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Introduction

It is well known that an upper semi-continuous function u is subharmonic on D ⊂ R n if the mean value over the small spheres or over the small balls at any point of D is equal or greater then the value of the function at this point. Plurisubharmonic (psh) functions (in C n ) are defined by using subharmonicity at complex lines. In the first part of this work we introduce an integral criterion for psh functions so that it can be a subharmonic-like definition for psh functions. In order to state the first main result of the paper we need to introduce some notions. We consider in C n the following class of ellipsoids

E(r 1 , . . . , r n ) = |z 1 | 2 r 2 1 + • • • + |z n | 2 r 2 n ≤ 1 ,
where r j > 0 for any 1 ≤ j ≤ n. By taking r 1 = R and r j = r for all 2 ≤ j ≤ n in E(r 1 , . . . , r n ) let us denote E(R, r) := E(R, r, . . . , r), where R an r are positive numbers. It is not difficult to check that for any unitary matrix T and for any complex line l ⊂ C n passing through origin (T • E(r 1 , . . . , r n )) ∩ l is a disc in l. Let D ⊂ C n be a domain. For integrable function u on D we consider the following mean value over E(r 1 , . . . , r n ) M u (z 0 , T, E(r 1 , . . . , r n )) = 1 V (r 1 , . . . , r n ) z 0 +T •E(r1,...,rn) u(ξ)dV (ξ), where V (r 1 , . . . , r n ) = E(r1,...,rn)

dV (ξ) = π n r 2 1 •••r 2 n n!
is the volume of E(r 1 , . . . , r n ).

The following theorem gives a criterion for psh functions in terms of E(r 1 , . . . , r n ) and E(R, r) ellipsoids. We prove that psh functions satisfy the mean value integral inequality in terms of E(r 1 , . . . , r n ) and E(R, r) ellipsoids and on the other hand upper semi-continuous function satisfying one of the inequalities is psh . The theorem states as follows 2010 Mathematics Subject Classification. 31B05,31C10,32U15.

1 Theorem 1.1. Let D ⊂ C n be a domain and u be an upper semi-continuous function on D. Then the following properties are equivalent: a) u is psh on D; b) for any unitary matrix T with T •E(r 1 , . . . , r n ) ⊂ D the following inequality holds u(z 0 ) ≤ M u (z 0 , T, E(r 1 , . . . , r n )); c) for any unitary matrix T there exists r 0 > 0 small enough such that for any (R, r) with max{R, r} ≤ r 0 the following inequality holds

u(z 0 ) ≤ M u (z 0 , T, E(R, r));
An interesting criterion for subharmonic functions is given by Blaschke and Privalov (see [START_REF] Brelot | Elements de la Theorie Classique Du Potentiel[END_REF]). It asserts that an upper semi-continuous in the domain D ⊂ R n function u(x) with u(x) ≡ -∞, is subharmonic if and only if u(x) ≥ 0 for all x 0 ∈ D \ u -∞ (see below Theorem 3.1). Here u -∞ := {x ∈ D : u(x) = -∞} and u(x) is a generalised Laplace operator of the function u at the point x constructed by the mean over the spheres or by the mean of balls (see [START_REF] Blaschke | Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials[END_REF], [START_REF] Brelot | Elements de la Theorie Classique Du Potentiel[END_REF] [4], [START_REF] Privalov | On a theorem of S.Saks[END_REF], [START_REF] Privalov | To the definition of a subharmonic function[END_REF], [START_REF] Sadullaev | The generalised Laplace operator and the topological characteristic of removable S -singular sets of subharmonic functions[END_REF]).

In the section 3 we give also an analogue of Blaschke-Privalov theorem for psh functions (Theorem 3.2). In the proof we essentially use Theorem A.8 (Appendix A).

For this purpose we define the following

D T u(z 0 ) = lim R→0 lim r→0 M u (z 0 , T, E(R, r)) -u(z 0 ) R 2 and let Du(z 0 ) = inf T D T u(z 0 )
where the infimum taken all over the unitary matrices.

