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Abstract
Recently, learning only from ordinal information of the type “item x is closer to item y than to item z” has received increas-
ing attention in the machine learning community. Such triplet comparisons are particularly well suited for learning from
crowdsourced human intelligence tasks, in which workers make statements about the relative distances in a triplet of items.
In this paper, we systematically investigate comparison-based centrality measures on triplets and theoretically analyze their
underlying Euclidean notion of centrality. Two such measures already appear in the literature under opposing approaches, and
we propose a third measure, which is a natural compromise between these two. We further discuss their relation to statistical
depth functions, which comprise desirable properties for centrality measures, and conclude with experiments on real and
synthetic datasets for medoid estimation and outlier detection.

Keywords Pairwise comparisons · Ordinal information · Triplets · Centrality measures · Statistical depth functions

1 Introduction

Assume we are given a finite dataset D = {x1, . . . , xn} in
a metric space (X, d), but do not have access to an explicit
representation or the pairwise distances. Instead, the only
information available for any triplet (x, y, z) in D is the
answer to the triplet comparison

d(x, y)
?
< d(x, z) . (1)

In many applications of data analysis, such as human intelli-
gence tasks for crowdsourcing, only ordinal information as
in Eq. (1) is naturally available. It is difficult for humans to
determine the distance between items in absolute terms, and
their answers will have a large variance. Relative statements,
however, are easier to make and more consistent. For exam-
ple in Fig. 1, image x is obviously central in the presented
triplet, because it contains both snow and trees, but it is hard
to quantify this relationship.
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Lately, comparison-based settings receive increasing atten-
tion in themachine learning community; for an overview, see
Kleindessner and von Luxburg [18, Section 5.1].

An important task in statistics is to summarize the distribu-
tion of the data into a few descriptive values. In this paper, we
focus on measures of centrality, the most prominent exam-
ples in a standard setting being the mean, the median, and the
mode. While those summary statistics are readily computed
given an explicit representation of the dataset, it is much less
obvious how to do so when only ordinal information is avail-
able, or whether it is possible at all.

Learning a centrality measure based on triplet compar-
isons already appears in the literature under two opposing
approaches: Heikinheimo and Ukkonen [12] propose a score
that penalizes points for being the outlier in a triplet, while
Kleindessner and von Luxburg [18] reward points for being
central in a triplet. The latter motivate their central-based
score by relating it to k-relative neighborhood graphs and
a statistical depth function, which cannot be done for the
outlier-based score. Figure 1 shows a triplet with its corre-
sponding central point and outlier. Both scores are intuitively
appealing as a measure of centrality, but it is not obvious how
they relate to other known centrality notions. Furthermore,
there is a third kind of point in a triplet next to central point
and outlier, namely the remaining point that opposes themid-
dle side (compare y in Fig. 1). This point scores 0 for both
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Fig. 1 A triplet (x, y, z) of images with distances d(x, y) < d(x, z) <

d(y, z). The central image x opposes the largest side d(y, z), and the
outlier z opposes the smallest side d(x, y)

scores, because they only use a binary distinctionwith respect
to outlier or central point.

Our main contributions are summarized as follows:

• Introduction of rank score.We propose the rank score,
a natural compromise between outlier and central score
that considers all three possible scenarios in a triplet.

• Characterization of central points.We establish a the-
oretical connection between the three scores and their
corresponding scoring probabilities. Based on this con-
nection, we characterize the most central point with
respect to each score for one-dimensional distributions.
In doing so, we improve on a result from Heikinheimo
and Ukkonen [12] for the outlier score.

• Statistical depth functions.We show that the rank score
is not a statistical depth function, but nevertheless satis-
fies a weaker version of the violated properties.

• Experiments. On two image datasets, we evaluate the
three scores for the tasks ofmedoid estimation and outlier
identification and find that their estimations are similar to
the ones given by the averageEuclidean distance.On syn-
thetic datasets, we highlight two respective weaknesses
of outlier and central score, which are mitigated by the
rank score.

