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A mean value criterion for plurisubharmonic functions

Karim Rakhimov and Shomurod Shopulatov

Abstract. In this paper we prove a criterion for plurisubharmonic functions
in terms of integral mean by complex ellipsoids. Moreover, by using the crite-

rion we prove an analogue of Blaschke-Privalov theorem for plurisubharmonic
functions.

1. Introduction

It is well known that an upper semi-continuous function u is subharmonic
on D ⊂ Rn if the mean value over the small spheres or over the small balls at
any point of D is equal or greater then the value of the function at this point.
Plurisubharmonic (psh) functions (in Cn) are defined by using subharmonicity at
complex lines. In the first part of this work we introduce an integral criterion for
psh functions so that it can be a subharmonic-like definition for psh functions. In
order to state the first main result of the paper we need to introduce some notions.
We consider in Cn the following class of ellipsoids

E(r1, . . . , rn) =

{
|z1|2

r2
1

+ · · ·+ |zn|
2

r2
n

≤ 1

}
,

where rj > 0 for any 1 ≤ j ≤ n. By taking r1 = R and rj = r for all 2 ≤ j ≤ n
in E(r1, . . . , rn) let us denote E(R, r) := E(R, r, . . . , r), where R an r are positive
numbers.

It is not difficult to check that for any unitary matrix T and for any complex
line l ⊂ Cn passing through origin (T ◦E(r1, . . . , rn))∩ l is a disc in l. Let D ⊂ Cn
be a domain. For integrable function u on D we consider the following mean value
over E(r1, . . . , rn)

Mu(z0, T, E(r1, . . . , rn)) =
1

V (r1, . . . , rn)

∫
z0+T◦E(r1,...,rn)

u(ξ)dV (ξ),

where V (r1, . . . , rn) =
∫

E(r1,...,rn)

dV (ξ) =
πnr21 ···r

2
n

n! is the volume of E(r1, . . . , rn).

The following theorem gives a criterion for psh functions in terms of E(r1, . . . , rn)
and E(R, r) ellipsoids. We prove that psh functions satisfy the mean value inte-
gral inequality in terms of E(r1, . . . , rn) and E(R, r) ellipsoids and on the other
hand upper semi-continuous function satisfying one of the inequalities is psh . The
theorem states as follows
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Theorem 1.1. Let D ⊂ Cn be a domain and u be an upper semi-continuous
function on D. Then the following properties are equivalent:

a) u is psh on D;
b) for any unitary matrix T with T ◦E(r1, . . . , rn) ⊂ D the following inequal-

ity holds
u(z0) ≤Mu(z0, T, E(r1, . . . , rn));

c) for any unitary matrix T there exists r0 > 0 small enough such that for
any (R, r) with max{R, r} ≤ r0 the following inequality holds

u(z0) ≤Mu(z0, T, E(R, r));

An interesting criterion for subharmonic functions is given by Blaschke and
Privalov (see [2]). It asserts that an upper semi-continuous in the domain D ⊂ Rn
function u(x) with u(x) 6≡ −∞, is subharmonic if and only if 4u(x) ≥ 0 for all
x0 ∈ D \ u−∞ (see below Theorem 3.1). Here u−∞ := {x ∈ D : u(x) = −∞} and
4u(x) is a generalised Laplace operator of the function u at the point x constructed
by the mean over the spheres or by the mean of balls (see [1], [2] [4], [5], [6], [8]).
In the section 3 we give also an analogue of Blaschke-Privalov theorem for psh
functions (Theorem 3.2). In the proof we essentially use Theorem A.8 (Appendix
A).

For this purpose we define the following

DTu(z0) = lim
R→0

lim
r→0

Mu(z0, T, E(R, r))− u(z0)

R2

and let Du(z0) = infT DTu(z0) where the infimum taken all over the unitary ma-
trices.

Theorem 1.2. An upper semi-continuous function u in the domain D ⊂ Cn
with u(z) 6≡ −∞, is psh if and only if

Du(z) ≥ 0 for all z ∈ D \ u−∞.

The paper is organised as follows. The main theorems 1.1 and 1.2 we prove
in sections 2 and 3 respectively. In Appendix A we introduce the notion of p(t)-
subharmonic functions for some weight function p(t) which is used to prove Theorem
1.1 and Theorem 1.2. In general we show that if p(t) ≥ 0 then this notion is
equivalent to subharmonic functions.