Theorem 1.2. An upper semi-continuous function u in the domain D ⊂ C n with u(z) ≡ -∞, is psh if and only if

Du(z) ≥ 0 for all z ∈ D \ u -∞ .
The paper is organised as follows. The main theorems 1.1 and 1.2 we prove in sections 2 and 3 respectively. In Appendix A we introduce the notion of p(t)subharmonic functions for some weight function p(t) which is used to prove Theorem 1.1 and Theorem 1.2. In general we show that if p(t) ≥ 0 then this notion is equivalent to subharmonic functions.
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Integral criterion for psh functions

Let us recall the definition of psh functions. 

: D → [-∞, ∞), is called plurisubharmonic in D (shortly u(z) ∈ psh(D)) if for any complex line l the function u| l is subharmonic in l ∩ D.

Now we show the construction of a new integral criterion for psh functions. Let us state the first main proposition of this section

Proposition 2.2. Let D ⊂ C n be a domain and u be a psh function on D. Then for any z 0 ∈ D and for any unitary matrix T with z 0 + T • E(r 1 , . . . , r n ) ⊂ D the following inequality holds

(2.1) u(z 0 ) ≤ M u (z 0 , T, E(r 1 , . . . , r n )).
Let us first prove the following lemma which is used in the proof of the proposition above.

Lemma 2.3. Let u be a psh on D. Then M u (z 0 , T, E(r 1 , . . . , r n )) is nondecreasing by r j for any 1 ≤ j ≤ n, i.e. for r j ≤ r j we have

M u (z 0 , T, E(r 1 , . . . , r j-1 , r j , r j+1 , . . . r n )) ≤ M u (z 0 , T, E(r 1 , . . . , r j , . . . r n )).
Proof. Without loss of generality we can assume T = Id and we prove the assertion for r 1 . Note that, since u is psh it is subharmonic by z 1 for any fixed z := (z 2 , . . . z n ). First of all, let us make the following denotions:

E n-1 ( r) = |z 2 | 2 r 2 2 + . . . + |z n | 2 r 2 n ≤ 1 , E(r 1 ) = |z 1 | 2 ≤ r 2 1 1 - |z 2 | 2 r 2 2 -. . . - |z n | 2 r 2 n and finally v(r 1 , z) = 1 V (r 1 ) E(r1) u(z 1 , z)dV (z 1 ), where V (r 1 ) := πr 2 1 1 - |z 2 | 2 r 2 2 -. . . - |z n | 2 r 2 n
is the area of E(r 1 ). After using Fubini's theorem, we get:

M u (z 0 , Id, E(r 1 , . . . , r n )) = = 1 V (r 1 , . . . , r n ) En-1( r) V (r 1 )dV ( z) 1 V (r 1 ) E(r1) u(z 1 , z)dV (z 1 ) = = n! π n-1 r 2 2 • • • r 2 n En-1( r) 1 - |z 2 | 2 r 2 2 -. . . - |z n | 2 r 2 n v(r 1 , z)dV ( z).
Since u is subharmonic by

z 1 the integral v(r 1 , z) is increasing by r 1 i.e. v(r * 1 , z) ≤ v(r * * 1 , z) for all r * 1 ≤ r * * 1 . Since 1 -|z2| 2 r 2 2 -. . . -|zn| 2 r 2 n is non-negative on E n-1 ( r) and v(r 1 , z) is non-decreasing by r 1 the following integral n! π n-1 r 2 2 • • • r 2 n En-1( r) 1 - |z 2 | 2 r 2 2 -. . . - |z n | 2 r 2 n v(r 1 , z)dV ( z)
is non-decreasing by r 1 . Consequently, M u (z 0 , Id, E(r 1 , . . . , r n )) is non-decreasing by r 1 . In this manner the proof could be given for any r j where 1 ≤ j ≤ n.

Similarly, we can easily get the following Corollary 2.4. Let u be a psh function on D then for T • E(R, r)) the mean value M u (z 0 , T, E(R, r)) is non-decreasing by both R and r. Now we are ready to prove the Proposition 2.2.