After a brief summary of relatedwork in Sect. 2, we define
the scores in Sect. 3 and establish the connection to their
scoring probabilities. In Sect. 4, we characterize the central
points for one-dimensional distributions, and then in Sect. 5
investigate the relation between our proposed rank score and

statistical depth functions. We conclude with experiments on
real and synthetic datasets in Sect. 6.

2 Related work

There exist various different approaches for learning from
triplet comparisons on a multitude of tasks. An indirect
approach is to first learn a Euclidean embedding for the
dataset that satisfies the ordinal constraints and then use
standard machine learning algorithms on the explicit rep-
resentation. This can be done by a max-margin approach
[1] or by maximizing the probabilities that all triplet con-
straints are satisfied under a stochastic selection rule using a
Student-t kernel [30]. Other variants of this problem include
the active setting [26] and learning hidden attributes in mul-
tiple maps [2]. There exists some theory for the consistency
[3,14,15] of such embeddings, also in the case of noisy [13]
and local [27] comparisons. This approach has a number
of drawbacks: existing embedding algorithms do not scale
well, they make the implicit assumption that the points lie
in a Euclidean space, the quality of the embedding depends
on the embedding dimension, and this intermediate step in
the learning procedure introduces additional distortion; for a
discussion, see Kleindessner and von Luxburg [18, Section
5.1.2]. For instance, our problem of determining the mean
(or similarly the median or the mode) of the underlying dis-
tribution of a dataset could be tackled this way: we embed
the points using one of themethods above, compute themean
in the Euclidean space, and then return the datapoint whose
embedding is closest.

A more direct approach than embedding the dataset is the
quantization of the ordinal information by learning a dis-
tance metric from a parametrized family with a max-margin
approach [24] or by using kernels that only depend on triplet
comparisons [17]. Lately, however, the trend is to avoid any
such intermediate steps: Heikinheimo and Ukkonen [12] and
Kleindessner and von Luxburg [18], which we consider in
this work, find the medoid with score functions that are
computed directly from triplet comparisons. Ukkonen et al.
[29] build on this idea for nonparametric density estimation.
As an alternative to a generic embedding approach, both
scores provide parallelizable direct approaches to learning
from triplet comparisons that are tractable on medium-sized
datasets, where the embedding approach is not. For cluster-
ing, Ukkonen [28] formulates and approximates a variant
of correlation-clustering [4] that takes a set of relative com-
parisons as input; hierarchical clustering is addressed in a
setting, where one can actively query ordinal comparisons
[7,33], and also in the passive setting [9]. To estimate the
intrinsic dimension of the dataset, Kleindessner and Luxburg
[16] propose two statistically consistent estimators that only
require the k nearest neighbors for each point. Haghiri et al.
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[10] construct decision trees based on triplet comparisons
to find those nearest neighbors and then extend this idea
for classification and regression [11]. Another approach to
classification is to aggregate triplet comparisons into weak
classifiers and boosting them to a strong classifier [23].

3 Preliminaries

Let (X, d) be a metric space and D = {x1, . . . , xn} ⊂ X a
finite set of n ∈ N points. For x ∈ X, let Tx = {(x, y, z) |
y, z ∈ D, x, y, z distinct}denote the set of all ordered triplets
in D with x in the first position. For simplicity, we assume
all distances between points in D to be distinct. We say that
x is an outlier in (x, y, z) ∈ Tx , if it lies opposite the shortest
side in the triangle given by the three datapoints, that is,

d (x, y) > d (y, z) and d (x, z) > d (y, z) .

Similarly, x is central in (x, y, z) ∈ Tx , if it lies opposite the
longest side in the triangle, that is,

d (x, y) < d (y, z) and d (x, z) < d (y, z) .

We consider three different score functions that aim to
measure the centrality of any datapointwith respect to a given
dataset.