Acknowledgments. We would like to express our deep gratitude to professor
Azimbay Sadullaev for introducing us this theme and for useful advice during the
work. The first author is currently supported by the Programme Investissement
d’Avenir (I-SITE ULNE /ANR-16-IDEX-0004 ULNE and LabEx CEMPI /ANR-
11-LABX-0007-01) managed by the Agence Nationale de la Recherche.

2. Integral criterion for psh functions

Let us recall the definition of psh functions.

Definition 2.1. Let D ⊂ Cn be a domain. An upper semi-continuous function
u : D → [−∞,∞), is called plurisubharmonic in D (shortly u(z) ∈ psh(D)) if for
any complex line l the function u|l is subharmonic in l ∩D.

Now we show the construction of a new integral criterion for psh functions. Let
us state the first main proposition of this section
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Proposition 2.2. Let D ⊂ Cn be a domain and u be a psh function on D.
Then for any z0 ∈ D and for any unitary matrix T with z0 +T ◦E(r1, . . . , rn) ⊂ D
the following inequality holds

(2.1) u(z0) ≤Mu(z0, T, E(r1, . . . , rn)).

Let us first prove the following lemma which is used in the proof of the propo-
sition above.

Lemma 2.3. Let u be a psh on D. Then Mu(z0, T, E(r1, . . . , rn)) is non-
decreasing by rj for any 1 ≤ j ≤ n, i.e. for r′j ≤ r′′j we have

Mu(z0, T, E(r1, . . . , rj−1, r
′
j , rj+1, . . . rn)) ≤Mu(z0, T, E(r1, . . . , r

′′
j , . . . rn)).

Proof. Without loss of generality we can assume T = Id and we prove the
assertion for r1. Note that, since u is psh it is subharmonic by z1 for any fixed
′z := (z2, . . . zn). First of all, let us make the following denotions:

En−1(′r) =

{
|z2|2

r2
2

+ . . .+
|zn|2

r2
n

≤ 1

}
,

′E(r1) =

{
|z1|2≤ r2

1

(
1− |z2|2

r2
2

− . . .− |zn|
2

r2
n

)}
and finally

v(r1,
′ z) =

1

V ′(r1)

∫
′E(r1)

u(z1,
′ z)dV (z1),

where

V ′(r1) := πr2
1

(
1− |z2|2

r2
2

− . . .− |zn|
2

r2
n

)
is the area of ′E(r1). After using Fubini’s theorem, we get:

Mu(z0, Id, E(r1, . . . , rn)) =

=
1

V (r1, . . . , rn)

∫
En−1(′r)

V ′(r1)dV (′z)
1

V ′(r1)

∫
′E(r1)

u(z1,
′ z)dV (z1) =

=
n!

πn−1r2
2 · · · r2

n

∫
En−1(′r)

(
1− |z2|2

r2
2

− . . .− |zn|
2

r2
n

)
v(r1,

′ z)dV (′z).

Since u is subharmonic by z1 the integral v(r1,
′ z) is increasing by r1 i.e. v(r∗1 ,

′ z) ≤
v(r∗∗1 ,′ z) for all r∗1 ≤ r∗∗1 . Since 1− |z2|

2

r22
− . . .− |zn|

2

r2n
is non-negative on En−1(′r)

and v(r1,
′ z) is non-decreasing by r1 the following integral

n!

πn−1r2
2 · · · r2

n

∫
En−1(′r)

(
1− |z2|2

r2
2

− . . .− |zn|
2

r2
n

)
v(r1,

′ z)dV (′z)

is non-decreasing by r1. Consequently, Mu(z0, Id, E(r1, . . . , rn)) is non-decreasing
by r1. In this manner the proof could be given for any rj where 1 ≤ j ≤ n. �

Similarly, we can easily get the following

Corollary 2.4. Let u be a psh function on D then for T ◦E(R, r)) the mean
value Mu(z0, T, E(R, r)) is non-decreasing by both R and r.
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Now we are ready to prove the Proposition 2.2.

