
HAL Id: hal-03233095
https://hal.science/hal-03233095v1

Submitted on 23 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Notebooks on Testbeds: the Grid’5000 Case
Luke Bertot, Lucas Nussbaum

To cite this version:
Luke Bertot, Lucas Nussbaum. Leveraging Notebooks on Testbeds: the Grid’5000 Case. CNERT
2021 : Workshop on Computer and Networking Experimental Research using Testbeds in conjunction
with IEEE INFOCOM 2021, May 2021, Amherst (virtual conference), United States. �hal-03233095�

https://hal.science/hal-03233095v1
https://hal.archives-ouvertes.fr


Leveraging Notebooks on Testbeds:
the Grid’5000 Case

Luke Bertot and Lucas Nussbaum
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

firstname.lastname@inria.fr

Abstract—Computer science testbeds often require extensive
experiment automation to be used efficiently. Jupyter notebooks
can contain the scientific reasoning, experiment orchestration,
and experiment results in an easy to read, easy to execute format.
However some level of support is required from the testbeds
to facilitate notebook use on their platforms. Additionally this
format can be used for more than driving experiments, and
different uses have different requirements in terms of support.

In this paper we present an analysis of different notebook uses
to be expected on computer science testbeds, as found through the
feedback of users of the Grid’5000 testbed and a survey of other
similar testbeds. Then we present the technical implementation
of Jupyter on the Grid’5000 to support those uses.

Index Terms—testbeds; computational notebooks; Jupyter;
reproducibility;

I. INTRODUCTION

Experiments in the study of distributed systems often re-
quire complex instrumentation to automate experiments in-
volving large numbers of machines. On Grid’5000, a computer
science testbed based in France, we invite researchers to
automate their experiments as much as possible. Grid’5000’s
usage policy limits use of testbed resources during the work
day, in order to ensure availability for small scale interactive
experiments and preparatory work, and thus forcing large-scale
experiments to be run at nighttime and during weekends.

Tools such as Execo [1] and EnOSlib [2], are available to
help users automate their experiments. However automating
experiments using a specialized tool is a heavy commitment,
and users for the most part appear to automate their experi-
ments using ad hoc scripts. Such scripts, built slowly through
trial and error, are often written with no thought towards
dissemination or reuse. As such they remain unpublished, and
the experiment running process is often only vaguely described
in the corresponding article.

Computational notebooks are systems inspired by literate
programming, laboratory notebooks, and REPL (Read-Eval-
Print-Loop) interactive shells, that mix in a single file prose
detailing a scientific process, code implementing that process,
and the output of that code. Notebooks are often mentioned
as a possible tool against the current reproducibility crisis,
for their ability to structure messy scripts into self-contained
self-explanatory files. Because notebooks are code-agnostic,
the code used in them would often be the same as the one

The work on this project has been supported by the Horizon 2020
Fed4FIRE+ project, Grant Agreement No. 723638.

used in ad hoc scripts. This means that the barrier of entry is
significantly lower than for other forms of tooling.

Using a notebook does not make experiments reproducible
in and of itself, and studies [3] have shown that users must
be careful in how they structure and use their notebook for
it to be reproducible by other users. However, properly used,
they are one of the simplest tools to increase the potential
for reproducibility of their experiments. For these reasons we
started looking at the possibility of adding Jupyter [4], the
most popular notebook tool suite, to the Grid’5000 testbed.

In order to decide what kind of support to add to our
testbed we surveyed how other computer science testbeds
implemented their own Jupyter support. We also requested
feedback from Grid’5000 users concerning their use, real or
intended, of Jupyter notebooks on the testbed. The analysis of
user feedback and the support for Jupyter in other testbeds
is what guided our implementation of Jupyter in order to
facilitate as many uses as possible.

In this paper we will present the different uses of notebooks
we derived from our surveys, their needs and constraints, and
discuss how they apply to testbeds in general and Grid’5000
specifically. We will then explain which uses we aim to sup-
port and how we implemented a JupyterHub installation that
satisfies those uses, as well as share the technical difficulties
we encountered as a result of Jupyter’s architecture.

The paper is structured as follows. Section II presents
Grid’5000 and the Jupyter stack we aim to implement. Sec-
tion III details the notebook uses derived from user feedback,
and how they apply to testbeds. Section IV discusses the
integration of Jupyter in other testbeds. Finally, we discuss
technical details of our implementation and the technical
difficulties encountered in Section V before concluding.