Definition 1 (Scores) Let x ∈ X be any point in the input
space.With respect to a finite datasetD = {x1, . . . , xn} ⊂ X,
we define the outlier score SO , the central score SC , and the
rank score SR as

SO(x) := 1

n(n − 1)

∑

(x,y,z)∈Tx
1{d(x,y)>d(y,z)}1{d(x,z)>d(y,z)} ,

SC (x) := 1

n(n − 1)

∑

(x,y,z)∈Tx
1{d(x,y)<d(y,z)}1{d(x,z)<d(y,z)} ,

SR(x) := 1

n(n − 1)

∑

(x,y,z)∈Tx
1{d(x,y)<d(y,z)} .

The outlier score SO is a normalized version of the score
considered in Heikinheimo and Ukkonen [12] and counts the
number of triplets (x, y, z) ∈ Tx in which x is the outlier;
similarly, the central score SC is a normalized version of
the score considered in Kleindessner and von Luxburg [18]
and counts the number of triplets (x, y, z) ∈ Tx in which x
is the central point. The rank score SR , which we propose,
compares the distance d (x, y) between the fixed point x and
one test point y to the distance d (y, z) between both test
points y and z. A corresponding crowdsourcing task would
present the workers with two items A and B and then let
them assign a third item C to the one which is more similar.

Fig. 2 Scores (columns) as a function of x ∈ R
2 with respect to three

datasets: 100 points from a standard Gaussian (first row), 200 points
from a mixture of Gaussians (second row), and 100 points from the
moons dataset (third row)

From the perspective of an unordered triplet {x, y, z}, a point
x scores 0 for being the outlier, 2 for being the central point
(once in (x, y, z) and once in (x, z, y)), and 1 otherwise.
With that, SR is the only of the three scores that depends
on the order of the triple and distinguishes between all three
possible cases. The name rank score was chosen because the
score of x in a triplet {x, y, z} corresponds to the rank of
d(y, z).

To get an intuition for the behavior of the three scores,
we plot them as a function of x ∈ R

2 with respect to three
different two-dimensional datasets in Fig. 2. As expected,
points in the middle of the dataset score low for the outlier
score SO and high for the central score SC . The rank score SR
behaves similarly to the central score SC , but transitionsmore
softly from high to low scores.

The rank score is closely related to the outlier and the
central score, as they are all based on triplets. The following
proposition shows that it can be viewed as a compromise
between the two: points are rewarded for being the central
point in a triplet, but also penalized for being the outlier.

Proposition 1 (Relation between scores) For any x ∈ X, it
holds that

2SR(x) = 1 + SC (x) − SO(x) .

Proof Let x ∈ X and (x, y, z) ∈ Tx . By checking all pos-
sible strict orders on {d (x, y) , d (x, z) , d (y, z)}, one easily
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verifies

1{d(x,y)<d(y,z)} + 1{d(x,z)<d(y,z)}
= 1 + 1{d(x,y)<d(y,z)}1{d(x,z)<d(y,z)}

−1{d(x,y)>d(y,z)}1{d(x,z)>d(y,z)} .

This yields the claimed equality

2SR(x) = 1

n(n − 1)

∑

(x,y,z)∈Tx

(
1{d(x,y)<d(y,z)} + 1{d(x,z)<d(y,z)}

)

= 1

n(n − 1)

∑

(x,y,z)∈Tx

(
1 + 1{d(x,y)<d(y,z)}1{d(x,z)<d(y,z)}

−1{d(x,y)>d(y,z)}1{d(x,z)>d(y,z)}
)

2SR(x) = 1 + SC (x) − SO (x) .

��
From now on, we will assume D = {X1, . . . , Xn} to con-

sist of i.i.d. (independent and identically distributed) samples
drawn from some distribution P on X. That is, the samples
are jointly independent and every Xi is distributed as P . This
allows us to treat the scores onD as randomvariables in order
to analyze their statistical properties and relate them to other
centrality measures such as mean, median, or mode. In our
running example of a crowdsourcing task, the workers could
be presented with random, independent samples from a large
database of images X.