Proof of Proposition 2.2. Assume u is a psh function on D. Since u(T−1◦
z) is also psh on T ◦D it is enough to prove the assertion for T = Id. First assume
r1 = . . . = rn = r. Then Mu(z0, Id, E(r1, . . . , rn)) is just the integral mean by
B(z0, r). Hence, in this case (2.1) is true because u is also a subharmonic func-
tion. Take now any vector (r1, . . . , rn) with E(r1, . . . , rn) ⊂ D. By Lemma 2.3 the
integral mean Mu(z0, T, E(r1, . . . , rn)) is monotonically increasing by rj for any
1 ≤ j ≤ n. Let r := min{r1, . . . , rn}. Since Mu(z0, T, E(r1, . . . , rn)) is mono-
tonically non-decreasing we have Mu(z0, T, E(r, . . . , r)) ≤Mu(z0, T, E(r1, . . . , rn)).
Consequently,

u(z0) ≤Mu(z0, T, E(r, . . . , r)) ≤Mu(z0, T, E(r1, . . . , rn)).

We are done. �

Now we give the next main proposition of this section. It is the converse of the
Proposition 2.2 but in strong sense in the term of E(R, r) ellipsoids.

Proposition 2.5. Let D ⊂ Cn be a domain and u be an upper semi-continuous
function on D. If for any z0 ∈ D and for any unitary matrix T the following
(2.2)
∃r0 > 0 : u(z0) ≤Mu(z0, T, E(R, r)),∀R, r : max{R, r} ≤ r0, T ◦ E(R, r) ⊂ D

is true then u(z) ∈ psh(D).

Proof. We fix a point z0, say z0 = 0, and a line l 3 0. It is not difficult to see
that there exists an unitary matrix T such that T ◦ l = {z ∈ Cn : z2 = z3 = . . . =
zn = 0}, so that without loss of generality we can assume l = {z ∈ Cn : z2 = z3 =
. . . = zn = 0}. We apply the formula (2.2) for ellipsoid E(R, r) and for max{R, r}
small enough so that

u(0) ≤ n!

πnR2r2n−2

∫
E(R,r)

u(z)dV (z),

and by setting ′z = (z2, . . . , zn) and using Fubini’s theorem we have

(2.3) u(0) ≤ n!

πnR2r2n−2

∫
B1(R)

dV (z1)

∫
′E

u(z)dV (′z),

where B1(R) = {|z1|≤ R} and

′E =

{
|z2|2+ . . .+ |zn|2

r2
≤ 1− |z1|2

R2

}
.

Now we evaluate the right side of (2.3). Since the function u(z) is upper
semi-continuous, there exists a monotonically decreasing sequence of continuous
functions uj(z) such that uj(z) ↓ u(z). Now we fix j ∈ N and ε > 0. Take an open
set

Oεj (z) = {uj(z) < uj(z1, 0, . . . , 0) + ε}.
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Then it is easy to see that Oεj ⊃ l ∩D. Fix any R < r0 with B1(R) ⊂ l ∩D. Then
for any ε > 0 there exists r such that E(R, r) ⊂ Oεj . Hence for such rs we get:

u(0) ≤ n!

πnR2r2n−2

∫
B1(R)

dV (z1)

∫
′E

u(z)dV (′z) ≤

≤ n!

πnR2r2n−2

∫
B1(R)

dV (z1)

∫
′E

uj(z)dV (′z) <

<
n!

πnR2r2n−2

∫
B1(R)

dV (z1)

∫
′E

(uj(z1, 0, . . . , 0) + ε)dV (′z) =

=
n!

πnR2r2n−2

∫
B1(R)

uj(z1, 0, . . . , 0)dV (z1)

∫
′E

dV (′z) + ε =

=
n

πR2

∫
B1(R)

(
1− |z1|2

R2

)n−1

uj(z1, 0, . . . , 0)dV (z1) + ε

By letting j → ∞ and using the monotone converges theorem of Beppo Levi then
tending ε to 0 we get the following inequality:

u(0) ≤ n

πR2

∫
|z1|≤R

(
1− |z1|2

R2

)n−1

u(z1, 0, . . . , 0)dV (z1), for any R < r0.