Proof of Proposition 2.2. Assume u is a psh function on D. Since u(T -1 • z) is also psh on T • D it is enough to prove the assertion for T = Id. First assume r 1 = . . . = r n = r. Then M u (z 0 , Id, E(r 1 , . . . , r n )) is just the integral mean by B(z 0 , r). Hence, in this case (2.1) is true because u is also a subharmonic function. Take now any vector (r 1 , . . . , r n ) with E(r 1 , . . . , r n ) ⊂ D. By Lemma 2.3 the integral mean M u (z 0 , T, E(r 1 , . . . , r n )) is monotonically increasing by r j for any 1 ≤ j ≤ n. Let r := min{r 1 , . . . , r n }. Since M u (z 0 , T, E(r 1 , . . . , r n )) is monotonically non-decreasing we have M u (z 0 , T, E(r, . . . , r)) ≤ M u (z 0 , T, E(r 1 , . . . , r n )). Consequently,

u(z 0 ) ≤ M u (z 0 , T, E(r, . . . , r)) ≤ M u (z 0 , T, E(r 1 , . . . , r n )).
We are done. Now we give the next main proposition of this section. It is the converse of the Proposition 2.2 but in strong sense in the term of E(R, r) ellipsoids.

Proposition 2.5. Let D ⊂ C n be a domain and u be an upper semi-continuous function on D. If for any z 0 ∈ D and for any unitary matrix T the following (2.2)

∃r 0 > 0 : u(z 0 ) ≤ M u (z 0 , T, E(R, r)), ∀R, r : max{R, r} ≤ r 0 , T • E(R, r) ⊂ D is true then u(z) ∈ psh(D).
Proof. We fix a point z 0 , say z 0 = 0, and a line l 0. It is not difficult to see that there exists an unitary matrix T such that T • l = {z ∈ C n : z 2 = z 3 = . . . = z n = 0}, so that without loss of generality we can assume l = {z ∈ C n : z 2 = z 3 = . . . = z n = 0}. We apply the formula (2.2) for ellipsoid E(R, r) and for max{R, r} small enough so that

u(0) ≤ n! π n R 2 r 2n-2 E(R,r) u(z)dV (z),
and by setting z = (z 2 , . . . , z n ) and using Fubini's theorem we have

(2.3) u(0) ≤ n! π n R 2 r 2n-2 B1(R) dV (z 1 ) E u(z)dV ( z), where B 1 (R) = {|z 1 |≤ R} and E = |z 2 | 2 + . . . + |z n | 2 r 2 ≤ 1 - |z 1 | 2 R 2 .
Now we evaluate the right side of (2.3). Since the function u(z) is upper semi-continuous, there exists a monotonically decreasing sequence of continuous functions u j (z) such that u j (z) ↓ u(z). Now we fix j ∈ N and ε > 0. Take an open set O ε j (z) = {u j (z) < u j (z 1 , 0, . . . , 0) + ε}.

Then it is easy to see that O ε j ⊃ l ∩ D. Fix any R < r 0 with B 1 (R) ⊂ l ∩ D. Then for any ε > 0 there exists r such that E(R, r) ⊂ O ε j . Hence for such rs we get:

u(0) ≤ n! π n R 2 r 2n-2 B1(R) dV (z 1 ) E u(z)dV ( z) ≤ ≤ n! π n R 2 r 2n-2 B1(R) dV (z 1 ) E u j (z)dV ( z) < < n! π n R 2 r 2n-2 B1(R) dV (z 1 ) E (u j (z 1 , 0, . . . , 0) + ε)dV ( z) = = n! π n R 2 r 2n-2 B1(R) u j (z 1 , 0, . . . , 0)dV (z 1 ) E dV ( z) + ε = = n πR 2 B1(R) 1 - |z 1 | 2 R 2 n-1 u j (z 1 , 0, . . . , 0)dV (z 1 ) + ε
By letting j → ∞ and using the monotone converges theorem of Beppo Levi then tending ε to 0 we get the following inequality:

u(0) ≤ n πR 2 |z1|≤R 1 - |z 1 | 2 R 2 n-1
u(z 1 , 0, . . . , 0)dV (z 1 ), for any R < r 0 .

We can prove similar inequality at arbitrary point z 0 ∈ l ∩ D. Consequently, by Corollary A.6 we can see that u(z) is a subharmonic function on l ∩ D. Hence u(z) is a psh function on D. 