II. BACKGROUND

A. Grid’5000

The Grid’5000 project [5] was initiated in 2003 by the
French HPC (High Performance Computing) research commu-
nity to provide a large scale highly reconfigurable testbed in
order to experiment at scale. Today Grid’5000 has evolved in
a testbed similar to Chameleon [6] or CloudLab [7], covering
topics like HPC, AI, Clouds, Edge Computing, Big Data. The
services it offers are similar to those offered by the aforemen-
tioned testbeds [8]: bare metal provisioning, network isolation,
monitoring services, etc. It also offers similar hardware: x86
and ARM servers, HPC networks, GPUs, etc.



Grid’5000 infrastructure: The Grid’5000 testbed is dis-
tributed over eight sites all over France and in Luxembourg
and is maintained by a single technical team. Although user
management, access control, and maintenance are performed
globally, each site operates with their own clusters (sets of
closely interlinked homogeneous nodes), site front-end, and
service machines. Sites are interlinked by a dedicated network.

Users for the most part connect via ssh to one of Grid’5000
access points, from there they are able to connect to the site
front-end. On the site front-end machine users have access to
their site-specific homedir and the tools to reserve resources
and deploy environments to these resources. Grid’5000’s
testbed control infrastructure is based on OAR [9] and asso-
ciated tools. Using OAR, the users can book resources, going
from single core to entire clusters, based on relative topologies,
called resource trees, and filter on the resources’ properties.

Alternatively users can interact with the testbed through
a REST API. Using the API users can list resources avail-
able on every site and interact with the instances of OAR
of the different sites. User authentication on the API uses
http-basic-auth with the user’s Grid’5000 credential,
except for calls made from one of the site front-ends which
are automatically associated to the user using identd. This
API is often used by tools that automate experiments.

B. Jupyter

During research a lot of code is often generated to collect
and process data. Often this code was unpublished, researchers
simply described the process in the corresponding article, and
even when it was published the code was often relatively
undocumented and hard to follow. In proposing their notebook
format integrating code and prose, the Jupyter team hoped to
foster readable code for reproducibility.

Jupyter notebooks combine ideas of literate programming,
interactive programming, and laboratory notebooks. Notebook
files contain code cells interspersed with text. Additionally
outputs generated by the executed code cells are also saved in
the notebook. The jupyter-notebook application is designed to
view, edit, and run notebooks and the execution of code cells
is handled by Jupyter kernels.

Kernels are language-specific programs similar to interactive
shells that execute the code contained in cells and keep
program state (variables, functions, . . . ) in between cells.
Because state is only kept in the kernel and not the notebook
files, reproducibility of notebook outputs is only guaranteed if
cells are executed exactly once and in order.

However if users are careful about properly executing their
notebook, and document their process in text cells, notebooks
are good supports for reproducible research.

Jupyter tool stack: The Jupyter notebook file format is a
json file describing the different cells, their type (code, text,
output), and their content, as well as some meta-data such as
the kernel language to use, and the cells execution order for
the saved outputs. In this article the term notebooks will refer
to files in this format.

jupyter-notebook and jupyter-lab are applica-
tions used to provide a graphical user interface for note-
books. These application interfaces are accessed through a web
browser and provide a file browser, an interface to view, edit,
and execute notebooks, and ways to manage currently running
kernels. jupyter-notebook is the first version of such
application and jupyter-lab is a more recent successor.
In this article we refer to these applications in their different
forms as labs, so as to avoid confusion with notebooks.

JupyterHub [10] is a web application designed to facilitate
the use of notebooks in multi-user environments, hereafter
called hub. The hub handles user authentication, the starting
and stopping of multiple lab instances at the user’s request
and transparently redirects the user to their lab interface.
JupyterHub is structured around modular components that can
be adapted to the hub operator’s infrastructure.

The authenticator module controls user management and
sets the authentication modalities. The default authenticator
module uses Unix accounts on the machine, but other modules
are available to using ldap or external OAuth providers.

The spawner module controls the lifecycle of lab instances.
These lab instances, jupyter-labhub, are extensions of
the standard lab applications that can only be executed con-
jointly with a hub. Different spawner modules can instantiate
labs in different manners, from starting a new lab on the
hub machine, to instantiating new labs in containers on a
kubernetes [11] cluster, to using HPC task managers.

