity approximation result in [32].

v1

v4

v2 v3 v5

v6 v7

e1

e2 e3

e4

e5 e6

Figure 1. An example of tree with edges e1 = (v4, v1), e2 = (v2, v4), e3 = (v3, v4), and
e4 = (v5, v4), e5 = (v6, v5), e6 = (v7, v5); inner vertices V0 = {v4, v5} (blue), and boundary
vertices V∂ = {v1, v2, v3, v6, v7}. We split the set of boundary vertices into inflow and
outflow vertices: Vin∂ = {v2, v3, v6, v7} (green) and Vout∂ = {v1} (red), respectively. The set
E(v4) = {e1, e2, e3, e4} denotes the edges adjacent to the junction v4. In a similar manner,
we can split the set E(v4) by E in(v4) = {e2, e3, e4} and Eout(v4) = {e1} into edges that
go into or out of the vertex v4. The arrows illustrate the flow direction. The non-zero
incidence vectors are ne1(v1) = ne2(v4) = ne3(v4) = ne4(v4) = ne5(v5) = ne6(v5) = 1 and
ne1(v4) = ne2(v4) = ne3(v4) = ne4(v5) = ne5(v6) = ne6(v7) = −1.

In this paper, we study the appropriate boundary data (boundary control) in order to lead the solution of
the parabolic problem (1.1) to rest; and, in particular, its behavior as the diffusivity parameter ε vanishes.
In other words, we are interested in controlling the solution of (1.1) across the network and in studying the
cost of controllability as ε→ 0+, i.e. as the solution of (1.1) approaches the one of the hyperbolic problem

(1.3)



ae∂ty
e + be∂xy

e = 0, in (0, T )× e, e ∈ E ,
ye(t, v) = uv(t), on (0, T )× Vin∂ ,
ye1(t, v) = ye2(t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ Eout(v),∑
e∈Ein(v) b

eye = ye1(t, v)
∑
e∈Eout(v) b

e, on (0, T )× V0, e1 ∈ Eout(v),

y(0, ·) = y0, on E ,

where the contaminant does not undergo diffusion and is only driven by the (constant) velocity of the liquid
flow. Here, Vin∂ are the vertices from which the flow is coming into the network (i.e. with just outgoing edges),
Vout∂ are the vertices where the flow goes out of the network (i.e. with just incoming edges), E in(v) are the
edges incoming into v, and Eout(v) are the edges outgoing from v (see Figure 1). The junction condition (1.3)3

expresses continuity of the concentrations exiting a junction, and (1.3)4 gives the conservation of the mass.
Throughout this paper, we will mainly consider tree-shaped networks (that is, networks without loops), an
example of which is given in Figure 1.
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We remark that, in order to properly approximate the hyperbolic problem, at the parabolic level, we
needed to choose suitable complementary junction conditions (which amounts to picking a realization of the
Laplacian on graphs; see [69]). In particular, for the hyperbolic problem, the number of coupling conditions
at each junction v ∈ V0 is |Eout(v)|, which only suffices to guarantee conservation of mass at the junction
and to prescribe the concentrations at the outflow edges; on the other hand, for the parabolic problem, the
number of coupling conditions at each junction v ∈ V0 is |E(v)|, which allows to guarantee continuity of the
solution and conservation of mass at the junction.

In order to obtain and understand the limiting behaviour of the controls for (1.1) we study two additional
problems that have interest on their own.

• The first problem is the controllability of (1.3) without the assumption (1.2). We show that system
(1.3) is controllable for a sufficiently large times, and not controllable for small times. In the process,
we show that determining the time from which the system is null-controllable is not a simple task
(compared to determining it in segments) since it depends on the geometry and metric of the network.
Moreover, in networks with loops, applying a null control may not be enough to take the solution to
rest. This problem has interest on its own since (1.3) models an inviscid flow on the network.

• The second problem is the study of null-controllability of parabolic systems in network. In particular,
we study the controllability of

(1.4)



ae∂ty
e − µe∂2

xxy
e + be(t, x)∂xy

e + ce(t, x)ye = 0, in (0, T )× e, e ∈ E ,
ye(t, v) = uv(t), on (0, T )× V∂ ,
ye1(t, v) = ye2(t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) µ

e∂xy
ene = γ(t, v)y(t, v), on (0, T )× V0,

y(0, ·) = y0, on E ,

which generalizes (1.1). Here, we assume inf a, inf µ > 0. We show that (1.4) is null controllable
by acting on all the external vertices (except at most one); more surprisingly, it may not be null-
controllable if we just act on a smaller subset of the boundary vertices. This already allows to
determine the controllability of (1.1), and it has interest on its own since (1.4) models diffusive
processes in networks.

Our main novel contributions can be then summarized as follows:

• By the method of characteristics, we control the hyperbolic problem (1.3) to zero (for suffiently long
times) by acting on the incoming vertices and also discuss about the optimal time for which (1.3) is
null-controllable, which is not as trivial in graphs as in segments.

• By H.U.M. (Hilbert Uniqueness Method, introduced in [61, 62]) and Carleman inequalities, we control
the parabolic problem (1.4) to zero by acting on all the boundary vertices in V∂ except at most one –
here, as explained later in Proposition 3.2, we cannot steer the system to zero by just acting on fewer
vertices. We do it with a Carleman inequality, with the purpose that our results may also be useful
for researchers interested in bang-bang controls, inverse problems, the controllability of the semilinear
heat-equations, insensitizing problems, etc. (see [76]). Analogously, we also show a controllability
result by acting in the interior of a sufficient number of edges.

• We estimate on the cost of controllability for the parabolic problem (1.1), which depends on the
time-horizon: for small times, we prove the blow-up of the cost of controllability; for sufficiently long
time horizon, we prove its decay.

1.1. Flows on networks, control and singular limits. For conservation laws on R, the vanishing viscosity
limit as ε→ 0+ of the uniformly parabolic viscous regularization

∂tyε + ∂xf(yε) = ε∂2
xxyε

is pivotal in Kružkov’s well-posedness theory for entropy solutions (see [28, 46] for a modern exposition).
Vanishing viscosity limits of scalar conservation laws with degenerate (second-order) diffusion have also
been extensively studied (see [49, 47, 9, 48] and references therein). For zero diffusion-dispersion limits
approximating entropy solutions, we refer to the large body of literature starting with the papers [74, 58].

The problem of singular limits related to scalar conservation laws modeling traffic flow on networks has
been addressed more recently in [22, 3, 20, 21]. The authors considered the vanishing viscosity approximation
of the traffic model (with constant or degenerate diffusivity) on a network composed by a single junction with
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n incoming and m outgoing edges. They proved that, under suitable coupling conditions in the junction,
the solution of the parabolic approximation exists and, as the viscosity vanishes, it converges to a solution
of the original problem (which is entropy admissible – in the sense of [3, 34]). In the context of Hamilton-
Jacobi equations, a convergence result for the vanishing viscosity approximation was established in [12] under
Kirchhoff-type conditions.

For linear transport equations, further results are available: in [32], suitable coupling condition that
guarantee conservation of mass, energy dissipation, and continuity are imposed and a vanishing viscosity
convergence result is established; on the other hand, in [40], the equations are coupled by transmission
conditions set at the inner node, which do not impose continuity on the unknown and, as the diffusion
coefficient vanishes, the family of solutions converges to the unique solution of the first order equations
and satisfies suitable transmission conditions at the inner node, which are determined by the parameters
appearing in the parabolic transmission conditions. In the present paper, we adopted the coupling conditions
of [32].

The study of uniform controllability problems for singular perturbations of partial differential equations
started with the pioneering works [62, Chapter 3], [59, 60, 67, 66]. In the context of linear advection-diffusion
equations in the vanishing viscosity limit, the first result was obtained by Coron and Guerrero in [27], where
they made a conjecture on the minimal time needed to achieve uniform controllability. Then, the estimates
on this minimal time are improved in [36] with a complex analytic method. The result of [27] was also
generalized in several space dimensions and for non-constant transport speed in [41].

For nonlinear transport terms, the only available results have been obtained by Glass and Guerrero (see
[37]) for the Burgers equation in the vanishing viscosity limit and later generalized by Léautaud for more
general flux functions in [57]. As for other systems, several results have been recently obtained: for the Stokes
system (see [6]), for an artificial advection-diffusion problem (see [24, 25]), and for fourth-order parabolic
equations (see [15, 68, 50]).

In the network setting, much fewer controllability results are available. The null-controllability of the heat
equation in trees with coefficients that depends on the space variable was established in [4]. In [29], the
controllability of several classes of PDEs on networks is considered (wave, Schrödinger, heat, beam, etc.): in
particular, in [29, Chapter 8.1] the heat equation with with Kirchhoff-type junction conditions is controlled
to zero by the action of a controller under suitable topological assumptions on the graph, which are needed as
their proof is based on the transmutation method. For the well-posedness, controllability, and stabilization of
several hyperbolic problems, we also point to [53, 52, 51, 54] and references therein (for models of thermoelastic
beams, linked plates, and plate-beam systems); and to [7, Chapter 1.15], [43, 45, 75, 30, 42, 44] (for models
arising in water flow, gas transport, etc.).

However, results on the controllability in the singular limit on networks are, to the best of our knowledge,
still open. With the present paper, we aim to address this gap in the literature.

We remark that, in the case of zero dispersion limit, the uniform control properties of the linearized
Korteweg-de Vries equation equation were studied in [38]; subsequently, in [39], the authors addressed the
case of zero diffusion-dispersion. Recent work on the KdV equation with a vanishing parameter in the diffusive
term include [13, 14]. On a star-graph, well-posedness and controllability results for KdV are also available
in the literature (see [16, 19, 18, 2]), but the uniform controllability problem has not been addressed yet.

1.2. Outline of the paper. The paper is organized as follows.
In Section 2, we introduce the preliminary information on the function spaces used throughout the work

and present the known results on the well-posedness of problems (1.3) and (1.4) and on the convergence of
(1.1) to (1.3) (which have been obtained in [32]).

In Section 3, we state our main theorems: a controllability result for the hyperbolic problem (1.3) on a tree
(for sufficiently long times); a controllability result for the parabolic problem (1.4); and an estimate on the
cost of controllability for the parabolic problem (1.1) (which depends on the time-horizon) as the diffusivity
parameter vanishes. Moreover, we present some pathological cases to illustrate the sharpness of our results.

In Section 4, we prove the controllability result for the transport equation on a tree by relying on the
classical method of characteristics: thanks to the flux conservation condition in (1.3), we are able to argue
analogously to the case of a bounded interval, where it suffices to take a null boundary control. We also show
that, using non-null boundary controls, we can control the system to zero in a shorter time-span.
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In Section 5, we use a duality argument (H.U.M.) and Carleman inequalities to prove the null-controllability
for the parabolic problem (1.4) with controls in the exterior vertices. We also prove that a similar result can
be obtained using controls localized in the interior of the edges of the network.

Sections 6 and 7 are dedicated to the singular limit problem. In the first one, we prove the blow-up of
the cost of controllability for the parabolic problem (1.1) and, in the second one, we prove the decay (for
sufficently long time-horizon). Our strategy is based on the H.U.M. and, in particular, on the ideas of [27, 41].
To prove the blow-up, we rely on an Agmon-type inequality. For the proof of the decay, we need to establish
a decay property for the L2-mass of the adjoint system and a Carleman-type inequality.

Section 8 concludes the paper with some open problems for future consideration.

2. Preliminaries

2.1. Function spaces on a network and parametrization of the edges. Each edge e ∈ E has a positive
length le and we identify it with the interval (0, le). More specifically, we state the following lemma.