The i.i.d. assumption is strong, but central in statistical
learning theory, because it allows for strong consistency
results. For example in classification, i.i.d. data ensure that
nearest neighbor classifiers and support vector machines
asymptotically achieve the lowest possible risk [25,31].

An important quantity for our analysis is the probability
of a fixed point scoring in a random triplet:

Definition 2 (Scoring probabilities) Let x ∈ X and Y , Z ∼
P be two independent random variables distributed accord-
ing to P . Then, for each score, we define the corresponding
scoring probabilities

qO(x) :=P(x outlier in (x,Y , Z))

=P(d (x,Y ) > d (Y , Z) , d (x, Z) > d (Y , Z)) ,

qC (x) :=P(x central in (x,Y , Z))

=P(d (x,Y ) < d (Y , Z) , d (x, Z) < d (Y , Z)) ,

qR(x) :=P(d (x,Y ) < d (Y , Z)) .

Because of the normalization, the scoring probabilities are
equal to the expected score in a random set.

Proposition 2 (Expected score) For a fixed x ∈ X and a set
of i.i.d. random variables D = {X1, . . . , Xn}, it holds that

E [SO(x)] = qO(x) , E [SC (x)] = qC (x) ,

E [SR(x)] = qR(x) ,

where the expectation is taken with respect to D. Further-
more,

2qR(x) = 1 + qC (x) − qO(x) .

Proof Follows directly from the linearity of the expectation
and Proposition 1. ��

The following theorem shows that all three scores con-
centrate around their mean in the large sample size limit.

Theorem 1 (Concentration inequality for scores) Let S ∈
{SO , SC , SR} be any score on a set of i.i.d. random variables
D = {X1, . . . , Xn} and q ∈ {qO , qC , qR} the corresponding
scoring probability. Then, for n ≥ 2, ε > 0, and any x ∈ X,
it holds that

P (|S(x) − q(x)| > ε) ≤ 4

ε2n
. (2)

Equivalently, with probability greater than 1−δ it holds that

|S(x) − q(x)| ≤
√

4

δn
. (3)

Proof Weobtain Eq. (2) by usingChebyshev’s inequality and
bounding the variance with simple combinatorial arguments,
and Eq. (3) is merely a reformulation. We refer to Section A
of Appendix for a full version of the proof. ��

Our analysis of the scores as centrality measures requires
that we restrict our attention to rotationally invariant (sym-
metric) distributions P . Intuitively, a rotationally invariant
distribution has a center such that rotations around this cen-
ter do not change the distribution. For example, the standard
Gaussian distributionN(0, Id) onRd is rotationally invariant
around the origin. Section 4 requires this additional assump-
tion to make the analysis of outlier and rank score tractable
(yet still generalizes previous results from Heikinheimo and
Ukkonen [12], which only considers univariate Gaussians);
Sect. 5 investigates whether the scores are statistical depth
functions, whose definition requires rotational invariance.
Note, however, that this assumption is only needed for the
theoretical analysis, which justifies the scores as centrality
measures in simple settings. The scores can also produce
meaningful results on more general data such as images, see
Sect. 6.

Definition 3 (Rotational invariance) Let X ∼ P be a random
variable on R

d for some d ∈ N. We say that P (or X ) is
rotationally invariant around c, if X ∼ RX for any rotation
R around c, where “∼” denotes “equal in distribution.” A
function f : Rd → R

d is rotationally invariant around c, if
f = f ◦ R for any rotation R around c.
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Since the scoring probabilities are based on distances, it is
not surprising that they inherit the rotational invariance from
rotationally invariant distributions. Without loss of general-
ity, the center of rotation is assumed to be the origin, because
distances are invariant under translations.

Proposition 3 (Rotational invariance of scoring probabili-
ties) Let P be a distribution on R

d for some d ∈ N, which
is rotationally invariant around the origin according to Def-
inition 3. Then, the scoring probabilities qO , qC , and qR are
also rotationally invariant around the origin.

Proof Followsdirectly from the invariance of distances under
rotations and the rotational invariance of P . For example,
consider qO and any rotation R. For fixed x ∈ R

d and Y , Z
independently drawn from P , it holds that

Rx outlier in {Rx,Y , Z} ⇔ x outlier in {x,R−1Y ,R−1Z} .