Additionally the hub interacts with a reconfigurable
http/websocket proxy that is capable of adding and deleting
redirections. All incoming connections to the hub or labs are
routed through the proxy with routes being added and removed
by the hub as needed. For infrastructures where the lab and
hub machines might not be routed to the internet, the proxy
is the only component users need to be able to connect to.

III. USER FEEDBACK, NOTEBOOK USES, AND OBJECTIVES.

Our main objective when we started considering adding
Jupyter to Grid’5000 was to offer an alternative for experiment
scripts that would foster reproducibility. But before deciding
the perimeter of what to implement we wanted to measure
user interest and needs. We asked users for their use (existing
or intended) of Jupyter Notebooks on Grid’5000. Based on
this feedback we established five different possible uses of
notebooks on testbeds.

1. Notebooks as experiment drivers. These notebooks
run the experiments from beginning to end, starting with
resource reservations and going at least to data collection. To
support this usage testbeds must provide an environment where
resource reservation and interaction with reserved nodes are
possible. Additionally some form of storage will likely be nec-
essary to store experiment bulk results, e.g. execution logs and
relevant output. To maximize the cross-user reproducibility of
such notebooks some attention must be given to the seamless
authentication of users. Ideally resource reservations should
not require user credentials to be written in the notebook. This
can be achieved by preloading credential information in the



environment the lab is executed in, or by providing an out-of-
band way for the testbed to provide the resource management
system with user information. Although this is the use case
that had us interested in notebooks in the first place only one
user reported interest in this approach during user feedback.

On Grid’5000, site front-ends are the designated environ-
ment for such notebooks: they have access to the user site
homedir, have connectivity to every node on the platform,
and contain the necessary tools to perform resource reser-
vations. Moreover execution on the site front-ends allows
for credential-less resource reservation since OAR commands
derive user info from the callers Unix account and API calls
are automatically matched to users using identd. However
using site front-ends implies providing users with the ability
to choose which site they want to operate on since every site
has a separate homedir.

2. Notebooks as experimental payload. The code con-
tained within these notebooks is the core of experiments. These
notebooks run on the reserved resources, and either contain
or control the computation that is the subject matter of the
experiment. They run from the moment they started on the
reserved resource until they output the relevant experiment
results. To support this usage testbeds must provide a way to
execute the notebooks on reserved resources. Testbeds with
heterogeneous nodes should provide ways for the users to
select on which nodes the notebooks are going to be executed.
When virtualization or containerization is used, testbeds need
to consider whether they want to provide ways for the user to
dimension their resources. Additionally some notebooks might
require specific libraries, so testbeds should consider whether
they need to provide multiple different environments or ways
for users to add to the existing environments. During user
feedback, two users indicated using notebooks in this fashion
on Grid’5000. We were also made aware that another user had
shared a script meant to automate the setup for this usage.

On Grid’5000, satisfying this usage implies providing a
way for users to start lab instances inside arbitrary OAR
jobs. To guarantee access to any resource the user might
need, our installation will have to let the user select any
site and resource they want. For environment adaptability we
plan on adding Jupyter commands to environments where the
user’s site homedir is available, letting users customize the
environment by adding libraries in their homedir.

3. Notebooks for post-processing. These notebooks are
executed after an experiment to process the results. Supporting
this usage will be dependent on your testbed’s infrastruc-
ture and the type of post-processing expected. Some post-
processing can be rather computationally intensive or require
specific hardware and notebooks implementing these post-
processing should be considered the same as experiment
notebooks. Others can be executed on more standard hardware.
In either case attention should be given to how users store their
results, since these notebooks access experimental data. There
were no direct testimony of this usage in user feedback.

On Grid’5000, supporting this use case requires being able
to execute notebooks on both front-ends and nodes. This is

owed to the fact that some forms of storage are only accessible
on specific nodes, and to the fact that heavy computations are
not authorized on the site front-ends. As such this use case
covers the same constraint as the two previous one for us.