Lemma 2.1 (Edge parametrization in a tree). Let G = (V, E) be a directed tree. Then, each edge can be
identified with an interval [xe, xe + le] such that for all v ∈ V there is Cv ∈ R such that

(2.1)

{
xe + le = Cv ∀e ∈ E in(v),

xe = Cv ∀e ∈ Eout(v),

Proof. Lemma 2.1 can be proved with an induction on the number of edges. The base case, a tree with one
edge, is trivial. Let us then assume that the property is true for a tree of N vertices and let us prove that it
holds for a tree of N + 1 vertices. It is well-known that there is at least one vertex u with degree 1 and with
an edge e incident in some vertex v ∈ V \ {u}. The graph (V \ {u}, E \ {e}) satisfies the inductive hypothesis,
and thus we can identify those segments in a way that they satisfy (2.1). Thus, we just have to identify the
edge e. If e ∈ E in(v), we might identify e with [Cv − le, Cv]. Otherwise, if e ∈ Eout(v) we might identify e
with [Cv, Cv + le]. �

Remark 2.1 (Parametrization of star-graphs). For a star-graph, we identify each edge e ∈ E in(v) as [−le, 0]
and each edge e ∈ Eout(v) as [0, le] .

v−1

v−2

v−3

v0

v1

v2

e−1e−2

e−3

e1

e2

Figure 2. An example of a star-graph (particular case of tree).

Throughout the paper, as in [32], we use the following notation for the space of square-integrable functions:

L2(E) := L2(e1)× · · · × L2(en) = {w : we ∈ L2(e), e ∈ E},
with the norm and scalar product

‖w‖2L2(E) :=
∑
e∈E
‖we‖2L2(e) and (w1, w2)L2(E) :=

∑
e∈E

(we1, w
e
2)L2(e).

Sometimes, we write
∫
E w dx :=

∑
e∈E

∫
e
we dx. We also use the (piecewise) Sobolev space

Hs
pw(E) = {w ∈ L2(E) : we ∈ Hs(e), e ∈ E},
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with

‖w‖2Hs
pw(E) :=

∑
e∈E
‖we‖2Hs(e) and (w1, w2)Hs

pw(E) :=
∑
e∈E

(we1, w
e
2)Hs(e).

Similarly, we define the spaces of (piecewise) k-times differentiable functions Ckpw(E). For s > 1
2 , we note

that the functions in Hs
pw(E) are continuous on e ∈ E , but may be discontinuous across the junction. For

s > 1
2 , we denote by Hs(E), the subspace of functions belonging to Hs

pw(E) which are also continuous across

the junction. We remark that every w ∈ H1(E) has a unique value w(v) at every vertex v ∈ V and we use
`2(V) to denote the set of possible vertex values.

Also, we define distance between vertices and layers of a tree as follows.

Definition 2.1 (Distance and layers on a graph). We define the distance d(v1, v2) between two vertices
v1, v2 in the graph G as the minimum number of vertices contained in a path joining them (if any, otherwise,
d(v1, v2) = ∞). In addition, for a tree G with root v, we define the i-th layer of the tree as the vertices at
distance i from v.

Throughout the paper, we use c or C to denote positive constants which may change from line to line and
that may depend on the network (namely, on parameters of the type ae, be, ce or le).

2.2. Well-posedness of the parabolic and hyperbolic problems. We recall a well-posedness result for
the parabolic problem (1.4) (see [32, Theorem 3]).

Theorem 2.1 (Well-posedness for the parabolic problem). For ae > 0, µe > 0, be ∈ L∞(0, T ;W 1,∞
pw (E) ∩

C0(E)) ∩ W 1,∞(0, T ;L∞(E)), γ ∈ W 1,∞((0, T ) × V0), ce ∈ L∞((0, T ) × E), y0 ∈ H1(E) ∩ H2
pw(E) and

uε ∈ C2([0, T ]; `2(V∂)), the parabolic problem (1.4) has a unique classical solution

yε ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1(E) ∩H2
pw(E)).

Similarly, in [32, Theorem 6], a well-posedness result for the transport problem was obtained.

Theorem 2.2 (Well-posedness for the hyperbolic problem). For any y0 ∈ H1
pw(E) and u ∈ C2([0, T ]; `2(Vin∂ )),

the hyperbolic problem (1.3) has a unique classical solution

y ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)).

Finally, the following convergence result holds (see [32, Theorem 10]).

Theorem 2.3 (Vanishing viscosity error estimate). For any y0 ∈ H1(E)∩H2
pw(E) and uε ∈ C2([0, T ]; `2(V∂)).

Let

yε ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1(E) ∩H2
pw(E)).

be the solution of problem (1.1) and

y ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)).

be the solution of the corresponding limit problem (1.3). Then,

‖yε − y‖L∞(0,T ;L2(E)) ≤ C
√
ε,(2.2)

with a constant C that depends on the time-horizon T but is independent of the diffusion parameter 0 < ε ≤ 1.

Example 2.1 (Explicit computations for the hyperbolic problem and continuity at junctions). Let us consider
the graph in Figure 3 made of the vertices v1, v2, v3, v4 and edges e1 = [v1, v3] ' [0, 1], e2 = [v2, v3] ' [0, 1],
and e3 = [v3, v4] ' [0, 1]. We consider the equation (1.3) with ae1 = ae2 = ae3 = be1 = be2 = 1 and be3 = 2.
Let us consider as initial datum y0 = 0 and as boundary datum u1 = 1 and u2 = 2. Then the solution can
be computed as follows: ye1 = 1t>x, ye2 = 2 · 1t>x, ye3 = 3

2 · 1t>1+ x
2

: this satisfies the flux conservation
condition be1ye1 +be2ye2 = be3ye3 at the junction expressed in (1.3)4. However, we note that, in this example,
the continuity across the junction is indeed lost from the parabolic system with vanishing viscosity even if the
controls are regular (only the weaker condition (1.3)3 is preserved).

As an additional example, let us consider the graph in Figure 4 made of the vertices v1, v2, v3, v4 and the
edges e1 = [v1, v2] ' [0, 1], e2 = [v2, v3] ' [0, 1], and e3 = [v2, v4] ' [0, 1]. We take ae1 = ae2 = ae3 = be1 = 1,
be2 = 1/3, be3 = 2/3. Let us consider as initial datum y0 = 0 and as boundary datum u1 = 1. Then
the solution can be computed as follows: ye1 = 1t>x, ye2 = 1t>1+ x

3
, ye3 = 1t>1+ 2x

3
: this satisfies the flux
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conservation condition be1ye1 = be2ye2 + be3ye3 at the junction expressed in (1.3)3. In this example, the
continuity is kept at the junction.

v1

v2

v3 v4

e1

e2

e3

Figure 3. Star-graph with edges
e1 = (v1, v3), e2 = (v2, v3), e3 =
(v3, v4); inner vertices V0 = {v3}
(blue), and boundary vertices V∂ =
{v1, v2, v4}. We split the set of bound-
ary vertices into inflow and outflow
vertices: Vin∂ = {v1, v2} (green) and
Vout∂ = {v4} (red), respectively.

v1 v2

v3

v4

e1

e2

e3

Figure 4. Star-graph with edges
e1 = (v1, v2), e2 = (v2, v3), e3 =
(v2, v4); inner vertices V0 = {v2}
(blue), and boundary vertices V∂ =
{v1, v3, v4}. We split the set of bound-
ary vertices into inflow and outflow
vertices: Vin∂ = {v1} (green) and
Vout∂ = {v3, v4} (red), respectively.

3. Main results

3.1. Control of the hyperbolic problem. Our first result concerns the null-controllability of problem
(1.3) on a tree. For the sake of simplicity, we consider coefficients that are constant in each edge; however,
as explained in Remark 4.2, the results are also valid for strictly positive space-dependent coefficients. In
particular, we are interested in controlling the flow across the network by means of controls placed on the
inflow vertices Vin∂ .

To this end, we define an upper bound and a lower bound on the time in which the information propagates
across the network (i.e., the maximal and minimal travel time of the characteristics across the network).

Definition 3.1 (Propagation time on a network). Let G = (V, E) be a tree. We define the functions T̂ , T̃ :
V → R+ as follows:

T̂ (v) = 0, T̃ (v) = 0 if v ∈ Vin∂ ,

T̂ (v) = sup
e=(ve,v)∈Ein(v)

(
T̂ (ve) +

aele

be

)
if v ∈ V0 ∪ Vout∂ ,

T̃ (v) = inf
e=(ve,v)∈Ein(v)

(
T̃ (ve) +

aele

be

)
if v ∈ V0 ∪ Vout∂ .

The times T̂ (v) and T̃ (v) are respectively the maximal and minimal propagation time required for information
to reach v ∈ V from a node in Vin∂ .

Since the network G has no loops (being a tree), we can prove inductively that T̂ and T̃ are well-defined.

Example 3.1 (Propagation times). Let consider the graph in Figure 3 with vertices v1, v2, v3, v4, and edges
e1 = [v1, v3] ' [0, 2], e2 = [v2, v3] ' [0, 1], and e3 = [v3, v4] ' [0, 2]. We consider the equation (1.3) with
ae1 = ae2 = ae3 = be1 = be2 = 1 and be3 = 2. We can compute the maximal travel time to reach v ∈ V as
follows:

T̂ (v1) = T̂ (v2) = 0, T̂ (v3) = sup
i=1,2

(
T̂ (vi) + li

)
= max{1, 2} = 2, T̂ (v4) = T̂ (v3) + l3

b3 = 2 + 1 = 3.

Moreover, we compute the minimal travel time to reach v ∈ V as follows:

T̃ (v1) = T̃ (v2) = 0, T̃ (v3) = inf
i=1,2

(
T̃ (vi) + li

)
= min{1, 2} = 1, T̃ (v4) = T̃ (v3) + l3

b3 = 1 + 1 = 2.
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By relying on this notion of propagation time and on the classical method of characteristics, we can prove
the following controllability result.

Theorem 3.1 (Null-controllability for the hyperbolic problem). Let G = (V, E) be a tree and let y be the

solution of (1.3) for u = 0. Then, y = 0 for all T ≥ maxv∈Vout
∂

T̂ (v).

The proof of Theorem 3.1 is given in Section 4.

Remark 3.1 (Generalization of the hyperbolic result). We can actually prove a stronger result: ye(T, x) = 0

for all x ∈ e = [v1, v2] ' [0, le] and T ≥ T̂ (v1) + aex
be .

Moreover, the following result regarding the minimal propagation time holds.

Proposition 3.1 (Minimal time for the null-controllability for the hyperbolic problem). Let G = (V, E) be

a tree. Then, system (1.3) is not null-controllable for T < maxv∈Vout
∂

T̃ (v).

Proposition 3.1 is also proved in Section 4. We will also observe (in Remark 4.3) that the time given in
Theorem 3.1 may not be optimal if we consider non-null controls. In addition, as we see below in Remark 4.4,
the optimal time for null-controllability can be almost any in [maxv∈Vout

∂
T̃ (v),maxv∈Vout

∂
T̂ (v)] (by possibly

using non-zero controls) by considering the right network, so the upper and lower bound are optimal if we
do not add any extra hypothesis on the structure of the network.

3.2. Control of the parabolic problem. Our next theorem provides the controllability of the parabolic
system (1.4) on tree-shaped networks by acting on the external vertices (except at most one) without any
further geometric constraint.