We can prove similar inequality at arbitrary point z0 ∈ l ∩ D. Consequently, by
Corollary A.6 we can see that u(z) is a subharmonic function on l∩D. Hence u(z)
is a psh function on D. �

Finally, we have a revised version of Theorem 1.1

Theorem 2.6. Let D ⊂ Cn be a domain and u be an upper semi-continuous
function on D. Then the following properties are equivalent:

a) u is psh on D;
b) for any z0 ∈ D and any unitary matrix T with z0 +T ◦E(r1, . . . , rn) ⊂ D

the following inequality holds

u(z0) ≤Mu(z0, T, E(r1, . . . , rn));

c) for any z0 ∈ D and any unitary matrix T there exists a small r0 such
that for any tuple (r1, . . . , rn) with max{r1, . . . , rn} ≤ r0 the following
inequality holds

u(z0) ≤Mu(z0, T, E(r1, . . . , rn));

d) for any z0 ∈ D and any unitary matrix T there exists r0 small enough
such that for any (R, r) with max{R, r} ≤ r0 the following inequality holds

u(z0) ≤Mu(z0, T, E(R, r));

e) for any z0 ∈ D and any unitary matrix T with z0 + T ◦ E(R, r) ⊂ D the
following inequality holds

u(z0) ≤Mu(z0, T, E(R, r)).
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Proof. By Proposition 2.2 we have a) =⇒ b). The implications b) =⇒
c) =⇒ d) and b) =⇒ e) =⇒ d) are obvious. By Proposition 2.5 we have
d) =⇒ a). �

3. Analogue of Blaschke-Privalov’s theorem for psh functions

Before stating the main theorem of this section we remind the upper generalised
Laplace operator and we recall the classical Blaschke-Privalov’s theorem. Let u be
an upper semi-continuous function in the domain D ⊂ Rn and u(x) 6≡ −∞. For a
point x0 ∈ D \ u−∞, where u−∞ := {x ∈ D : u(x) = −∞}, we define the upper
4u(x0) generalised Laplace operator of the function u at the point x0, constructed
by the mean of spheres (or balls) with the following equality:

(3.1) 4u(x0) := 2n · lim
r→+0

mu(x0, r)− u(x0)

r2
.

where mu(x0, r) is the integral mean of u on the sphere S(x0, r) (or ball B(x0, r),
for more information see Appendix A).

Theorem 3.1 (Blaschke-Privalov). An upper semi-continuous in the domain
D ⊂ Rn function u(x) with u(x) 6≡ −∞, is subharmonic if and only if

(3.2) 4u(x) ≥ 0 for all x0 ∈ D \ u−∞.

3.1. Blaschke-Privalov theorem for psh functions. Now we define

DTu(z0) = lim
R→0

lim
r→0

Mu(z0, T, E(R, r))− u(z0)

R2

and let
Du(z0) = inf

T
DTu(z0)

where the infimum is taken all over the unitary matrices T .

Theorem 3.2. An upper semi-continuous function u in the domain D ⊂ Cn
with u(z) 6≡ −∞, is psh if and only if

Du(z) ≥ 0 for all z0 ∈ D \ u−∞.

Proof. By Proposition 2.2 we can easily get the necessary condition. Now let
the function u is upper semi-continuous in the domain D ⊂ Cn with u(z) 6≡ −∞
such that Du(z) ≥ 0 for all z ∈ D \ u−∞. Let l be a complex line. We shall show
that u|l is subharmonic on l∩D. Since in (3.2) the infimum is taken by all unitary
matrices T we can assume that l = {z2 = . . . = zn = 0}. To prove subharmonicity
of u|l∩D we show that 4pu|l∩D≥ 0 for some weight function p(t) ≥ 0 (see Theorem
A.8).

Let us first work with the following difference

Mu(z0, Id, E(R, r))−Mu(z1,0,...,0)(z
0, Id, E(R, r)) =

=
n!

πnR2r2n−2

∫
E(R,r)

((u(z)− u(z1, 0, . . . , 0))dV =

=
n!

πnR2

∫
E(R,1)

(u(z1, rz2, . . . , rzn)− u(z1, 0, . . . , 0))dV

Now we take lim
r→0

and we have



A MEAN VALUE CRITERION FOR PLURISUBHARMONIC FUNCTIONS 7

lim
r→0

n!

πnR2

∫
E(R,1)

u(z1, rz2, . . . , rzn)− u(z1, 0, . . . , 0)dV ≤

≤ n!