4. Notebooks for exploratory programming. Notebooks
for exploratory programming are used by users as a form of
enhanced interactive shell in order create new code through
trial and error. Most of the previously presented usages often
start that way and are refined into fully functional notebooks
over time. This use case is somewhat transversal to the
previous ones as users preparing to run an experiment on a
platform need to be able to test their notebooks interactively to
smooth out all the kinks. Supporting this kind of usage is done
through providing ways to access a lab interface that lets users
benefit from the interactive component of notebooks. Although
this usage is not always differentiable from the previous ones,
two users reported using notebooks specifically to figure out
parameters to specific machine learning algorithms before
running the model in a non-notebook fashion.

On Grid’5000, it is already possible to use a VPN or ssh
tunneling to connect to lab applications running on front-ends
or nodes. However some users have expressed difficulties with
using those tools, pushing us to explore the possibility of
providing native web access for labs.

5. Notebooks as tutorials. Notebooks as tutorials are
notebooks provided to the users by teachers that aim to
present and explain to the users some specific concept. As
with the previous usage these notebooks rely extensively on
the interactive component of lab applications. Since students
might not be familiar with the ways one interacts with a given
testbed, this usage is best served by providing full web access
to lab instances through a JupyterHub-like system. Teachers
that use Grid’5000 have been using notebooks in their courses,
and have expressed interest for a JupyterHub type access
that would reduce the need to guide students through the
node-reservation process, setting up the VPN, and manually
installing and starting a Jupyter lab.

After considering the demands for these different use cases,
we decided that Grid’5000 should implement a fully web-
based access allowing users to start a lab on any arbitrary
node or front-end from a single interface.

IV. RELATED WORK

While planning our own implementation of Jupyter we
searched for other computer science testbeds that implement
Jupyter notebooks as a feature.

Chameleon, a testbed similar to Grid’5000 based on Open-
stack [12], implemented their own Jupyterhub instance in
2019 [13]. In Chameleon’s implementation JupyterHub starts
labs in docker containers. Notebooks executed on these labs
can perform resource reservations and drive experiments;
Chameleon’s implementation uses environment variables con-
taining the user’s Openstack credentials to facilitate this pro-
cess. Chameleon also provides a notebook library for users to
share experiments in.



The Minnesota Supercomputing Institute (MSI) also imple-
mented a JupyterHub instance [14] that runs lab instances on
HPC computing nodes using the Torque batch scheduler.

Although they have not published any article on the subject,
Jupyter is also available on the following testbeds:

– As part of the Fed4FIRE European testbed federation,
imec’s GPULab testbed proposes a docker powered Jupyter-
Hub instance (website: [15]). Lab instances are executed in
gpu enabled containers, and the hub offers different container
images with a variety of software stacks (R, tensorflow, spark,
julia). Users can request specific container sizes from the
spawner page, and a separate interface can be used to active
port-forwarding between the containers and the internet.

– GriCAD, the University of Grenoble computing center,
has a JupyterHub instance capable of starting lab instances on
a dedicated machine (website: [16]). This testbed also supports
running labs on computation nodes, but such instances are only
accessible through ssh tunnelling.

– The IDRIS, a national supercomputing center in France
with stringent security measures, bypasses the use of Jupyter-
Hub by providing a modified version of jupyter-lab that
adds itself to a reconfigurable proxy at startup providing a way
for users to access their lab instance (website: [17]). These lab
instances can be executed both on a front-end machine and
computing nodes, but require manual reservation of resources
using slurm beforehand.

To the best of our knowledge, Grid’5000 is unique in that
we are implementing in a single instance of JupyterHub the
ability to spawn lab instances both on reserved resources and
front-ends machines, when other testbeds will usually do one
or the other.

V. IMPLEMENTING JUPYTERHUB ON GRID’5000

A. General setup

We decided to deploy a single JupyterHub instance for the
whole of Grid’5000. This instance is placed on a service
machine in the internal Grid’5000 network, with a reconfig-
urable proxy executed on the same machine as the hub. To
allow users access to the reconfigurable proxy, and thus the
hub and labs, a route is added to Grid’5000’s pre-existing
Apache proxies. This frontline proxy is already used for other
Grid’5000 services, can handle user authentication, and will
mitigate any weakness the reconfigurable proxy might have.

The authentication module used in our hub is
jhub_remote_user_authenticator [18], which
removes the authentication page and instead relies on
incoming HTTP headers for authentication. This allows
our frontline proxy to perform authentication and pass on
authentication information to the hub through http headers.
This is advantageous as it uses Grid’5000 already established
authentication infrastructure without involving a new service.