Theorem 3.2 (Controllability of parabolic systems of networks). Let G = (V, E) be a tree, ae > 0, µe > 0,
be ∈ L∞(0, T ;W 1,∞

pw (E) ∩ C0(E)) ∩W 1,∞(0, T ;L∞(E)), γ ∈ W 1,∞((0, T ) × V0), ce ∈ L∞((0, T ) × E), and

y0 ∈ L2(E). Then, there exists u ∈ L2((0, T )× V∂) such that the solution of (1.4) satisfies y(T, ·) = 0.

The proof of Theorem 3.2 is given in Section 5 and is based on the H.U.M. method (see, for example, [61])
– i.e., on the proof of an observability result for the adjoint system, which is given by
(3.1)

−ae∂tϕe − µe∂2
xxϕ

e − ∂xbe(t, x)∂xϕ
e − be(t, x)∂xϕ

e + ce(t, x)ϕe = 0, in (0, T )× e, e ∈ E ,
ϕe(v) = 0, on (0, T )× V∂ ,
ϕe1(t, v) = ϕe2(t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) µ

e∂neϕe(t, v) = (−
∑
e∈E(v) n

ebe(t, v) + γ(t, v))ϕe, on (0, T )× V0,

ϕ(T, ·) = ϕT , on E .

Generally, in the parabolic setting, it does not suffice to act on Vin∂ to drive the system to zero (see
Proposition 3.3). Instead, we can establish a null-controllability result by considering all the boundary vertices
V∂ , except at most one (as highlighted in the proof of the Carleman inequality established in Proposition 5.1).
We remark that such Carleman inequality could also be used to obtain bang-bang controls, to study inverse
problems, to study the controllability of the semilinear heat-equation, insensitizing problems, etc. (see [76]).

Remark 3.2 (Acting on all but one boundary vertices in V∂). More precisely, we will see that the proof is
valid if we act in all the boundary vertices except at most one (the one chosen as a root of the tree), i.e. if we
consider V∂ \ {ṽ}. As we will establish in Proposition 3.2 below, this result is sharp in some graphs: acting
on fewer vertices may not suffice.

3.3. Cost of controllability in the singular limit. Our final main theorem provides estimates on the
cost of controllability as ε → 0+ for the parabolic problem (1.1). As in the hyperbolic case, for the sake
of simplicity, we consider coefficients that are constant in each edge; but, as explained in Remark 7.2, the
results are also valid for strictly positive space-dependent coefficients.

We consider the following quantity which measures the cost of the null-controllability of (1.1):

K(ε, T, ae, be,G, Ṽ∂) := sup
y0∈L2(E)\{0}

inf
u∈U

‖u‖L2(0,T )

‖y0‖L2(E)
,(3.2)
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where U := U(y0, ε, T, a
e, be, Ṽ) denotes the subset of {u : `2(V∂) : u(v) = 0 ∀v ∈ V∂ \ Ṽ∂} such that the

solution of (1.1) satisfies y(T, ·) = 0.
Regarding the cost of controllability, from the hyperbolic result in Theorem 3.1, we expect the following

behavior: for small times, K → +∞ as ε→ 0+; on the other hand, for T sufficiently large, K → 0 as ε→ 0+.
Our main result concerns a quantitative estimate on these limits.

Theorem 3.3 (Estimates on the cost of controllability). Let G = (V, E) be a tree and assume that (1.2)
holds.

(1) There exists c > 0 such that, for ε small enough and all T < maxv∈Vout
∂

T̃ (v), the following lower
bound holds:

K(ε, T, ae, be,G,Vin∂ ) ≥ cec/ε.(3.3)

(2) There exist T , c > 0 such that, for ε small enough and all T < T , the following lower bound holds:

K(ε, T, ae, be,G,V∂) ≥ cec/ε.(3.4)

(3) There exist T0, c, C > 0 such that, for ε small enough and all T ≥ T0, the following upper bound
holds:

K(ε, T, ae, be,G,V∂) ≤ Ce−c/ε.(3.5)

Remark 3.3 (Acting on all but one boundary vertices in V∂). As in the previous section, we will see that
the proof of Item (3) is valid if we act in all the boundary vertices except at most one, i.e. if we consider
V∂ \ {ṽ} in formula (3.5). As we will establish in Proposition 3.3 below, this result is sharp in some graphs:
acting on fewer vertices (even if we act on every vertex in Vin) may not suffice.

The proof of Theorem 3.3 is given in Section 6 (Claims (1) and (2)) and Section 7 (Claim (3)) and is based
on the H.U.M. (see, for example, [61]) – that is, on study the cost of observation of the adjoint variable. The
adjoint system is given by

(3.6)



−ae∂tϕeε − be∂xϕeε − ε∂2
xxϕ

e
ε = 0, in (0, T )× e, e ∈ E ,

ϕeε(v) = 0, on (0, T )× V∂ ,
ϕe1ε (t, v) = ϕe2ε (t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) ε∂neϕeε(t, v) = 0, on (0, T )× V0,

ϕε(T, ·) = ϕT , on E ,

where we have used (1.2) to obtain (3.6)4. We recall that, by using the H.U.M., the cost of the control defined
in (3.2) is equivalently given by

K(ε, T, ae, be,G, Ṽ∂) = sup
ϕT∈L2(E)\{0}

‖ϕε(0, ·)‖L2(E)(∫∫
(0,T )×Ṽ∂ |∂νϕε|

2 dt
)1/2

.(3.7)

In order to do some computations, we will often use the following symmetrized system as in [5]: with the
identification of the edges given by Lemma 2.1, we define the function

(3.8) zε := ϕεe
(xbe)/2ε,

which satisfies

(3.9)



−ae∂tzeε − ε∂2
xxz

e
ε + |be|2

4ε z
e
ε = 0, in (0, T )× e, e ∈ E ,

zeε(v) = 0, on (0, T )× V∂ ,
ze1ε (t, v) = ze2ε (t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) ε∂nezeε = 0, on (0, T )× V0,

zε(T, ·) = zT , on E .

Here, we relied on (1.2) to obtain (3.9)4.
Roughly speaking, the strategy of our proofs is as follows:
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• for Claims (1) and (2), we obtain that the cost explodes for small times by considering data for the
adjoint problem supported far away from the observation domains and computing its observability
cost – this explodes as ε→ 0+ because for small times the mass remains in the domain, but the mass
reaching the observation domain is of order exp(Cε−1);

• for Claim (3), we show that the cost decays for large times by using first the decay of the free
solutions, and then, when the mass of the state is almost null, by exactly observing the mass.

3.4. Pathological examples and further remarks.

3.4.1. Hyperbolic problem. For particular graphs and choices of the coefficients in (1.1) and (1.3), we can
build several pathological examples to illustrate the scope of our controllability results.

Remark 3.4 (Counterexample to exact controllability to any target state y(T, ·) ∈ C0
pw(E)). While we

are able to prove null-controllability, and thus controllability to trajectories because of linearity, we may
not have exact controllability to any y ∈ C0

pw(E) – namely, when |Vout∂ | > |Vin∂ |. In fact, by the method

of characteristics, we get an over-determined system on Vout∂ . For example, let us consider the graph in
Figure 4, made of the vertices v1, v2, v3, v4 and the edges e1 = [v1, v2] ' [0, 1], e2 = [v2, v3] ' [0, 1], and
e3 = [v2, v4] ' [0, 1]. In (1.3), we take ae1 = ae2 = ae3 = be1 = 1, be2 = 1/2, be3 = 1/2. Then,
for any y0 ∈ L2(E) and u ∈ C2([0, T ]; `2(v1)), we have that the solution y of (1.3) satisfies the equality
ye2(t, x) = ye3(t, x) for t > 1.

Next, we illustrate some issues arising from networks with loops.

Remark 3.5 (Networks with loops and controls). Generalizing Theorem 2.2 to networks with loops is not a
straightforward problem, but a challenging open one.

Let us consider a graph with V := {v1, v2, v3, v4} and with edges e1 = [v1, v2], e2 = [v2, v3], e3 = [v3, v4],
e4 = [v4, v2] (see the left-side picture in Figure 5). In that case, in the free system (i.e., with Dirichlet
boundary condition u1 ≡ 0 at v1) we can prove that the total mass is constant (which can be done by showing
that d

dt

∫
E udx = 0 with energy methods or by the method of characteristics). And yet, we can use the method

of characteristics to prove that the hyperbolic system is null-controllable with a control that is non-null.
A similar example consists of the same graph with an additional output vertex v5 and e5 = [v3, v5] (see the

right-side picture in Figure 5). In that case, the mass is not conserved, but the null control do not take the
system to equilibrium (the mass on the loop decreases exponentially, though). As in the previous example, we
can use the method of characteristics to prove that the hyperbolic system is null controllable, with a control
that is non-null.

v1 v2

v3

v4

e1

e2

e3

e3

v1 v2

v3

v5

v4

e1

e2

e3

e4

e5

Figure 5. Graphs with loops used in Remark 3.5. Left: graph with one incoming vertex
v1 (green) and loop made of vertices v2, v3, v4 (gray). Right: graph with incoming vertex
v1 (green), outgoing vertex v5 (red) and loop made of vertices v2, v3, v4 (gray).

3.4.2. Parabolic problem. At the parabolic level, it might look surprising to the reader that we cannot also
just consider controls acting on Vin∂ . However, system (1.4) may not always be null-controllable depending
on the metric of the graph, as shown in the following proposition.

Proposition 3.2 (Lack of null-controllability for general graphs). Let G = (V, E) be the graph in Figure 4,
made of the vertices v1, v2, v3, v4 and the edges e1 = [v1, v2] ' [0, 1], e2 = [v2, v3] ' [0, 1], and e3 = [v2, v4] '
[0, 1] Then, system (1.4), with coefficients a = µ = 1 and b = c = γ = 0, is not approximately controllable by
acting only on v1 (i.e., if uv3 = uv4 = 0) for any ε > 0.
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Heuristically, the motivation for such result is that, by symmetry, the effect of the control on e2 and e3

is identical, so we cannot control both ye2 and ye3 simultaneously. The proof is made rigorous by a duality
argument.

Proof. By duality, it suffices to show that there are non-null solutions of (3.1) satisfying ∂neϕ(·, v1) =
0. Considering (3.8), this is equivalent to showing that there are non-null solutions of (3.9) satisfying
∂nez(·, v1) = 0. Considering the spectral decomposition of the Laplacian on the graph, we can construct such
a solution as follows:

ϕe1 = 0, ϕe2 = e−π
2t sin(πx), ze3 = −e−π

2t sin(πx).

�

3.4.3. Singular limit problem. As in Proposition 3.2, we note that system (1.1) cannot be controlled for any
ε > 0 by acting on fewer boundary vertices.

Proposition 3.3 (Lack of null-controllability for general graphs). Let G = (V, E) be the graph in Figure
4, made of the vertices v1, v2, v3, v4 and the edges e1 = [v1, v2] ' [0, 1], e2 = [v2, v3] ' [0, 1], and e3 =
[v2, v4] ' [0, 1]. Then, system (1.1) (with coefficients be1 = ae1 = ae2 = ae3 = 1 and be2 = be3 = 1

2) is not
approximately controllable by acting only on v1 (i.e. if uv3 = uv4 = 0) for any ε > 0.

Proof. By duality, it suffices to show that there are non-null solutions of (3.6) satisfying ∂neϕ(·, v1) =
0. Considering (3.8), this is equivalent to showing that there are non-null solutions of (3.9) satisfying
∂nez(·, v1) = 0. Again, considering the spectral decomposition of the Laplacian in the graph we can construct
such a solution as follows:

ze1 = 0, ze2 = exp

[
−
(
επ2 +

1

16ε

)
t

]
sin(πx), ze3 = − exp

[
−
(
επ2 +

1

16ε

)
t

]
sin(πx).