πnR2

∫
E(R,1)

lim
r→0

u(z1, rz2, . . . , rzn)− u(z1, 0, . . . , 0)dV =: I

Since u is upper semi-continuous we have lim
r→0

u(z1, rz2, . . . , rzn) ≤ u(z1, 0, . . . , 0)

and so I ≤ 0. Hence

lim
r→0

Mu(z0, Id, E(R, r)) ≤ lim
r→0

Mu(z1,0,...,0)(z
0, Id, E(R, r)).

Now we show that lim
r→0

Mu(z1,0,...,0)(z
0, Id, E(R, r)) = npu(z1,0,...,0)(z

0
1 , R) (for defini-

tion of npu(z0, r) see Appendix A). Indeed,

lim
r→0

Mu(z1,0,...,0)(z
0, Id, E(R, r)) =

n!

πnR2

∫
E(R,1)

u(z1, 0, . . . , 0)dV =

=
n

πR2

∫
|z1|≤R

(
1− |z1|2

R2

)n−1

u(z1, 0, . . . , 0)dV (z1) = npu(z0, R),

where p(t) = n ·
(
1− t2

)n−1
t2n−1 (see the proof of Corollary A.6). Finally, we have

lim
r→0

Mu(z0, T, E(R, r))− u(z0)

R2
≤ npu(z0, R)− u(z0)

R2
.

Consequently, 4pu|l≥ DIdu. Since DIdu ≥ 0 we have 4pu|Π≥ 0. Hence by Theo-
rem A.8 u is subharmonic on l ∩D. �

Remark 3.3. We can proof similar result in terms of E(r1, . . . , rn) ellipsoids.
If we set

DTu(z0) = lim
r1→0

lim
r2+...+rn→0

Mu(z0, T, E(r1, . . . , rn))− u(z0)

r2
1

or

DTu(z0) = lim
r1→0

. . . lim
rn→0

Mu(z0, T, E(r1, . . . , rn))− u(z0)

r2
1

and define Du(z0) = infT DTu(z0) as above using the same proof we will get the
same result as Theorem 3.2.

Remark 3.4. Note that supT DTu ≥ 0 does not guaranty plurisubharmonicity
of u. Indeed, u = |z1|2−|z2|2 is not psh but we can show that DIdu ≥ 0. Before
that we evaluate Mu(0, Id, E(R, r)). Assuming z1 = Rw1, z2 = rw2 we will have
the following:

Mu(0, Id, E(R, r)) =
2

π2

∫
|w1|2+|w2|2≤1

(R2|w1|2−r2|w2|2)dV ′ =

=
2

π2

∫
|w1|2+|w2|2≤1

R2|w1|2dV ′ −
2r2

π2

∫
|w1|2+|w2|2≤1

|w2|2dV ′
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So we have lim
r→0

Mu(0, Id, E(R, r)) = cR2, where

c =
2

π2

∫
|w1|2+|w2|2≤1

|w1|2dV ′ > 0.

Hence,

DIdu(0) = lim
R→0

lim
r→0

Mu(0, Id, E(R, r))− u(0)

R2
= c > 0

Similarly, we can show that DIdu(z0) > 0 for any z0 ∈ C.

Appendix A. p(t)-subharmonic functions

In this section we introduce p(t)-subharmonic functions in Rn for continuous

weight function p(t) with
∫ 1

0
p(t)dt = 1. In particular, we prove p(t)-subharmonic

functions are subharmonic functions for positive weight functions (see below Lemma
A.4). We note that the auxiliary notion of p(t)-subharmonic function is very helpful
in our work, since Corollary A.6 is used in the proof of Proposition 2.5 and the
theorem A.8 is used in the proof of Theorem 3.2.

A.1. Relation between p(t)-subharmonic and subharmonic function.
Let D ⊂ Rn be a domain and x0 ∈ D. Let p(t), 0 ≤ t ≤ 1 be a continuous function.

Assume
∫ 1

0
p(t)dt = 1. For r > 0 set

(A.1) npu(x0, r) :=

∫ 1

0

p(t)mu(x0, rt)dt

where mu(x0, rt) is the mean value of u on the sphere S(z0, rt) i.e.

mu(x0, r) :=
1

rn−1σn

∫
S(x0,r)

u(x)dσ.