The spawner module is a custom module implemented
specifically to match Grid’5000’s needs, called G5kSpawner.
From the user point of view the spawner requires the user
select a site and whether to start the lab on a front-end or
a node. If a node is selected, the users can specify the OAR

resource tree to request, the walltime of the OAR job and other
information required by OAR to service the request.

Spawner modules are required to implement three functions:
• start used to start a new instance of the lab application,

return the hostname (or ip) and port of the lab to the hub;
• poll used to query the status of a given lab instance,

returns northing if the lab is still running or the lab’s exit
code if it is not;

• stop used to shutdown an instance of the lab application,
returns nothing.

Additionally the spawner can store the information necessary
to track lab instances across hub reboots to persistent storage.

G5kSpawner contains two different implementations of each
of the three main functions and calls upon one or the other
depending on whether the users request a node or a front-end.

B. Execution on nodes

For the execution of lab instances on compute nodes the hub
delegates the execution of the jupyter-labhub program to
OAR, that it controls through Grid’5000’s REST API.

The REST API allows the hub to interact with OAR
instances of every site and as a service operated by Grid’5000,
the hub is provided an SSL client certificate allowing it to
make calls to the API in the name of the user requesting the
lab instance. When requesting resources from OAR the hub
provides the lab command to execute. OAR will execute the
command automatically once the requested resources become
available on the main node of the request. If the jupyter-labhub
command ends before the end of the OAR job, the job will be
ended immediately by OAR. As such the lifecycle of the OAR
job and the lifecycle of the lab instance are closely interlinked
and the hub treats them as one and the same. Under this mode
of operation the three main functions operate as follows:

start: The spawner selects a port on which to run the lab,
and prepares the lab command. This command along with
OAR information such as the requested resource tree and wall-
time, are POSTed to the /sites/<SITE>/jobs endpoint to
create a new OAR job, and the spawner gets a job-id from the
reply. The execution site and job-id are saved to the spawner
state and added to persistent storage. The spawner monitors the
status of the job using the /sites/<SITE>/jobs/<JOB-ID>
endpoint. Once the job is scheduled this endpoint also provides
the hostname of the reserved node to the spawner which is
returned along with the selected port to the hub.

poll: The spawner checks the status of the OAR job using
the /sites/<SITE>/jobs/<JOB-ID> endpoint. If the job
state is finished or error the function returns 254 in lieu of an
exit code. For any other status value the lab is considered to
be still running and the function returns nothing.

stop: The spawner issues a DELETE call to the
/sites/<SITE>/jobs/<JOB-ID> endpoint, requesting the
end of the OAR job.

The close interlink between the lab and the corresponding
OAR job, the REST API, and the existence for the python-
grid5000 [19] library used to interact with the API greatly
simplifies the code used when instantiating labs on nodes.



C. Execution on site front-ends

For the execution of lab instances on a site front-end the
hubs need to connect via ssh to the requested front-end and
start the new lab process as the requesting user.

Unlike with the REST API, Grid’5000 has no preexisting
method of acting on a front-end as an arbitrary user. And since
the hub cannot be authorized to connect via ssh as any user,
a new dedicated user was added to the front-end machines
for the hub to connect to. This hub user is authorised to run
a single script, jupyterctl, as root. The jupyterctl
script act as a wrapper around Jupyter commands, performing
the necessary user switching while limiting the capabilities of
the hub user to the strict necessary. jupyterctl uses sudo
to run jupyter-labhub and kill as other users while
switching context to their homedirs. Additionally the script
will only agree to poll or stop Jupyter processes. In this mode
the three main functions operate as follows:

start: The spawner prepares the environment variables
and the arguments for the jupyter-labhub as usual, but
uses sudo jupyterctl start as a command instead.
Additionally the port= argument is removed by the spawner.
The command is executed via ssh on the selected site front-
end. On the front-end the jupyterctl command scans the
machine for a free port and adds the corresponding port=
argument. Then the jupyterctl script extracts the target
user from the environment variables set by the hub and
starts jupyter-labhub as the target user in their homedir,
making sure to pass along all the environment variables and
arguments set by the hub. Finally the jupyterctl script
outputs the jupyter-labhub process-id and selected port.
The process-id and the selected site are added to the spawner’s
persistent state. The spawner returns the front-end hostname
and the selected port to the hub.

poll: The spawner connects to the selected site and runs the
sudo jupyterctl poll <process-id> command.
The script outputs the number of Jupyter processes matching
the process-id. If none were found the poll function assumes
the lab instance is dead and returns 254 in lieu of exit code,
otherwise the lab is still running and poll return nothing.

stop: The spawner connects to the selected site and runs the
sudo jupyterctl stop <process-id> command
while passing the target user in an environment variable. The
script checks that the target process-id is a Jupyter process,
and uses sudo kill as the target user. The script returns
the number of matching processes after the kill, and the stop
function returns nothing.