�

Finally, we note the relevance of (1.2) for our results.

Remark 3.6 (On the balance relation (1.2)). The balance relation (1.2) is needed to ensure that the sym-
metrized system is dissipative. Indeed, without (1.2), we must replace (3.8)4 by∑

e∈E(v)

ε∂nezeε = −
∑
e∈E(v)

nebe

2
.(3.10)

Also, without condition (1.2), system (1.3) may not be dissipative at junctions. Indeed, from (1.3), we
compute

d

dt

∫
E
(ye)2 dx = −

∑
v∈V

∑
e∈E(v)

nebe(ye)2(v),(3.11)

which is not non-positive in general. For example, let us consider a simple 1-to-1 junction modeled as follows:

∂ty
− + b−∂xy

− = 0, x ∈ (−1, 0),

∂ty
+ + b+∂xy

+ = 0, x ∈ (0, 1),

y−(t,−1) = 0, t > 0,

b−y−(t, 0) = b+y+(t, 0), t > 0,

y−(0, x) = y−0 , x ∈ (−1, 0),

y+(0, x) = y+
0 , x ∈ (0, 1).

(3.12)

Here, the term in (3.11) is given by

|y−|2

2
(b−)

(
1− b−

b+

)
,

so if b+ > b− energy is added on junctions; thus the problem is not dissipative.
We refer to Section 8 (Item 2) for further comments on this matter.
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4. Control of the transport problem

4.1. Main control result. We prove Theorem 3.1 by means of the method of characteristics, following [26,
Chapter 2.1.2., p. 30] (see Figure 6 for a sample illustration in case of 1-to-1 junctions). More specifically,
we use an induction argument to show that, for any tree G, the system (1.3) with u ≡ 0 is at rest for any

time larger than maxv∈V T̂ (v). For the proof we identify each edge e = [ve1, v
e
2] ' [0, le] as in Remark 3.1.

Proof of Theorem 3.1. The proof is based on an induction of the distance of the vertex ve1 to the boundary
(see Definition 2.1).

The base case is when ve1 ∈ Vin∂ . The equality y(ve1) = 0 is satisfied by the boundary condition (recall that
u = 0). Moreover, inside each edge the function ye behaves like the solution to a classical transport equation.

Consequently, as in [26, Chapter 2.1.2., p. 30], ye(t, x) = 0 for all x ∈ e = [ve1, v
e
2] ' [0, le] and t ≥ aex

be , and

in particular, ye(t, ve2) = 0 for all t ≥ T̂ (ve2), as T̂ (ve2) ≥ aele

be .

Let us now continue with the inductive case; that is, when ve1 ∈ V0. The equality yẽ(t, ve1) = 0 is satisfied

for all t ≥ T̂ (ve1) by the inductive hypothesis. Thus, from (1.3)3 and (1.3)4, we find that ye(t, ve1) = 0 for

all t ≥ T̂ (ve1). Moreover, inside the edge the function ye behaves like a transport equation in a segment.

Consequently, we get that ye(T, x) = 0 for all x ∈ [0, le] and T ≥ T̂ (ve1)+ aex
be , and in particular, ye(T, ve2) = 0

for all T ≥ T̂ (ve2), as T̂ (ve2) ≥ T̂ (ve1) + aele

be . �

v1 v2 v3 v4

e1 e2 e3

e1 e2 e3v1 v2 v3 v4

Figure 6. For the sake of simplicity, we illustrate the propagation (bottom) in a tree made
up of three 1-1 junctions (top).

Remark 4.1 (Simplified proof for star-graphs). The same proof as Theorem 3.1 and Proposition 3.1 is valid
for star-shaped graphs, with the simplification that instead of an abstract induction argument, a two-step proof
suffices.

Remark 4.2 (Positivity assumption on a and b when they depend on the space variable). The method of
characteristics is valid when ae and be depend on the space variable and infE a, infE b > 0, so Theorem 3.1 and
Proposition 3.1 remain true under those assumptions. The positivity is needed because if the transport term
gets null at some point, the characteristics do not leave the domain and we do not have the null controllability
result for the hyperbolic problem. Correspondingly, in that situation the cost of the controllability explodes
when ε→ 0.

4.2. Optimal control times. We prove Proposition 3.1 with the method of characteristics.

Proof of Proposition 3.1. Let us consider the solution of (1.3) with initial value y0 = 1. Then, we can prove
by induction as in the proof of Theorem 3.1 that for any control u, any v ∈ V0 ∪ Vout∂ and any e ∈ E(v),

ye(t, v) > 0 on [0, T̃ (v)). �

Finally, we discuss an improvement on the control time maxv∈Vout
∂

T̂ (v) from Theorem 3.1 by means of
non-zero boundary controls.
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Remark 4.3 (Explicit computations of the optimal time in star graphs). Let us consider a star-graph (see
Figure 2), with n incoming edges and m outgoing edges. We identify the edges ei = [vi, v0] ' [−li, 0] for
i < 0 and ei = [v0, vi] ' [0, li] for i > 0. Let us suppose, without loss of generality, that v−1 ∈ Vin∂ satisfies
ae−1 l−1

be−1
= mini∈{−1,...,−n}

aei li
bei

. We first remark that:

sup
v∈Vout

∂

T̃ (v) = min
i∈{−1,...,−n}

aei li
bei

+ max
j∈{1,...,m}

aej lj
bej

,(4.1)

sup
v∈Vout

∂

T̂ (v) = max
i∈{−1,...,−n}

aei li
bei

+ max
j∈{1,...,m}

aej lj
bej

.(4.2)

Moreover, we might drive the control to 0 at a time

(4.3) T̄ := max

{
min

i∈{−1,...,−n}

aei li
bei

+ max
j∈{1,...,m}

aej lj
bej

, max
i∈{−1,...,−n}

aei li
bei

}
.

This can be done by setting the controls

uv−1(s) = − 1

be−1

−2∑
i=−n

beiyei0

(
− b

ei

aei
(s+

ae−1

be−1
l−1)

)
1

(0, a
ei b

e−1

beia
e−1

li−l−1)
(s), uv−2 = · · · = uv−n = 0.(4.4)

Indeed, in each incoming edge, the solution y satisfies

yei(t, x) = y0

(
x− bei

aei
t

)
1{x− bei

aei
t>−li} + uvi

(
t− aei

bei
(li + x)

)
1{x− bei

aei
t<−li};

as a consequence, after mini∈{−1,...,−n}
aei li
bei

, the functions cancel at the junction and in the outcom-

ing edges it behaves like the transport equation with null boundary data. Moreover, the time T̄ is opti-
mal. If T < maxi∈{−1,...,−n}

aei li
bei

, then clearly (1.3) is not null-controllable at an incoming edge; and, if

T < mini∈{−1,...,−n}
aei li
bei

+ maxj∈{1,...,m}
aej lj
bej

, then (1.3) is not null controllable by (4.1) and Proposition

3.1. Getting a similar general statement in the case of a tree G is an interesting question that can be treated
by an inductive argument.

Remark 4.4 (Non zero boundary controls and optimal time). For all 0 < T1 ≤ T2 < T3 < T1 + T2 or

T1 = T2 = T3 we can construct a star-graph such that maxv∈Vout
∂

T̃ = T1, minv∈Vout
∂

T̃ = T3, and the optimal

time in which (1.3) might be driven to 0 is T2.
For the case T1 = T2 = T3, it suffices to consider a star-graph with one incoming edge, an outgoing one,

a = b = 1 and le−1 = le1 = T1

2 .
For the case 0 < T1 ≤ T2 < T3, it suffices to consider a star-graph with two incoming edges, an outgoing

one, a = b = 1 and l−2 = T2, l−1 = T1 + T2 − T3 and l1 = T1 + T2 − T3. This can be checked using (4.1) and
(4.3).

Moreover, the hypothesis T3 < T1+T2 can be removed by considering more complex examples. In particular,
if we consider a = b = 1, n = bT3−T2

T1
c and the graph with vertices V = {vi}n+1

i=−n and E = {ei}ni=1 ∪ {ẽi}ni=0,

for ei = [v−i, vi] and ẽi = [vi, vi+1]. It suffices to consider the length l0 = T2, l−1, · · · , ln−1 = T1, l1 = · · · =
ln−1 = T1, ln = T3 − T2 − nT1, l−n = T1 − ln.

5. Controllability of the parabolic problem

In order to prove the controllability of the parabolic problem (1.4), we are going to use the H.U.M. In
particular, we are going to study the observability of the adjoint system with a Carleman inequality.

5.1. A Carleman inequality on networks. In order to simplify some computations, we first are going to
prove a Carleman inequality for the solution of the system

(5.1)



−ae∂tφe − ∂2
xxφ

e = f, in (0, T )× e, e ∈ E ,
φe(v) = 0, on (0, T )× V∂ ,
φe1(t, v) = φe2(t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) ∂neφe(t, v) = γ̃(t, v)φ(t, v) on (0, T )× V0,

φe(T, ·) = φeT , on E .
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v1

v4

v2 v3 v5

v6 v7

e1

e2 e3

e4

e5 e6

1 2

ηe1 (0)

ηe1 (1)

= ηe2 (1)
−

ηe2 (2)−

∂xηe1 (1) = δ

∂xηe2 (1) = 1

∂xηe1 (0) = 1

∂xηe2 (2) = δ

0 e1 e2

Figure 7. Construction of the auxiliary function η ∈ C2
pw(Ē) ∩ C0(Ē) using the tree from

Figure 1. In this tree, we distinguish four layers (left picture): the first (magenta) is {v1};
the second (yellow) is layer {v4}, the third (cyan) is {v2, v3, v5}; and the fourth (brown) is
{v6, v7}. Let us identify e1 := [0, 1] ' [v1, v4], e2 := [1, 2] ' [v4, v2], e3 := [1, 2] ' [v4, v3],
e4 := [1, 2] ' [v4, v5], e5 := [2, 3] ' [v5, v6], e6 := [2, 5/2] ' [v5, v6]. The auxiliary function η
may be defined as follows: ηe1(x) = x− 1−δ

2 x2 + 1−δ
2 , ηe2(x) = ηe3(x) = ηe4(x) = (x− 1)−

1−δ
2 (x− 1)

2
+1, ηe5(x) = ηe4(2)+(x−2)− 1−δ

2 (x−2)2, ηe6(x) = ηe4(2)+(x−2)−(1−δ)(x−2)2.

As an example, in the right picture, we plot ηe1 and ηe2 with δ = 1
4 . In the proof of

Proposition 5.1, if G is the graph illustrated above, we observe the vertex v1 with v4; v4 with
v2, v3, v5; and v5 with v6, v7. So, by transitivity, we actually only need to observe using
v2, v3, v6, v7 (i.e. we do not need the vertex in the 1-st layer).

Proposition 5.1 (Carleman inequality). Let φ be the solution of (5.1) for a > 0, f ∈ L2((0, T ) × E), and
γ̃ ∈ W 1,∞((0, T ) × V0). Then, there exists a positive constant C = C(G) such that φ satisfies the following
inequality:

s−1

∫∫
Q

e−2sαξ−1(|∂tφ|2 + |∂2
xxφ|2) dxdt

+ sτ2

∫∫
Q

e−2sαξ|∂xφ|2 dxdt+ s3τ4

∫∫
Q

e−2sαξ3|φ|2 dxdt

≤ C
∑
v∈V∂

sτ

∫ T

0

e−2ταξ(t, v)|∂ne(v)φ
e(t, v)|2 dt+

∫∫
Q

e−2τα|f |2 dxdt,

(5.2)

where Q := (0, T )× E, α, ξ are the Fursikov-Imanuvilov weights defined in (5.3), τ ≥ C and s ≥ C(T + T 2).