Analogue of Blaschke-Privalov's theorem for psh functions

Before stating the main theorem of this section we remind the upper generalised Laplace operator and we recall the classical Blaschke-Privalov's theorem. Let u be an upper semi-continuous function in the domain D ⊂ R n and u(x) ≡ -∞. For a point x 0 ∈ D \ u -∞ , where u -∞ := {x ∈ D : u(x) = -∞}, we define the upper u(x 0 ) generalised Laplace operator of the function u at the point x 0 , constructed by the mean of spheres (or balls) with the following equality:

(3.1) u(x 0 ) := 2n • lim r→+0 m u (x 0 , r) -u(x 0 ) r 2 .
where m u (x 0 , r) is the integral mean of u on the sphere S(x 0 , r) (or ball B(x 0 , r), for more information see Appendix A).

Theorem 3.1 (Blaschke-Privalov). An upper semi-continuous in the domain

D ⊂ R n function u(x) with u(x) ≡ -∞, is subharmonic if and only if (3.2) u(x) ≥ 0 for all x 0 ∈ D \ u -∞ .
3.1. Blaschke-Privalov theorem for psh functions. Now we define

D T u(z 0 ) = lim R→0 lim r→0 M u (z 0 , T, E(R, r)) -u(z 0 ) R 2 and let Du(z 0 ) = inf T D T u(z 0 )
where the infimum is taken all over the unitary matrices T .

Theorem 3.2. An upper semi-continuous function u in the domain D ⊂ C n with u(z) ≡ -∞, is psh if and only if

Du(z) ≥ 0 for all z 0 ∈ D \ u -∞ .
Proof. By Proposition 2.2 we can easily get the necessary condition. Now let the function u is upper semi-continuous in the domain D ⊂ C n with u(z) ≡ -∞ such that Du(z) ≥ 0 for all z ∈ D \ u -∞ . Let l be a complex line. We shall show that u| l is subharmonic on l ∩ D. Since in (3.2) the infimum is taken by all unitary matrices T we can assume that l = {z 2 = . . . = z n = 0}. To prove subharmonicity of u| l∩D we show that p u| l∩D ≥ 0 for some weight function p(t) ≥ 0 (see Theorem A.8).

Let us first work with the following difference

M u (z 0 , Id, E(R, r)) -M u(z1,0,...,0) (z 0 , Id, E(R, r)) = = n! π n R 2 r 2n-2 E(R,r) ((u(z) -u(z 1 , 0, . . . , 0))dV = = n! π n R 2 E(R,1)
(u(z 1 , rz 2 , . . . , rz n ) -u(z 1 , 0, . . . , 0))dV Now we take lim r→0 and we have lim Now we show that lim r→0 M u(z1,0,...,0) (z 0 , Id, E(R, r)) = n p u(z1,0,...,0) (z 0 1 , R) (for definition of n p u (z 0 , r) see Appendix A). Indeed,

r→0 n! π n R 2 E(R,1) u(z 1 , rz 2 , . . . , rz n ) -u(z 1 , 0, . . . , 0)dV ≤ ≤ n! π n R 2 E(R,1)
lim r→0 M u(z1,0,...,0) (z 0 , Id, E(R, r)) = n! π n R 2 E(R,1) u(z 1 , 0, . . . , 0)dV = = n πR 2 |z1|≤R 1 - |z 1 | 2 R 2 n-1 u(z 1 , 0, . . . , 0)dV (z 1 ) = n p u (z 0 , R),
where p(t) = n • 1 -t 2 n-1 t 2n-1 (see the proof of Corollary A.6). Finally, we have

lim r→0 M u (z 0 , T, E(R, r)) -u(z 0 ) R 2 ≤ n p u (z 0 , R) -u(z 0 ) R 2 .
Consequently, p u| l ≥ D Id u. Since D Id u ≥ 0 we have p u| Π ≥ 0. Hence by Theorem A.8 u is subharmonic on l ∩ D.

Remark 3.3. We can proof similar result in terms of E(r 1 , . . . , r n ) ellipsoids. If we set

D T u(z 0 ) = lim r1→0 lim r2+...+rn→0 M u (z 0 , T, E(r 1 , . . . , r n )) -u(z 0 ) r 2 1 or D T u(z 0 ) = lim r1→0 . . . lim rn→0 M u (z 0 , T, E(r 1 , . . . , r n )) -u(z 0 ) r 2 1
and define Du(z 0 ) = inf T D T u(z 0 ) as above using the same proof we will get the same result as Theorem 3.2.