This code used in instantiating labs on front-ends is more
complex and split between the G5kSpawner and the jupyterctl
script. Part of these complexities is due to assumptions made
by JupyterHub and a dead-lock between the hub and the lab.
We will expand on these circumstances in a later section.

D. User experience

From the user point of view accessing the hub is done in
the same way as any Grid’5000 interface. The same dialogue
is used for authentication as in other services, and users do

not need to log in a second time in JupyterHub. The single
JupyterHub instance allows the user to interact with every
site, and for node deployment the user is free to choose their
resources using the same syntax as they would when connected
via ssh. After pressing the start button, the user waits from
a few seconds to a few minutes before being seamlessly
redirected to the Jupyter lab interface.

The lab instance provided through JupyterHub comes with
two kernels, one for python3 code and one for bash code.
Users in need of different kernels can use pip to install them
in their homedir. Kernels installed in this manner, as well as
any python library the user may need, will become available
in the lab environment.

Since labs on the front-ends are instantiated as the correct
user, OAR commands and calls to the Grid’5000 API will
work seamlessly without requiring any credential information.
Because of this, no sensitive information needs to be stored in
the notebook and notebooks should work without modification
when shared between users.

Labs instantiated on nodes are started on the Grid’5000
standard environment, in which the user’s site homedir is
automatically loaded via NFS, making any additional kernel
and libraries they might have installed available.

The user’s resource usage is kept under the same checks
they would be for any other usage of Grid’5000. Node
reservations for the purpose of running notebooks fall under
the same limits as any other node reservation. Front-ends are
shared by nature, and limits on resource usage are enforced
using cgroups. Labs access the user’s homedir that are limited
in size and only accessible by the users themselves.

E. Difficulties encountered

1) jupyter-notebook tooling and jupyter-lab: The
jupyter-notebook provides a set of subcommands
to manipulate running instances of jupyter-notebooks,
giving users the ability find all running instances, and
stop specific instances from any terminal. If the list
subcommand includes instances of jupyter-labhub, the
stop subcommand does not appear to work in our setup.
This is the reason we decided to use a kill command to
terminate instances of jupyter-labhub.

2) Remote spawners and specification compliance: The
structure of JupyterHub spawner modules seems to favor local
processes, or remote processes under highly controlled moni-
toring systems. Most notably the fact that the poll function is
meant to recover the exit status of the lab process might be
trivial for local processes, and possible when using docker
or a task manager such as slurm or OAR, but becomes
complicated for for processes open on remote machines started
as background tasks under sudo. Fortunately JupyterHub
doesn’t seem to use the exit code in any capacity, and is mostly
interested in knowing whether the process is alive or dead.

3) Hub-side port selection and port deadlock: Another
problem with remote spawning is JupyterHub’s tendency to
select the port to use. The base implementation of the spawner,
on which most other implementations depend will select a free



port on the hub machine to add as a port= argument when
building the lab command. Port selection is important since the
start command must return the port on which the instance is
running along with the hostname of the instance. The obvious
problem being that a free port on the hub machine might not
be free on the front-end.

As is standard, setting the port=0 argument on the lab
command would result in the lab selecting a random free
port on the machine on which it is running. And using
the jupyter-notebook list subcommand it is possible to
retrieve the port of an instance whose process-id is known.
However trying to use this approach with jupyter-labhub
leads to a deadlock. To appear in the list subcommand an
instance of jupyter-labhub must be fully initialized, and
initialization requires the lab instance to establish contact
with the hub. Parallelly the hub is still waiting on the port
and hostname information from the start command, and will
not accept connections from unknown labs. Hence we find
ourselves in a situation where the hub is waiting on the
spawner for the port number, the spawner is waiting for the
lab to appear in the list, and the lab cannot appear in the list
until it has established contact with the hub.