The difficulty in the proof arises from the boundary terms at junctions. To suitably deal with them, we
define the Fursikov-Imanuvilov weights ([35]) with a piecewise C2 auxiliary function. Piecewise C2 weights
were first used for proving Carleman inequalities in [8], where the authors dealt with piecewise regular
diffusivity; more recently, similar functions have been used to study coupled systems with Kirchhoff-type
conditions in [10].

Proof. Step 0: Strategy of the proof and choice of the auxiliary functions. By Lemma 2.1, we identify each
edge of E with subintervals of R. The main idea is to observe the nodes of the i-th layer with the nodes
of the (i + 1)-th layer (see Definition 2.1). For that, we define an auxiliary function η ∈ C2

pw

(
E
)
∩ C0

(
E
)

recursively by the edges which joins the i-th and (i+ 1)-th layer of the tree. Let us start with the base case:
the edge e = (v1, v2), for v1 the root of the tree. We define ηe as a function satisfying ∂xη

e(v1) = 1, ∂xη
e > 0

in [v1, v2] and ∂xη
e(v2) = δ, for δ > 0 a small parameter depending on a and γ̃ to be defined later on. As

for the inductive case, if v1 is on the i-th layer and v2 on the (i + 1)-th layer for i ≥ 2, we define ηe such
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that ηe(v1) is determined so that η ∈ C0(E), ∂xη
e(v1) = 1, ∂xη

e > 0 in [v1, v2] and ∂xη
e(v2) = δ, for δ > 0 a

small parameter depending on a and γ̃ to be defined later on (see Figure 7 for a sample illustration).
This auxiliary function allows us to define usual Fursikov-Imanuvilov weights:

(5.3) α(t, x) :=
e8τ‖η‖∞ − eτ(6‖η‖∞+η(x))

t(T − t)
, ξ(t, x) :=

eτ(6‖η‖∞+η(x))

t(T − t)
,

for τ ∈ R a fixed parameter (and in particular independent of the edge) that will be chosen later.
As in [35], we consider the change of variables ψ = e−sαφ. From (5.1), we obtain that ψ satisfies the

equation

(5.4) L1ψ + L2ψ = L3ψ,

where

(5.5)


L1ψ := −2sτ2|∂xη|2ξψ − 2sτξ∂xη∂xψ + a∂tψ,

L2ψ := s2τ2|∂xη|2ξ2ψ + ∂2
xxψ + sa∂tαψ,

L3ψ := sτ∂2
xxηξψ − sτ2|∂xη|2ξψ − e−sαf.

Indeed, by using the equality
(a∂t + ∂2

xx)(esαψ) = f,

we obtain

(5.6) a∂tψ + as∂tαψ + ∂2
xxψ + 2s∂xα∂xψ + s∂xxαψ + s2(∂xα)2ψ = −fe−sα

Now, combining (5.6) with ∂xα = −τ∂xηξ, ∂2
xxα = −τ∂2

xxηξ − (τ∂xη)2ξ, we obtain that ψ satisfies (5.4).
We now argue as in [5, 41], but paying extra attention to keep track of the boundary terms at junctions.

As usual, we denote (Liψ)j the j-th term in the expression of Liψ given above. From (5.4), we get

‖L1ψ + L2ψ‖2L2(Q) = ‖L1ψ‖2L2(Q) + ‖L2ψ‖2L2(Q) + 2
∑

i,j=1,2,3

((L1ψ)i, (L2ψ)j)L2(Q) = ‖L3ψ‖2L2(Q).

In the next two steps, we need to estimate the product:

(L1ψ,L2ψ)L2(Q) :=
∑
e∈E

((ae)−1/2(L1ψ)e, (ae)−1/2(L2ψ)e)L2((0,T )×e).

In particular, we will show that the choice of the weights in (5.3) makes it positive up to several terms that
can be controlled by the left-hand side (for a suitable choice of the parameters τ and s) and by the observation
term.

Step 1: Estimates in the interior. In this step we perform integrations by parts in the spirit of [5, 41],
but keeping track of the boundary terms appearing at the vertices.

To begin with,

(5.7) ((L1ψ)1, (L2ψ)1)L2(Q) = −2s3τ4

∫∫
Q

a−1|∂xη|4ξ3|ψ|2 dxdt.

Secondly, we compute

((L1ψ)2, (L2ψ)1)L2(Q) = −2s3τ3

∫∫
Q

a−1|∂xη|2∂xηξ3ψ∂xψ dxdt

= 3s3τ4

∫∫
Q

a−1|∂xη|4ξ3|ψ|2 dxdt

−2s3τ3
∑
v∈V

∑
e∈E(v)

∫ T

0

(ae)−1|∂xηe|2∂ne(v)η
e(ξe)3|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J1

+ o

(
s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
.

(5.8)

Thirdly, integration by parts (with respect to the time variable) yields, for τ ≥ C and s ≥ C(T + T 2),

(5.9) ((L1ψ)3, (L2ψ)1)L2(Q) = s2τ2

∫∫
Q

|∂xη|2ξ2ψ∂tψ dxdt = o

(
s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
.
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To continue with, we find that

((L1ψ)1, (L2ψ)2)L2(Q) = −2sτ2

∫∫
Q

a−1|∂xη|2ξψ∂2
xxψ dxdt

= 2sτ2

∫∫
Q

a−1|∂xη|2ξ|∂xψ|2 dxdt

+
∑
v∈V

∑
e∈E(v)

2sτ2

∫ T

0

(ae)−1|∂xηe|2ξeψe∂ne(v)ψ
e(t, v) dt

︸ ︷︷ ︸
=:J2

+ o

(
s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
+ o

(
sτ2

∫∫
Q

ξ|∇ψ|2 dxdt

)
.

(5.10)

In addition,

((L1ψ)2, (L2ψ)2)L2(Q) = −2sτ

∫∫
Q

a−1∂xηξ∂
2
xxψ∂xψ dxdt

= sτ2

∫∫
Q

a−1∂xηξ|∂xψ|2 dxdt−
∑
v∈V

∑
e∈E(v)

sτ

∫ T

0

(ae)−1∂ne(v)η
eξe|∂xψe|2(t, v) dt

︸ ︷︷ ︸
=:J3

+ o

(
sτ2

∫∫
Q

ξ|∂xψ|2 dx dt

)
.

(5.11)

Moreover, we can prove that:

(5.12) ((L1ψ)3, (L2ψ)2)L2(Q) =

∫∫
Q

∂tψ∂
2
xxψ dxdt =

∑
v∈V

∑
e∈E(v)

∫ T

0

∂ne(v)ψ
e∂tψ

e(t, v) dt

︸ ︷︷ ︸
=:J4

.

Finally,

(L1ψ, (L2ψ)3)L2(Q) = −
∑
v∈V

∑
e∈E(v)

s2τ

∫ T

0

ξe∂ne(v)η
e∂tα

e|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J5

+ o

(
s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
.

(5.13)

Step 2: Estimation of the boundary terms. In this part of the proof, we estimate the boundary terms
J1, . . . , J5. In particular, we need to make a distinction between exterior vertices, which can be treated as in
[5, 41] (since they correspond to the boundary terms appearing in a classical IBVP), and junctions, which
require new more precise computations. As we are going to see, the terms corresponding to the exterior
vertices v ∈ V∂ either vanish (due to the zero Dirichlet boundary condition in (5.1)) or can be moved to the
right hand-side of the Carleman estimate (corresponding to the “classical” boundary terms that appear in
[41]). The interior junction terms at v ∈ V0 are more critical: they are in the left-hand side of the Carleman
estimate and we need to show that they are non-negative. To this end, we will rely on the properties of
the auxiliary function η and on the Kirchhoff junction condition (5.1)4. At the end of the computations, all
these boundary terms at the internal junctions can be absorbed into the expression in the right-hand side of
(5.20), which is non-negative.

To begin with, let us deal with the boundary term J1 in (5.8). If v ∈ V∂ , we obtain that ψ = 0 from the
Dirichlet boundary conditions. Otherwise, for each interior node v ∈ V0, we get that

−2ε2s3τ3

∫ T

0

ξ3

 ∑
e∈E(v)

(ae)−1|∂xηe|2∂ne(v)η
e

 |ψe|2(t, v) dt ≥ cε2s3τ3

∫ T

0

ξ3|ψe|2(t, v) dt.(5.14)
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Indeed, the function ξ is continuous at junctions, ∂nẽ(v)η
ẽ(v) = δ for ẽ the edge going joining the previous

layer to v and ∂ne(v)η
e(v) = −1 if e ∈ E(v) \ {ẽ}, so we obtain (5.14) by choosing δ small enough. With the

right-hand side of (5.14) we can absorb the boundary term J5 in (5.13) for s ≥ C(T + T 2) and τ ≥ C.
To continue with, let us study the boundary term J3 given in (5.11) for each v ∈ V, i.e.

−sτ
∫ T

0

ξ
∑
e∈E(v)

(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt.

If v ∈ V∂ , that term can be moved to the right-hand side of the Carleman estimate. On the other hand, if
v ∈ V0, there is one edge ẽ (the edge going joining the previous layer to v) for which ∂nẽ

ηe = δ and such that
∂neη = −1 for all e ∈ E(v) \ {ẽ}. So, we have to absorb the boundary term of the edge ẽ. For that, we use
φ = ψe−sα to get

sτ

∫ T

0

(
aẽ
)−1

ξẽ|∂nẽηẽ||∂nẽψẽ|2(t, v) dt

≤ 2δsτ

∫ T

0

(
aẽ
)−1

ξẽ|∂nẽαẽ|2|ψ|2(t, v) dt+ 2δsτ

∫ T

0

(
aẽ
)−1

ξẽe−2sαẽ

|∂nẽφ|2(t, v) dt.

(5.15)

We can absorb the first term in the right-hand side of (5.15) by (5.14). As for the second one, it equals

δsτ

∫ T

0

(aẽ)−1ξẽe−2sαẽ

∣∣∣∣∣∣
∑

e∈V(e)\ẽ

∂neφe

∣∣∣∣∣∣
2

(t, v) dt

≤ δsτ
∫ T

0

(aẽ)−1
∑

e∈V(e)\ẽ

ξe |∂neψe|2 (t, v) dt+ Cδs3τ3

∫ T

0

ξ3|ψe|2(t, v) dt.

(5.16)

Indeed, we have used the continuity of functions ξ and α on the junction, the condition on the junction
(5.1)4, the fact ∂xα = −τ∂xηξ and that γe ∈ L∞((0, T ) × V0). Taking δ small enough, we can absorb the
term (5.16) by (5.14) and

(5.17) − sτ
∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt = sτ

∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1|∂ne(v)ψ
e|2(t, v) dt.

To conclude, let us study the boundary term J4 in (5.12). If v ∈ V∂ , then ∂tψ = 0 because of the Dirichlet
boundary conditions. Otherwise, if v ∈ V0, from (3.9)4 we obtain

∑
e∈E(v)

∫ T

0

∂neψe∂tψ
e(t, v) dt

=

∫ T

0

γ̃∂neξeψe∂tψ
e(t, v) dt+

∑
e∈E(v)

∫ T

0

γψe∂tψ
e(t, v) dt

= I1 + I2

(5.18)

We can absorb I1 by (5.14) considering that γ̃ ∈W 1,∞((0, T )× V0). Moreover,

I2 = s2
∑
e∈E(v)

∫ T

0

∂neξe∂tα
ee−2sαe

|φe|2(t, v) dt+ s
∑
e∈E(v)

∫ T

0

∂neξee−2sαe ∂t(|φe|2)

2
(t, v)

= s2
∑
e∈E(v)

∫ T

0

∂neξe∂tα
e|ψe|2(t, v) dt− s

∑
e∈E(v)

∫ T

0

∂t(∂neξe)
|ψe|2

2
(t, v) dt,

(5.19)
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which can be absorbed by (5.14). To sum up the result of this step, we have proved that, for s ≥ C(T + T 2)
and τ ≥ C, the following estimate holds:

5∑
`=1

J` ≥ c
∑
v∈V0

s3τ3

∫ T

0

ξ3|ψ|2(t, v) dt+ c
∑
v∈V0

sτ

∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1|∂ne(v)ψ
e|2(t, v) dt

− C
∑
v∈V∂

sτ

∫ T

0

ξ(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt.