Remark A.1. If we choose p(t) in the following way p(t) = ntn−1, then
npu(z0, r) = nu(z0, r), i.e. npu(z0, r) will equal to the mean value of the function
u over the ball B(z0, r).

Definition A.2. Let D ⊂ Rn. We say that u is p(t)-subharmonic on D if it is
upper semi-continuous on D and for any x0 ∈ D there exists r0(x0) > 0 such that

(A.2) u(x0) ≤ npu(x0, r) for any r < r0.

If u is p(t)-subharmonic at any point of D then we say u is p(t)-subharmonic on D.

Theorem A.3 (see [3, Theorem 4.12] or [8]). Let D ⊂ Rn be a domain. An
upper semi-continuous function u : D → [−∞,∞) is subharmonic if and only if
for every x0 ∈ D, there exists a sequence {rj} decreasing to 0 such that u(x0) ≤
mu(x0, rj) for any j.

Lemma A.4. Assume p(t) ≥ 0. Then u is p(t)-subharmonic if and only if it is
subharmonic.

Proof. Assume u is a subharmonic function then there exists r0 such that for
any 0 < t < r0 we have u(x0) ≤ mu(x0, t). Since p ≥ 0 we have (A.2).

Let now u be p(t)-subharmonic. It is enough to show that for any x0 ∈ D
there exists rj ↘ 0 such that u(x0) ≤ mu(x0, rj). Assume contrary, that for
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some point x0 ∈ D there is not such a sequence. Then there exists r0 > 0 such

that mu(x0, rt) < u(x0) for any r < r0. Since p ≥ 0 and
∫ 1

0
p(t)dt = 1 we have

npu(x0, r) < u(x0). Contradiction. Hence u is a subharmonic function. �

Similarly result can be given for harmonic functions. The following lemma for
harmonic functions is true.

Lemma A.5. A continuous function u on D is harmonic if and only if for any
x0 ∈ D there exists r0 > 0 such that for any r < r0 the following holds

(A.3) npu(x0, r) = u(x0).

Proof. If u is harmonic then (A.3) is clear. Assume now u satisfies (A.3).
Then by Lemma A.4 u is a subharmonic function. Hence for any x0 ∈ D we have
u(x0) ≤ mu(x0, r). By definition of npu(x0, r) we easily get nu(x0, r) = u(x0). Hence
u is a harmonic function. �

The following corollary is used in the proof of Proposition 2.5.

Corollary A.6. Let u be an upper semi-continuous function in the domain
D ⊂ Ck and l be a natural number. Then u is subharmonic on D if and only if for
any z0 ∈ D there exists r0 > 0 such that for any r < r0 we have

u(z0) ≤ (k + l)!

πkl! r2k

∫
B(z0,r)

(
1− |z1 − z0

1 |2+ . . .+ |zk − z0
k|2

r2

)l
u(z)dV

where B(z0, r) is the ball centered at z0 with radius r.

Proof. Without loss of generality take z0 = 0. Then by using Fubini’s theo-
rem we have

u(0) ≤ (k + l)!

πkl! r2k

∫
B(r)

(
1− |z1|2+ . . .+ |zk|2

r2

)l
u(z)dV =

=
(k + l)!

πkl! r2k

r∫
0

dτ

∫
S(0,τ)

(
1− |z1|2+ . . .+ |zk|2

r2

)l
u(z)dσ =

=
(k + l)!

πkl! r2k

r∫
0

(
1− τ2

r2

)l
dτ

∫
S(0,τ)

u(z)dσ =

=
(k + l)!

πkl! r2k

r∫
0

(
1− τ2

r2

)l
· τ

2k−1 · 2πk

(k − 1)!
·mu(0, τ)dτ

By changing τ = rt we have

u(0) ≤ 2(k + l)!

l! (k − 1)!

1∫
0

(
1− t2

)l · t2k−1mu(0, rt)dt = npu(0, r)
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where p(t) := 2(k+l)!
l!(k−1)!

(
1− t2

)l · t2k−1. Consequently, it is enough to show that
1∫
0

p(t)dt = 1. Indeed, we have

1∫
0

p(t)dt =
(k + l)!

l! (k − 1)!

1∫
0

(1− x)lxk−1dx =
(l + k)!

l! (k − 1)!
· Γ(l + 1)Γ(k)

Γ(l + k + 1)
= 1.