Remark 3.4. Note that sup T D T u ≥ 0 does not guaranty plurisubharmonicity of u. Indeed, u = |z 1 | 2 -|z 2 | 2 is not psh but we can show that D Id u ≥ 0. Before that we evaluate M u (0, Id, E(R, r)). Assuming z 1 = Rw 1 , z 2 = rw 2 we will have the following:

M u (0, Id, E(R, r)) = 2 π 2 |w1| 2 +|w2| 2 ≤1 (R 2 |w 1 | 2 -r 2 |w 2 | 2 )dV = = 2 π 2 |w1| 2 +|w2| 2 ≤1 R 2 |w 1 | 2 dV - 2r 2 π 2 |w1| 2 +|w2| 2 ≤1 |w 2 | 2 dV
where p(t) := 2(k+l)! l!(k-1)! 1 -t 2 l • t 2k-1 . Consequently, it is enough to show that 1 0 p(t)dt = 1. Indeed, we have

1 0 p(t)dt = (k + l)! l! (k -1)! 1 0 (1 -x) l x k-1 dx = (l + k)! l! (k -1)! • Γ(l + 1)Γ(k) Γ(l + k + 1) = 1.
A.2. Blaschke-Privalov theorem for p(t)-subharmonic functions. Now we prove Blaschke-Privalov type theorem for p(t)-subharmonic functions. Like (3.1) we define the following operator (A.4) p u(x 0 ) := A • lim r→+0 n p u (x 0 , r) -u(x 0 ) r 2 .

where A -1 = 1 2n 1 0 t 2 p(t)dt. Note that if p(t) ≥ 0 then A > 0.

First of all we shall show that the operator p is actually Laplace operator for C 2 functions. x i x j ∂ 2 u ∂x i ∂x j (0) + o(r 2 t 2 ), where r 2 t 2 = n i=1

x 2 i and 0 ≤ t ≤ 1. After averaging both sides of the last equality by the sphere S(0, rt) where 0 < r < ρ(0, D) we have m u (0, rt) -u(0) = 1 2σ n (rt) n-1 n i=1 ∂ 2 u ∂x 2 i (0) S(0,rt)

x 2 i dσ + o(r 2 t 2 ) = 1 2n n i=1 ∂ 2 u ∂x 2 i (0)r 2 t 2 + o(r 2 t 2 )
and then multiplying both sides to p(t) and integrating by 0 ≤ t ≤ 1 we get n p u (0, r) -u(0) = u(0) • 
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So we have lim r→0 M u (0, Id, E(R, r)) = cR 2 , where

Hence,

Similarly, we can show that D Id u(z 0 ) > 0 for any z 0 ∈ C.

Appendix A. p(t)-subharmonic functions

In this section we introduce p(t)-subharmonic functions in R n for continuous weight function p(t) with 1 0 p(t)dt = 1. In particular, we prove p(t)-subharmonic functions are subharmonic functions for positive weight functions (see below Lemma A.4). We note that the auxiliary notion of p(t)-subharmonic function is very helpful in our work, since Corollary A.6 is used in the proof of Proposition 2.5 and the theorem A.8 is used in the proof of Theorem 3.2.

A.1. Relation between p(t)-subharmonic and subharmonic function. Let D ⊂ R n be a domain and x 0 ∈ D. Let p(t), 0 ≤ t ≤ 1 be a continuous function. Assume

where m u (x 0 , rt) is the mean value of u on the sphere S(z 0 , rt) i.e.

m u (x 0 , r) := 1 r n-1 σ n S(x 0 ,r) u(x)dσ.

Remark A.1. If we choose p(t) in the following way p(t) = nt n-1 , then n p u (z 0 , r) = n u (z 0 , r), i.e. n p u (z 0 , r) will equal to the mean value of the function u over the ball B(z 0 , r). Definition A.2. Let D ⊂ R n . We say that u is p(t)-subharmonic on D if it is upper semi-continuous on D and for any x 0 ∈ D there exists r 0 (x 0 ) > 0 such that (A.2) u(x 0 ) ≤ n p u (x 0 , r) for any r < r 0 . If u is p(t)-subharmonic at any point of D then we say u is p(t)-subharmonic on D.

Theorem A.3 (see [START_REF] Demailly | Complex Analytic and Differential Geometry[END_REF]Theorem 4.12] or [START_REF] Sadullaev | The generalised Laplace operator and the topological characteristic of removable S -singular sets of subharmonic functions[END_REF]). Let D ⊂ R n be a domain. An upper semi-continuous function u : D → [-∞, ∞) is subharmonic if and only if for every x 0 ∈ D, there exists a sequence {r j } decreasing to 0 such that u(x 0 ) ≤ m u (x 0 , r j ) for any j.