(5.20)

Step 3: Conclusion of the proof. Combining (5.7)-(5.20) and the fact that |∂xη| > 0, we obtain the
following estimate:

sτ2

∫∫
Q

ξ|∂xψ|2 dxdt+ s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

≤ (L1ψ,L2ψ)L2(Q) +
∑
v∈V∂

sτ

∫ T

0

ξe|∂ne(v)ψ
e|2(t, v) dt.

(5.21)

From (5.21), it is classical to obtain (5.2) as in [35, 41]. We add 1
2 (‖L1ψ‖2L2(Q) + ‖L2ψ‖2L2(Q)) at both sides

of (5.21); we consider that ‖L1ψ+L2ψ‖2L2(Q) = ‖L3ψ‖2L2(Q); we absorb (L3ψ)1 and (L3ψ)2; we estimate the

terms on ∂tψ and ∂2
xxψ by considering (5.5)1 and (5.5)2 respectively; and, finally, reverting the transformation

φ = ψe−sα. �

Remark 5.1 (Networks with loops). In networks with loops, the difficulty is to construct an auxiliary function
ηe that ensures that J2 is estimated as in (5.20).

Remark 5.2 (Reducing the number of vertices in the right-hand side of the Carleman inequality). The
pathological case given in Proposition 3.2 shows that the Carleman inequality may be false if we observe fewer
vertices. This shows that the computation (5.20) – and, in particular, the estimate of J2 – is quite sharp and
difficult to improve, at least for general trees.

Remark 5.3 (Special proof for star-shaped graphs). The Carleman can be simplified when the graph G is
star-shaped. In that situation it suffices to consider an auxiliary function η that increases from the central
vertex to the outwards ones. In that case we can replicate the proof in [27]. The only difficult term is when
we treat

∫∫
Q
∂tψ∂

2
xxψ, but the boundary term that appears in the central vertex can be estimated as in (5.18).

5.2. Conclusion of the proof of Theorem 5.1. From (5.2), we can easily obtain a Carleman inequality
for the solution of (3.1). In fact, it suffices to divide (3.1)1 by µe and consider γ̃ = (γ −

∑
nebe)(µe)−1 and

f = (−∂xbe∂xϕe − be∂xϕe + ce(t, x)ϕe)(µe)−1. In that case the source term can be absorbed by the right
hand side of the Carleman inequality (as sξ < 1 for s ≥ C(T 2 + T ), it suffices to consider τ large enough).
In the end, we obtain that

s−1

∫∫
Q

e−2sαξ−1(|∂tϕ|2 + |∂2
xxϕ|2) dx dt

+ sτ2

∫∫
Q

e−2sαξ|∂xϕ|2 dxdt+ s3τ4

∫∫
Q

e−2sαξ3|ϕ|2 dxdt

≤ C
∑
v∈V∂

sτ

∫ T

0

e−2ταξ(t, v)|∂ne(v)ϕ
e(t, v)|2 dt,

(5.22)

which implies the following observability inequality:

‖ϕ(0, ·)‖L2(E) ≤ C
∫∫

(0,T )×V
|∂nϕe|2.

By duality, this completes the proof of Theorem 3.2.

Remark 5.4 (Results when ae depends on the time and space variable). The Carleman inequality is also
true when ae depends on the time and space variable as long as inf ae > 0 and ae ∈ L∞(0, T ;W 1,∞

pw (E)) ∩
W 1,∞(0, T ;L∞(E)). In fact, the terms in which (ae)−1 is differentiated when integrating by parts can be
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absorbed by taking τ ≥ C and s ≥ C(T + T 2). Thus, we conclude that Theorem 2.1 is also true assum-
ing inf ae > 0, ae ∈ L∞(0, T ;W 1,∞

pw (E)) ∩ W 1,∞(0, T ;L∞(E)), inf µe > 0 and µe ∈ L∞(0, T ;W 2,∞
pw (E)) ∩

W 1,∞(0, T ;L∞(E)).

5.3. Controls acting in the interior. In a similar manner, we may also study the controllability properties
of the system

(5.23)



ae∂ty
e − µe∂2

xxy
e + be(t, x)∂xy

e + ce(t, x)ye = f1ω, in (0, T )× e, e ∈ E ,
ye(t, v) = 0, on (0, T )× V∂ ,
ye1(t, v) = ye2(t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v) µ

e∂xy
ene = γ(t, v)y(t, v) on (0, T )× V0,

y(0, ·) = y0, on E ,
where the control f acts on an interior domain ω. Similarly to controls acting on the boundary, it does not
suffice to act on any arbitrary subdomain. Indeed, we can prove the following result arguing as in Proposition
3.3.

Proposition 5.2 (Lack of null-controllability for general graphs and controls acting on the interior). Let
G = (V, E) be the graph in Figure 4, formed by the vertices v1, v2, v3, v4, the edges e1 = [v1, v2] ' [0, 1],
e2 = [v2, v3] ' [0, 1], and e3 = [v2, v4] ' [0, 1], and coefficients be1 = ae1 = ae2 = ae3 = 1, µ = 1
be2 = be3 = 1

2 , and c = 0. Then, system (5.23) is not approximately controllable by acting only on ω for any
ω ⊂ e1.

To obtain a positive result on controllability, we may consider the following situations (see Figure 8 for a
sample illustration).

Hypothesis 5.1. The graph G = (V, E) is a tree and all edges ei with an end in V∂ (except at most one)
satisfy that ωe := ω ∩ ei 6= ∅.

v1

v4

v2 v3 v5

v6 v7

e1

e2

ωe
e3

e4

e5 e6

Figure 8. Example illustration of the situation from Hypothesis 5.1 in the case of a star-
graph: the domains ωei := ω ∩ ei are illustrated in gray.

Under such assumption, we can then prove the following theorem.

Theorem 5.1 (Controllability of parabolic systems of networks). Let G = (V, E) be a network satisfying
Hypothesis 5.1 and y0 ∈ L2(E). Then, there exists f ∈ L2((0, T )×ω) such that the solution of (5.23) satisfies
y(T, ·) = 0.

Theorem 5.1 can be proved as Theorem 3.2 with the usual differences when the control acts on the interior
(see [35] for further information). The construction of the auxiliary function η the only difficult task: as
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before, the function η can be constructed by induction on the layers of the tree. For the edge e = [v1, v2]
on the first layer, η satisfies ∂neηe < 0 on {v1, v2} and infe\ω |∂xηe| > 0. Then, on an edge e ' [v1, v2] from
v1 on the i-th to v2 on the (i+ 1)-th layer, if ω ∩ e = ∅, we define ηe so that it is continuous in v1, satisfies
inf ∂xη > 0 and ∂xη(v2) = δ, where δ is a sufficiently small parameter. Moreover, if ω ∩ e 6= ∅, we define ηe

so that it is continuous in v1, ∂neηe < 0 on {v1, v2}, and infe\ω |∂xηe| > 0.

Remark 5.5 (Particular geometries). Sharper results can be obtained by considering more specific geometries
or metrics for the trees. Of course, the most difficult task is the construction of an appropriate auxiliary
function η. However, doing an in-detail classification and the construction of such functions is out of the
scope of this paper.

6. Blow-up of the cost of controllability

In this Section we prove Claims (1) and (2) of Theorem 3.3. Since both proofs are very similar, we prove
Claim (1) and only outline the key difference for Claim (2).

6.1. Agmon-type inequality. We start by proving an Agmon-type inequality (see [1, Theorem 5.9]), which
gives an exponentially weighted energy estimate.

Lemma 6.1 (Agmon-type inequality). Let ζ ∈ H2
pw(E) ∩H1(E) satisfy

−ae∂tζe + |∂xζe|2 − be∂xζe ≥ 0.(6.1)

Then, any solution ϕ of the adjoint system (3.6) satisfies the following Agmon-type inequality:∑
e∈E

ae
2

∫
e

|eζ
e/εϕe(t, x)|2 dx+ ε

∑
e∈E

∫ T

t

∫
e

|∂x(eζ
e/εϕe(t, x))|2 dx ds

≤
∑
e∈E

ae
2

∫
e

|eζ
e(T,x)/εϕe(T, x)|2 dx.

Proof. We compute d
dt
ae
2

∫
e
|eζe/εϕe(t, x)|2 dx as follows:

d

dt

ae
2

∫
e

|eζ
e/εϕe(t, x)|2 dx

= ae

∫
e

eζ
e/ε∂te

ζe/ε|ϕe(t, x)|2 dx+
ae
2

∫
e

eζ
e/ε∂t|ϕe(t, x)|2 dx

= ae

∫
e

eζ
e/ε∂te

ζe/ε|ϕe(t, x)|2 dx+

∫
e

e2ζe/εϕe
(
− be∂xϕe − ε∂2

xxϕ
e
)

dx

= ae

∫
e

eζ
e/ε∂te

ζe/ε|ϕe(t, x)|2 dx+
be
2

∫
e

(ϕe)2∂xe
2ζe/ε dx− be

2
[(ϕe)2e2ζe/ε]e

+ ε

∫
e

(∂xϕ
e)2e2ζe/ε dx+ ε

∫
e

∂xϕ
eϕe∂xe

2ζe/ε dx− ε[∂xϕeϕeeζ
e/ε]e

=
1

ε

∫
e

e2ζe/ε(ϕe)2
(
ae∂tζ

e + be∂xζ
e − |∂xζe|2

)
︸ ︷︷ ︸

≤0

dx+ ε

∫
e

(∂x(ϕeeζ
e/ε))2 dx

− be
2

[(ϕe)2e2ζe/ε]e − ε[ϕe∂xϕee2ζe/ε]e.

Summing up over e ∈ E , using Dirichlet boundary conditions, the junction conditions, and the flux balance
condition (1.2), we obtain

d

dt

∑
e∈E

ae
2

∫
e

|eζ
e/εϕe(t, x)|2 dx =

1

ε

∑
e∈E

∫
e

|eζ
e/εϕe(t, x)|2

(
ae∂tζ

e + be∂xζ
e − |∂xζe|2

)
︸ ︷︷ ︸

≤0

dx

+ ε
∑
e∈E

∫
e

(∂x(ϕeeζ
e/ε))2 dx.

By integrating this expression in (t, T ), we conclude the proof. �
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Remark 6.1 (Choice of the auxiliary function ζ). As in [6, Lemma 3.5], we will choose

ζe(t, x) = −δbex− (be)2

ae
(δ + δ2)(T − t),(6.2)

which is precisely a solution of the equality in (6.1).

6.2. Non-degeneracy of the solution. As a second preliminary tool, we establish that the mass of ϕ(0, ·)
is bounded away from zero.