�

A.2. Blaschke-Privalov theorem for p(t)-subharmonic functions. Now
we prove Blaschke-Privalov type theorem for p(t)-subharmonic functions. Like (3.1)
we define the following operator

(A.4) 4pu(x0) := A · lim
r→+0

npu(x0, r)− u(x0)

r2
.

where A−1 = 1
2n

1∫
0

t2p(t)dt. Note that if p(t) ≥ 0 then A > 0.

First of all we shall show that the operator 4p is actually Laplace operator for

C2 functions.

Lemma A.7. If u ∈ C2(D) then

(A.5) 4pu = 4u.

Proof. Without loss of generality we shall prove (A.5) at x = 0. As u ∈ C2(D)
and assuming that 0 ∈ D there exists r > 0 such that we have the following
decomposition:

u(x) = u(0) +

n∑
i=1

xi
∂u

∂xi
(0) +

1

2!

n∑
i,j=1

xixj
∂2u

∂xi∂xj
(0) + o(r2t2),

where r2t2 =
n∑
i=1

x2
i and 0 ≤ t ≤ 1. After averaging both sides of the last equality

by the sphere S(0, rt) where 0 < r < ρ(0, D) we have

mu(0, rt)− u(0) =
1

2σn(rt)n−1

n∑
i=1

∂2u

∂x2
i

(0)

∫
S(0,rt)

x2
i dσ + o(r2t2)

=
1

2n

n∑
i=1

∂2u

∂x2
i

(0)r2t2 + o(r2t2)

and then multiplying both sides to p(t) and integrating by 0 ≤ t ≤ 1 we get

npu(0, r)− u(0) =4u(0) · r
2

2n

1∫
0

t2p(t)dt+

∫ 1

0

p(t)o(r2t2)dt

Note that
∫ 1

0
p(t)o(r2t2)dt = o(r2) when r → 0. So we have

npu(0, r)− u(0) =A−1r24u(0) + o(r2).

Consequently, we have (A.5). �

Now we state similar result as Theorem 3.1
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Theorem A.8. Assume p(t) ≥ 0. An upper semi-continuous in the domain
D ⊂ Rn function u(x), u(x) 6≡ −∞, is p-subharmonic if and only if

4pu(x) ≥ 0 for all x0 ∈ D \ u−∞.

The proof of the above theorem is similar to the proof of classical Blaschke-
Privalov theorem but there are some technical changes. Therefore we will give the
proof for reader’s convenience.

Proof of the Theorem A.8. The necessity of the theorem is clear. If u(x)
is p(t)-subharmonic function inD then for all z0 ∈ D we have u(z0) ≤ npu(z0, r) for any r <
r0, which is equivalently to 4pu(x) ≥ 0 for all x0 ∈ D \ u−∞.

In order to prove the sufficiency of the theorem take any ball B(x0, r) ⊂⊂ D
and any continuous function ϕ on S(x0, r) such that u|∂B≤ ϕ. It is well known
that if for any ϕ as above the following inequality holds P [ϕ]− u ≥ 0 where

P [ϕ](x) =

∫
S(x0,r)

ϕ(y)
r2 − |x− x0|2

σnr|x− y|n
dσ(y), n ≥ 2

is the Poisson mean of ϕ, then u is a subharmonic function (see for example [7]).
Note that P [ϕ] is a harmonic function.

The following function w(x) = ‖x − x0‖2−r2 is subharmonic with laplacian
4w = 2n and it is identically equal to zero on the sphere S(x0, r). Now we consider
the following auxiliary function v = u−P [ϕ] + εw, on the ball B(x0, r), it is upper
semi-continuous and v < +∞. It is enough to show that v < 0 for any ε > 0.
Assume by contrary. Then since v is upper semi-coninuous v must attain strictly
finite positive maximum at the point x where u is finite. Note that we always have

npu(x0, r) ≤ sup
B(x0,r)

u(x).

Hence if v attains its maximum at the point x by definition we have 4pv(x) ≤ 0.
On the other hand at this point must hold the following relations:

4pv(x) = ε · 4w +4pu(x) = 2nε+4pu(x) > 4pu(x) ≥ 0.

Consequently, 4pv(x) > 0. Contradiction. �
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