Lemma A.4. Assume p(t) ≥ 0. Then u is p(t)-subharmonic if and only if it is subharmonic.

Proof. Assume u is a subharmonic function then there exists r 0 such that for any 0 < t < r 0 we have u(x 0 ) ≤ m u (x 0 , t). Since p ≥ 0 we have (A.2).

Let now u be p(t)-subharmonic. It is enough to show that for any x 0 ∈ D there exists r j 0 such that u(x 0 ) ≤ m u (x 0 , r j ). Assume contrary, that for some point x 0 ∈ D there is not such a sequence. Then there exists r 0 > 0 such that m u (x 0 , rt) < u(x 0 ) for any r < r 0 . Since p ≥ 0 and 1 0 p(t)dt = 1 we have n p u (x 0 , r) < u(x 0 ). Contradiction. Hence u is a subharmonic function.

Similarly result can be given for harmonic functions. The following lemma for harmonic functions is true.

Lemma A.5. A continuous function u on D is harmonic if and only if for any x 0 ∈ D there exists r 0 > 0 such that for any r < r 0 the following holds

Proof. If u is harmonic then (A.3) is clear. Assume now u satisfies (A.3). Then by Lemma A.4 u is a subharmonic function. Hence for any x 0 ∈ D we have u(x 0 ) ≤ m u (x 0 , r). By definition of n p u (x 0 , r) we easily get n u (x 0 , r) = u(x 0 ). Hence u is a harmonic function.

The following corollary is used in the proof of Proposition 2.5.

Corollary A.6. Let u be an upper semi-continuous function in the domain D ⊂ C k and l be a natural number. Then u is subharmonic on D if and only if for any z 0 ∈ D there exists r 0 > 0 such that for any r < r 0 we have

where B(z 0 , r) is the ball centered at z 0 with radius r.

Proof. Without loss of generality take z 0 = 0. Then by using Fubini's theorem we have

By changing τ = rt we have

The proof of the above theorem is similar to the proof of classical Blaschke-Privalov theorem but there are some technical changes. Therefore we will give the proof for reader's convenience.

Proof of the Theorem A.8. The necessity of the theorem is clear. If u(x) is p(t)-subharmonic function in D then for all z 0 ∈ D we have u(z 0 ) ≤ n p u (z 0 , r) for any r < r 0 , which is equivalently to p u(x) ≥ 0 for all x 0 ∈ D \ u -∞ .

In order to prove the sufficiency of the theorem take any ball B(x 0 , r) ⊂⊂ D and any continuous function ϕ on S(x 0 , r) such that u| ∂B ≤ ϕ. It is well known that if for any ϕ as above the following inequality holds P [ϕ] -u ≥ 0 where

is the Poisson mean of ϕ, then u is a subharmonic function (see for example [START_REF] Sadullaev | Pluripotential theory and its applications[END_REF]). Note that P [ϕ] is a harmonic function.

The following function w(x) = x -x 0 2 -r 2 is subharmonic with laplacian w = 2n and it is identically equal to zero on the sphere S(x 0 , r). Now we consider the following auxiliary function v = u -P [ϕ] + εw, on the ball B(x 0 , r), it is upper semi-continuous and v < +∞. It is enough to show that v < 0 for any ε > 0. Assume by contrary. Then since v is upper semi-coninuous v must attain strictly finite positive maximum at the point x where u is finite. Note that we always have n p u (x 0 , r) ≤ sup B(x 0 ,r) u(x).

Hence if v attains its maximum at the point x by definition we have p v(x) ≤ 0.

On the other hand at this point must hold the following relations:

p v(x) = ε • w + p u(x) = 2nε + p u(x) > p u(x) ≥ 0. Consequently, p v(x) > 0. Contradiction. CNRS, Univ. Lille, UMR 8524 -Laboratoire Paul Painleve, F-59000 Lille, France Email address: karimjon1705@gmail.com V.I.Romanovskiy Institute of Mathematics AS RUz, Tashkent, Uzbekistan Email address: shomurod shopulatov@mail.ru