Lemma 6.2 (Non-degeneracy of the solution). Let v ∈ Vout∂ be the vertex which maximizes T̃ (the minimal

propagation time introduced in Definition 3.1). Then, for all T < T̃ and all δ ∈ (0, T−T̃ ) there is ϕT ∈ C∞(Ω)
and c > 0 such that supp(ϕT ) ⊂ [v − δ, v] and such that for all ε ∈ (0, 1):

(6.3) ‖ϕε(0, ·)‖L2(E) ≥ c,

for ϕε the solution of (3.6) with initial value ϕT .

Proof. We prove (6.3) by contradiction. First of all, we remark that, thanks to the backwards uniqueness of
(3.6) (which can be derived from the backwards uniqueness of (3.9)), we obtain that ‖ϕε(0, ·)‖L2(E) > 0 for
all ε ∈ (0, 1). In addition, since the solution is continuous with respect to ε (which can be proved with the
Fourier series solutions of (3.9) as in [6]), the only possibility is that there is εk → 0 such that

‖ϕεk(0, ·)‖L2(E) → 0.

Let us suppose that there exists such a sequence and derive a contradiction. Since ϕεk is bounded on
L2((0, T )× E) we may suppose that it converges weakly to some function γ ∈ L2((0, T )× E). We can prove
by considering the weak solution of parabolic equation that γ is a solution of the adjoint problem of (1.3)
with ϕ(0) = 0 and initial value ϕT , which is impossible by the method of characteristics. �

6.3. Proof of Claim (1) of Theorem 3.3. Using the tools developed in the previous sections, we complete
the proof of Claim (1) of Theorem 3.3.

Proof of Theorem 3.3, Claim (1). Let ϕ be the solution of the adjoint problem (3.6) and let us assume that

suppϕT ⊂ [v − δ̃, v] for e ∈ E(v), with v ∈ V out∂ which maximizes T̃ (see Figure 9 (left) for an illustration).
Using the assumption on suppϕeT , we deduce

T

∫
e

|e−2δx/εϕeT |2 dx ≤ e−2δ̃δ/ε

∫
e

|ϕeT |2 dx,

e2δ(T−δT )/ε

∫
(0,T )×Vin

∂

|∂νϕ|2 dt ≤
∫ T

0

∫
e

|e(−δx−(δ+δ2)(T−t))/εϕe|2 dxdt.

Combining these with the Agmon identity of Lemma 6.1, choosing ζ as in (6.2), we deduce∫
(0,T )×Vin

∂

|∂νϕ|2 dt ≤ e2δ(T+δT+δ̃+δ)/ε‖ϕeT ‖2L2(E).(6.4)

Plugging (6.3) and (6.4) into (3.7), we deduce that (3.3) holds. �

Proof of Theorem 3.3, Claim (2). When proving Claim (2) of Theorem 3.3 the only difference from the ar-
gument above is that the function ϕT must be supported near the interior nodes instead of near the exterior
ones (see Figure 9 (right)). �
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v−1

v−2

v−3

v0

v1

v2

e1
e2

e3

e4

e5

suppϕT

v−1

v−2

v−3

v0

v1

v2

e1
e2

e3

e4

e5

suppϕT

Figure 9. Example illustration of the support of ϕT in the case of a star-graph. Left:
choice of suppϕT for the proof of Claim (1) of Theorem 3.3. Right: choice of suppϕT for
the proof of Claim (2). In both cases, the (hyperbolic) observation domain is {v−1, v−2, v−3},
the green vertices.

7. Decay of the cost of controllability

7.1. The decay property for the parabolic problem. We start by proving a decay property for the
solution of (1.1).

Proposition 7.1 (Decay property). There are c, C > 0 such that the solution of the parabolic problem (3.6)
satisfies the following decay property for all ϕT ∈ L2(E) and all t < T :

(7.1)

∫
E
|ϕε(t, x)|2 dx ≤ exp

(
C − c(T − t)

ε

)
‖ϕT ‖2L2(E).

The proof of the decay property is based on classical energy estimates for the symmetrized system (3.9)
with Gronwall’s inequality.

Proof. In order to prove (7.1), we first obtain a decay property for the symmetrized system (3.9). Multiplying
the PDEs in (3.9) by zeε , integrating by parts and summing up all the edges we obtain that:

− d

dt

1

2

(∫
E
ae|zε(t, x)|2 dx

)
+ ε

∫
E
|∂xzε|2 dx+

∫
E

|be|2

4ε
|zε|2 dx = 0.

Consequently, by using be > 0,

− d

dt

(∫
E
ae|zε|2 dx

)
≤ − c

ε

∫
E
|zε|2 dx.

Using backwards Gronwall’s inequality in (t, T ) we obtain that:∫
E
|zε(t, x)|2 dx ≤ exp

(
−c(T − t)

ε

)∫
E
|zT |2 dx.

Finally, reverting the change of variables (3.8), we obtain the decay property (7.1). �

7.2. A Carleman inequality. In order to prove the Carleman estimate, we focus on the viscosity dynamics
and do not take into account the information provided by the velocity on the flow of the transport system.
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Proposition 7.2 (Carleman inequality). Let ϕε be the solution of (3.6). Then there exists a positive constant
C = C(G) such that ϕε satisfies the following inequality:

s−1

∫∫
Q

e−2sαξ−1(ε−2|∂tϕε|2 + |∂2
xxϕε|2) dxdt

+ sτ2

∫∫
Q

e−2sαξ|∂xϕε|2 dx dt+ s3τ4

∫∫
Q

e−2sαξ3|ϕε|2 dxdt

≤ C
∑
v∈V∂

sτ

∫ T

0

e−2ταξ(t, v)|∂ne(v)ϕ
e
ε(t, v)|2 dt,

(7.2)

where Q := (0, T )×E, α, ξ are the Fursikov-Imanuvilov weights defined in (5.3), τ ≥ C and s ≥ C(T+T 2)ε−1.

We cannot use Proposition 5.1 directly to deduce Proposition 7.2 because we need to keep track of the
dependence of s and τ with respect to ε, and in Proposition 5.1 there is no track of the parameters of the
equation. However, the proof remains similar to the one in Section 5, and so, we just outline the main
estimates.

Proof. Step 0: Strategy of the proof and choice of the auxiliary functions. Using the notations and auxiliary
functions established in the proof of Proposition 5.1 but with δ small enough depending on a and b, we
consider the change of variables ψ = e−sαzε. From (3.9), we obtain that ψ satisfies the equation

(7.3) L1ψ + L2ψ = L3ψ,

where

(7.4)


L1ψ := −2εsτ2|∂xη|2ξψ − 2εsτξ∂xη∂xψ + a∂tψ,

L2ψ := εs2τ2|∂xη|2ξ2ψ + ε∂2
xxψ + sa∂tαψ − |b|

2

4ε ψ,

L3ψ := εsτ∂2
xxηξψ − εsτ2|∂xη|2ξψ.

As in the proof of Proposition 5.1, we need to estimate the product

(L1ψ,L2ψ)L2(Q) :=
∑
e∈E

((ae)−1/2(L1ψ)e, (ae)−1/2(L2ψ)e)L2((0,T )×e).

In particular, we will show that the choice of the weights in (5.3) makes it positive up to several terms that
can be controlled by the left-hand side for a suitable choice of the parameters τ and s.

Step 1: Estimates in the interior. To begin with,

(7.5) ((L1ψ)1, (L2ψ)1)L2(Q) = −2ε2s3τ4

∫∫
Q

a−1|∂xη|4ξ3|ψ|2 dxdt.

Secondly, we compute

((L1ψ)2, (L2ψ)1)L2(Q) = −2ε2s3τ3

∫∫
Q

a−1|∂xη|2∂xηξ3ψ∂xψ dxdt

= 3ε2s3τ4

∫∫
Q

a−1|∂xη|4ξ3|ψ|2 dxdt

−2ε2s3τ3
∑
v∈V

∑
e∈E(v)

∫ T

0

(ae)−1|∂xηe|2∂ne(v)η
e(ξe)3|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J1

+ o

(
ε2s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
.

(7.6)

Thirdly, integration by parts (with respect to the time variable) yields, for τ ≥ C and s ≥ C(T + T 2),

(7.7) ((L1ψ)3, (L2ψ)1)L2(Q) = εs2τ2

∫∫
Q

|∂xη|2ξ2ψ∂tψ dx dt = o

(
ε2s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
.
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To continue with,

((L1ψ)1, (L2ψ)2)L2(Q) = −2ε2sτ2

∫∫
Q

a−1|∂xη|2ξψ∂2
xxψ dx dt

= 2ε2sτ2

∫∫
Q

a−1|∂xη|2ξ|∂xψ|2 dxdt

+
∑
v∈V

∑
e∈E(v)

2ε2sτ2

∫ T

0

(ae)−1|∂xηe|2ξeψe∂ne(v)ψ
e(t, v) dt

︸ ︷︷ ︸
=:J2

+ o

(
ε2s3τ4

∫∫
Q

ξ3|ψ|2 dxdt

)
+ o

(
ε2sτ2

∫∫
Q

ξ|∇ψ|2 dxdt

)
.

(7.8)

In addition,

((L1ψ)2, (L2ψ)2)L2(Q) = −2ε2sτ

∫∫
Q

a−1∂xηξ∂
2
xxψ∂xψ dxdt

= ε2sτ2

∫∫
Q

a−1∂xηξ|∂xψ|2−
∑
v∈V

∑
e∈E(v)

ε2sτ

∫ T

0

(ae)−1∂ne(v)η
eξe|∂xψe|2(t, v) dt

︸ ︷︷ ︸
=:J3

+ o

(
ε2sτ2

∫∫
Q

ξ|∂xψ|2 dx dt

)
.

(7.9)

Moreover, we can prove that

(7.10) ((L1ψ)3, (L2ψ)2)L2(Q) = ε

∫∫
Q

∂tψ∂
2
xxψ dxdt =

∑
v∈V

∑
e∈E(v)

ε

∫ T

0

∂ne(v)ψ
e∂tψ

e(t, v) dt

︸ ︷︷ ︸
=:J4

.

Finally,

(L1ψ, (L2ψ)3 + (L2ψ)4)L2(Q) =
∑
v∈V

∑
e∈E(v)

sτ

∫ T

0

ξe∂ne(v)η
e

(
sε∂tα

e +
|be|2

4

)
|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J5

+ o

(
ε2s3τ4

∫∫
Q

ξ3|ψ|2 dx dt

)
.

(7.11)

Step 2: Estimation of the boundary terms. To begin with, let us deal with the boundary term J1 in
(7.6). If v ∈ V∂ , we get that ψ = 0 from the Dirichlet boundary conditions. Otherwise, for each interior node
v ∈ V0, we get that

−2ε2s3τ3

∫ T

0

ξ3

 ∑
e∈E(v)

(ae)−1|∂xηe|2∂ne(v)η
e

 |ψe|2(t, v) dt ≥ cε2s3τ3

∫ T

0

ξ3|ψe|2(t, v) dt.(7.12)

Indeed, the function ξ is continuous at junctions, ∂nẽ(v)η
ẽ(v) = δ for ẽ the edge going joining the previous

layer to v and ∂ne(v)η
e(v) = −1 if e ∈ E(v) \ {ẽ}, so we obtain (7.12) by choosing δ small enough. With the

right-hand side of (7.12) we can absorb the boundary term J5 in (7.11) for s ≥ C(T + T 2) and τ ≥ C.
To continue with, let us study the boundary term J3 given in (7.9) for each v ∈ V, i.e.

−ε2sτ

∫ T

0

ξ
∑
e∈E(v)

(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt.