By the rotational invariance of P , we have R−1Y
d= Y and

R−1Z
d= Z . Together, this yields

qO(Rx) = P(Rx outlier in {Rx,Y , Z})
= P(x outlier in {x,R−1Y ,R−1Z})
= P(x outlier in {x,Y , Z})

qO(Rx) = qO(x) .

��

4 Characterization of central points

The goal of this section is to understand the behavior of the
score functions with respect to the underlying distribution
of the data. In particular, we characterize the points that
are declared as most central by the scores. For the outlier
score, the most central point is the one that is penalized
least often, that is, argminx∈D SO(x). For central and rank
score, this point is the one that is rewardedmost often, that is,
argmaxx∈D SC (x) and argmaxx∈D SR(x). Theorem 1 allows
us to do the analysis for the corresponding scoring prob-
abilities instead of the scores. Unfortunately, the scoring
probabilities are tractable enough to do so only for one-
dimensional distributions.

The central scoring probability qC can be computed in
closed form and analyzed without any further assumptions:

Proposition 4 (Central scoring probability) Let P be a dis-
tribution with density function p > 0, F its cumulative
distribution function, and m its median, i. e., F(m) = 1/2.
Then, it holds that

qC (x) = 2F(x)(1 − F(x)) , (4)

qC is increasing on (−∞,m], decreasing on [m,∞), and m
is the unique global maximum of qC .

Proof By definition, it is qC (x) = P(x central in {x, Y , Z}).
In our particular case of d = 1, this can be reformulated to

qC (x) = P(x is between Y and Z)

= P(Y < x < Z) + P(Z < x < Y ) ,

and sinceY and Z are i.i.d. with cumulative distribution func-
tion F , we obtain Eq. (4). The derivative is given by

q ′
C (x) = 2p(x)(1 − 2F(x)) ,

and since p > 0 and F is increasing with F(m) = 1/2, the
sign is

sgn
(
q ′
C (x)

) =

⎧
⎪⎨

⎪⎩

1, if x < m,

0, if x = m,

−1, if x > m.

In particular, qC is increasing on (−∞,m] and decreasing
on [m,∞), wherefore the unique global maximum of qC is
given by m as claimed. ��

Our next result covers the outlier scoring probability qO
in a more restrictive setting, yet generalizes Theorem 1 in
Heikinheimo and Ukkonen [12], which only treats univariate
Gaussian distributions.

Proposition 5 (Outlier scoring probability) Let P be a dis-
tribution with density function p > 0, which is symmetric
around the median m and increasing on (−∞,m]. Then,
qO is symmetric around m and decreasing on (−∞,m]. In
particular, m is the unique global minimum of qO.

Proof Without loss of generality, we can assume m = 0 as
argued before Proposition 3, which then yields the symme-
try of qO . As Heikinheimo and Ukkonen [12] derived, the
derivative of qO for fixed x ∈ R is given by

q ′
O(x) = 1

2

[∫ x

−∞
−

∫ ∞

x

]
p(u)p

(
x + u

2

)
du

+
[∫ x

−∞
−

∫ ∞

x

]
p(u)p(2u − x) du

where [∫ x
−∞ − ∫ ∞

x ] f (u) du is shorthand for
∫ x
−∞ f (u) du−∫ ∞

x f (u) du. Substituting v = (x + u)/2 in the first two
integrals yields

q ′
O(x) = 2

[∫ x

−∞
−

∫ ∞

x

]
p(u)p(2u − x) du . (5)
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For x < 0, we can lower bound a part of the second integral
Λ := ∫ ∞

0 p(u)p(2u−x) du inEq. (5) using themonotonicity
of p to obtain

Λ ≥
∫ ∞

0
p(u − x)p(2u − x) du .