To avoid the deadlock while limiting port conflict, the
port selection for front-end instances is performed by the
jupyterctl script, using shuf to generate a list of ran-
domized ports and netcat to scan if the ports are available.

VI. CONCLUSIONS

In this article we presented the integration of Jupyter
notebooks to the Grid’5000 platform. We showed our analysis
of the different uses notebooks could have on an experimental
computing testbed, how other similar testbeds covered these
use cases, and presented how our JupyterHub integration
covers these uses.

Discussion with Grid’5000 users was enlightening concern-
ing the scope of use notebooks already had on the testbed. We
would recommend any testbeds looking to support notebook
to survey their users to understand the important uses to cover.

Despite some architectural oddities, JupyterHub has shown
itself to be extremely adaptable. The wealth of modules
available cover most standard installation needs, and custom
modules are relatively easy to build even for uncommon
infrastructures like ours.

It is too early to say if notebooks will significantly impact
reproducibility of experiments in computer science. Notebooks
are not inherently reproducible, and good practices, such as
those described in [3], are necessary to guarantee reproducibil-
ity. But the adoption of such good practices can only happen
if platforms first lower the entry barrier to notebooks to that
of ad hoc scripts.

REFERENCES

[1] M. Imbert et al., “Using the execo toolkit to per-
form automatic and reproducible cloud experiments,”
in CloudCom, 2013.

[2] R. Cherrueau et al., “Enosstack: A lamp-like stack for
the experimenter,” in CNERT, 2018.

[3] J. F. Pimentel et al., “A large-scale study about quality
and reproducibility of jupyter notebooks,” in MSR,
2019.

[4] T. Kluyver et al., “Jupyter notebooks-a publishing
format for reproducible computational workflows.,” in
ELPUB, 2016.

[5] D. Balouek et al., “Adding virtualization capabilities
to the Grid’5000 testbed,” in Cloud Computing and
Services Science, 2013.

[6] K. Keahey et al., “Chameleon: A scalable production
testbed for computer science research,” in Contempo-
rary High Performance Computing, CRC Press, 2019.

[7] R. Ricci et al., “Introducing CloudLab: Scientific in-
frastructure for advancing cloud architectures and ap-
plications,” ;login:, vol. 39, no. 6, 2014.

[8] L. Nussbaum, “Testbeds Support for Reproducible
Research,” in ACM SIGCOMM 2017 Reproducibility
Workshop, 2017.

[9] N. Capit et al., “A batch scheduler with high level
components,” in CCGrid, 2005.

[10] Project Jupyter team. (2016). Jupyterhub 1.3.0 doc-
umentation, [Online]. Available: https : / / jupyterhub .
readthedocs.io/en/stable/.

[11] A. Verma et al., “Large-scale cluster management at
Google with Borg,” in EuroSys, 2015.

[12] O. Sefraoui et al., “Openstack: Toward an open-source
solution for cloud computing,” International Journal of
Computer Applications, 2012.

[13] J. Anderson and K. Keahey, “A case for integrating
experimental containers with notebooks,” in CloudCom,
2019.

[14] M. Milligan, “Interactive HPC gateways with jupyter
and jupyterhub,” in PEARC, 2017.

[15] imec iLab.t team. (2020). Jupyterhub at imec ilab.t -
imec ilab.t documentation, [Online]. Available: https :
//doc.ilabt.imec.be/ilabt/jupyter/.

[16] GriCAD. (2020). Les notebooks jupyter : User docu-
mentation for gricad services. French, [Online]. Avail-
able: https : / / gricad - doc . univ - grenoble - alpes . fr / en /
notebook/.

[17] IDRIS. (2020). Idris - jean zay: Access to jupyter
notebook and jupyterlab with tensorboard, [Online].
Available: http : / / www. idris . fr / eng / jean - zay / pre -
post/jean-zay-jupyter-notebook-eng.html.

[18] C. Waldbieser et al. (2019). Jupyterhub remote user
authenticator, [Online]. Available: https://github.com/
cwaldbieser/jhub remote user authenticator.

[19] M. Simonin. (2019). Python-grid5000, [Online]. Avail-
able: https://gitlab.inria.fr/msimonin/python-grid5000.