If v ∈ V∂ , that term can be moved to the right-hand side of the Carleman estimate. On the other hand, if
v ∈ V0 there is one edge ẽ (the edge going joining the previous layer to v) for which ∂nẽ

ηe = δ and such that
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∂neη = −1 for all e ∈ E(v) \ {ẽ} . So, we have to absorb the boundary term of the edge ẽ. For that we use
z = ψe−sα to get:

ε2sτ
(
aẽ
)−1

∫ T

0

ξẽ|∂nẽηẽ||∂nẽψẽ|2(t, v) dt

≤ 2δε2sτ
(
aẽ
)−1

∫ T

0

ξẽ|∂nẽαẽ|2|ψ|2(t, v) dt+ 2δsτ
(
aẽ
)−1

∫ T

0

ξẽe−2sαẽ

|ε∂nẽzε|2(t, v) dt.

(7.13)

We can absorb the first term in the right-hand side of (7.13) by (7.12). As for the second one, it equals

δε2sτ(aẽ)−1

∫ T

0

ξẽe−2sαẽ

∣∣∣∣∣∣
∑

e∈V(e)\ẽ

∂nezeε

∣∣∣∣∣∣
2

(t, v) dt

≤ δε2sτ(aẽ)−1

∫ T

0

∑
e∈V(e)\ẽ

ξe |∂neψe|2 (t, v) dt+ Cδε2s3τ3

∫ T

0

ξ3|ψe|2(t, v) dt.

(7.14)

Indeed, we use the continuity of functions ξ and α on the junction, and the condition on the vertex (3.9)4

and the fact ∂xα = −τ∂xηξ. Taking δ small enough, we can absorb the term (7.14) by (7.12) and

− ε2sτ

∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt

= ε2sτ

∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1|∂ne(v)ψ
e|2(t, v) dt.

(7.15)

To conclude, let us study the boundary term J4 in (7.10). If v ∈ V∂ , then ∂tψ = 0 because of the Dirichlet
boundary conditions. Otherwise, if v ∈ V0, from (3.9)4, we obtain that∑

e∈E(v)

∫ T

0

ε∂neψe∂tψ
e(t, v) dt =

∑
e∈E(v)

∫ T

0

ε∂neξee−sα
e

zeε∂t(e
−sαe

zeε)(t, v) dt

= s2ε
∑
e∈E(v)

∫ T

0

∂neξe∂tα
ee−2sαe

|zeε |2(t, v) dt+ sε
∑
e∈E(v)

∫ T

0

∂neξee−2sαe ∂t(|zeε |2)

2
(t, v)

= s2ε
∑
e∈E(v)

∫ T

0

∂neξe∂tα
e|ψe|2(t, v) dt− sε

∑
e∈E(v)

∫ T

0

∂t(∂neξe)
|ψe|2

2
(t, v) dt,

(7.16)

which can be absorbed by (7.12). To sum up the result of this step, we have proved that, for s ≥ C(T +T 2)ε2

and τ ≥ C, the following estimate holds:

5∑
`=1

J` ≥ c
∑
v∈V0

ε2s3τ3

∫ T

0

ξ3|ψ|2(t, v) dt+ c
∑
v∈V0

ε2sτ

∫ T

0

ξ
∑

e∈E(v)\ẽ

(ae)−1|∂ne(v)ψ
e|2(t, v) dt

− C
∑
v∈V∂

ε2sτ

∫ T

0

ξ(ae)−1∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt.

(7.17)

Step 3: Conclusion of the proof. Combining (7.5)-(7.17) and the fact that |∂xη| > 0, we obtain the
estimate:

ε2sτ2

∫∫
Q

ξ|∂xψ|2 dxdt+ ε2s3τ4

∫∫
Q

e−2sαξ3|ψ|2 dxdt

≤ (L1ψ,L2ψ)L2(Q) +
∑
v∈V∂

ε2sτ

∫ T

0

ξe|∂ne(v)ψ
e|2(t, v) dt.

(7.18)

From (7.18), we conclude the proof as in Proposition 5.1. �

Remark 7.1 (On the remarks for parabolic equations). The analogous of Remarks 5.1, 5.2 and 5.3 are valid
for this kind of Carleman inequality too.
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As an immediate consequence of Proposition 7.2, we deduce the following result.

Corollary 7.1 (Observability inequality in one unit of time). Let T > 1. Then, there is C > 0 independent
of T such that for all ϕT ∈ L2(E) the solution ϕ of (3.6) satisfies:

(7.19) ‖ϕeε(T − 1, ·)‖2L2(E) ≤ e
C/ε

∑
v∈V∂

∫ T

T−1

|∂νϕeε(t, v)|2 dt.

Proof. This can be proved with (7.2), usual bounds on the exponential weights and Theorem 2.1 applied to
χ(T − t)ϕeε, for χ a cut-off function supported in (−∞, 1/2]. �

7.3. Proof of Claim (3) of Theorem 3.3. Using the Carleman inequality of the previous section, we now
conclude the proof of the main result.

Proof of Theorem 3.3, Claim (3). This result is direct consequence of Corollary 7.1 and of Proposition 7.1.
In fact, combining the decay estimate (7.1) and the observability inequality (7.19), we conclude that

‖ϕε(0, ·)‖2L2(E) ≤ e
(C−c(T−t))/ε‖ϕε(T − 1, ·)‖2L2(E) ≤

∑
v∈V∂

e(C−c(T−t))/ε
∫ T

T−1

|∂νϕeε(t, v)|2 dt.

As a consequence, we obtain that (3.5) holds for a sufficiently large time T > 0. �

Remark 7.2 (The case of non-constant coefficients). The same techniques that we have developed in this
work apply to prove analogous results if the coefficients b and a depend on the time and space variables as
long as a ∈ C1([0, T ] × E) such that infE a > 0 and b ∈ C1

pw([0, T ] × E) satisfying
∑
e∈E(v) b

e(v) = 0 in all

v ∈ V0 and infE b > 0 (see Remark 4.2 for the necessity of the positivity of b). In fact, the decay property is
proved with the transformation

(7.20) zeε = ϕeε exp


∫ x

0

be(ξ) dξ + ce

2ε

 ,

for ce the right constants so that ze is continuous at the junctions. The existence of such constants ce can be
proved similarly to Lemma 2.1. With this change of variables we obtain the system

(7.21)



−ae∂tzeε +
(
|be|2
4ε −

∂xb
e

2

)
zeε − ε∂2

xxz
e
ε = 0, in (0, T )× e, e ∈ E ,

zeε(v) = 0, on (0, T )× V∂ ,
ze1ε (t, v) = ze2ε (t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ Eout(v),∑
e∈E(v) ε∂nezeε = 0 on (0, T )× V0,

zε(0, ·) = z0, on E .

Then, the computations for decay and Carleman estimates are still valid; indeed, we just get some lower order
terms that can be easily absorbed by putting them in the source term and taking ε small enough.

Remark 7.3 (Singular limits and internal control). By doing an analogous proof, we can show that the cost
of null-controllability for the system

ae∂ty
e
ε + be∂xy

e
ε − ε∂2

xxyε = 1ωfε, in (0, T )× e, e ∈ E ,
yeε(t, v) = 0, on (0, T )× V∂ ,
ye1ε (t, v) = ye2ε (t, v), t ∈ (0, T ), v ∈ V, ∀e1, e2 ∈ E(v),∑
e∈E(v)(b

eyeε − ε∂xyeε)ne = 0, on (0, T )× V0,

yε(0, ·) = y0, on E ,

decays exponentially for sufficiently large time provided that the intersection of a sufficient large number of
edges with ω is not empty. The only difference in the argument is that we need to consider the auxiliary
function defined in Section 5.3. Moreover, if ω 6= E, by an analogous proof, we also obtain that the cost of
null-controllability explodes exponentially as ε→ 0 for sufficiently small times.
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8. Conclusions and future work

In this paper, we have obtained the first results on uniform controllability of linear advection-diffusion
equations on a tree (and, in particular, on a star-graph) as the diffusivity parameter vanishes. This extends
the classical results contained in [27, 41]. Many related problems remain open. In particular, the following
ones are of special relevance.

• Networks containing loops. In our proofs, it is essential to assume that our network contains no
loop (i.e. that we are on a tree). Namely, Lemma 2.1 does not hold when there are loops, which
would not allow us to do the transformation (3.8). In addition, it can be proved that we do not
have the decay property in Proposition 7.1 for cycles, where the mass is preserved, so we cannot
expect that the cost of the control decay for general graphs (see Example 3.5). Moreover, in the
Carleman estimate, cycles cause problems to define the auxiliary function, as explained in Remark
5.1. It would be interesting to characterize the controllability properties of (1.4) by the topology or
metric properties of the network (see [29, Chapter 5] for the wave equation).

• Alternative junction conditions. In addition to the continuity condition that we have imposed
at the junctions, there are alternative transmission conditions that are physically relevant, such as
those in [40]. It would be interesting to see if analogous results on the controllability and on the cost
could be obtained in the framework of [40]. The main challenge to overcome is that the continuity
condition was pivotal in estimating the boundary terms in the integrations by parts arising in both
the decay property and the Carleman inequality.

• Balance relation of velocity coefficients in the junction. The balance relation (1.2), introduced
in [32], has been frequently used in many integration by parts throughout the paper and is pivotal to
obtain energy dissipation in the junction (see Remark 3.6). As it concerns a lower order term, (1.2)
is not needed for the qualitative controllability properties of the parabolic system (see Theorem 3.2)
nor for the well-posedness of either system. It is, however, an interesting question to see if the same
convergence results hold if we omit such hypothesis.

• Nonlinear conservation laws. It would be interesting to extend the analysis of the present paper
to nonlinear conservation laws (as in [37, 57]), for which existence results on networks are available
in [23, 22, 3, 34, 17].

• Dispersive effects. We have considered only a model that includes advection and diffusive phenom-
ena, but the PDEs may also have dispersive effect (as in the Korteweg-de Vries equation analyzed in
[39, 38]). The main challenge to deal with the KdV (or KdV-Burgers) equation on a network is to
identify suitable transmission conditions at the junction.

• Optimal time T for the decay. Establishing sharp estimates on the time T that separates blow-up
and decay is an interesting question, though this problem seems really challenging as it is still open
even on networks which consist on a single edge. The first result, in dimension one and for a constant
velocity, was obtained in [27]; afterwards, the same problem was studied in [41] in any dimension and
with a transport flow belonging to W 1,∞(R+ × Ω). More recently, better approximations have been
given for the optimal time in which the cost of the control decays: the lower bound was improved
first in [64], through complex analysis and properties of the entire functions, and in [56] through
semi-classical and spectral analysis; and the upper bound was improved in [36, 63] (in the first one
through complex analysis and, in the second one, by transforming the original equation into the heat
equation without convection terms).

• Cost of approximate controllability on the heat equation for a sufficiently large time.
For a tree-shaped graph G, the limit system (1.3) is exactly controllable for a sufficiently large time.
Consequently, it looks natural that the cost of approximate controllability of (1.1) should decay for
a sufficiently large time. We would like to remark that some relevant works for the cost of parabolic
equations are [33] (for the heat equation) and [55] (for hypoelliptic equations).

• Parabolic singular limit of dissipative wave equation. An interesting extension of this work
could be the study of parabolic singular limits – namely, the singular limit of ε∂2

ttu−∂2
xxu+∂tu = 0 as

ε→ 0+ – on networks. Regarding the convergence properties of those systems in domains belonging
to Rd, they were first studied in [72], and then in [73]. In addition, the controllability properties of
those system, and in particular the asymptotic behaviour, was studied in [67] and [66].
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• Controllability under positivity constraints. It also remains open to prove that, for positive
initial data, we can take the solution to equilibrium without loosing the positivity, as in [65, 71].
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Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, 1988.
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