Substituting w = x − u on the right hand side yields

Λ ≥
∫ x

−∞
p(−w)p(x − 2w) dw ,

and with the symmetry of p around 0, we get that

Λ ≥
∫ x

−∞
p(w)p(2w − x) dw .

Using this lower bound in Eq. (5) yields

q ′
O(x) ≤ −2

∫ 0

x
p(u)p(2u − x) du < 0 ,

thus qO is decreasing on (−∞, 0]. By the symmetry of qO
around 0, it also has to be increasing on [0,∞) and thus 0 is
the unique global minimum as claimed. ��

Using Proposition 2, the previous two propositions can
be combined to a corresponding statement about the rank
scoring probability.

Corollary 1 (Rank scoring probability)Under the conditions
of Proposition 5, the rank scoring probability qR is symmet-
ric around the median m and increasing on (−∞,m]. In
particular, m is the unique global maximum.

Proof Follows directly from the decomposition of qR in
Proposition 2 and the results on the other scoring probabili-
ties qO and qC in Proposition 4 and Proposition 5. ��

We tried extending this approach of directly computing
the scoring probabilities by definition to distributions onRd ;
although closed-form representations for the rank scoring
probability qR and its derivative for rotationally invariant
distributions P are available, they are not tractable enough
to infer on the monotonicity or global maximum of qR .

5 The rank score and statistical depth
functions

The main motivation for the central score is its relation to the
lens depth function [21], which is assumed to be a statistical
depth function. It is important to note that this has yet to
be proven, as Kleindessner and von Luxburg [18, Section
5.2] pointed out a mistake in the proof of properties P2 and

P3 (defined below). The outlier score, on the other hand, is
provably not related to a statistical depth function, because its
scoring probability does not satisfy those two properties. A
counterexample for this was already given by Heikinheimo
andUkkonen [12] for symmetric bimodal distributions in one
dimension.

In this section, we show that the rank scoring probabil-
ity also does not satisfy P2 and P3. However, Proposition 6
shows that it satisfies a weaker version for rotationally
invariant distributions, which extends to the rank score in
Theorem 2. For the remainder of this paper, we only con-
sider X = R

d for some d ∈ N.

5.1 Statistical depth functions

Denote by F the class of distributions on the Borel sets of
R
d and by Fξ the distribution of a given random vector ξ .

The four desirable properties that an ideal depth function
D : Rd × F → R should possess as defined in Zuo and
Sering [35] are

P1. Affine invariance. The depth of a point x ∈ R
d should not

depend on the underlying coordinate system or, in partic-
ular, on the scales of the underlying measurements. For
any random vector X in Rd , any non-singular A ∈ R

d×d

and any b ∈ R
d , it should hold that D(Ax+b, FAx+b) =

D(x, FX ).
P2. Maximality at center. For a distribution having a uniquely

defined “center” (e.g., the point of symmetry with
respect to some notion of symmetry), the depth function
should attain maximum value at this center. This means
D(θ, F) = supx∈Rd D(x, F) holds for any F ∈ F hav-
ing center θ .

P3. Monotonicity relative to deepest point.As a point x ∈ R
d

moves away from the “deepest point” (the point at which
the depth function attains maximum value; in particular,
for a symmetric distribution, the center) along any fixed
ray through the center, the depth at x should decrease
monotonically. Thismeans for any F ∈ F having deepest
point θ , D(x, F) ≤ D(θ + α(x − θ), F) holds for any
α ∈ [0, 1].

P4. Vanishing at infinity. The depth of a point x should
approach zero as ‖x‖ approaches infinity. This means
that D(x, F) → 0 as ‖x‖ → ∞ for each F ∈ F.

Property P1 is not satisfied by any of the scores in this gen-
eral form, but it holds for similarity transformations, because
they preserve inequalities between distances. That is, when-
ever A = r Q for a scalar r ∈ R+ and an orthogonal matrix
Q ∈ R

d×d . P1 also holds for non-singular A ∈ R
d×d with

respect to the Mahalanobis distance, which itself depends on
the distribution [21, Theorem 1]. In this case, the transfor-
mation preserves the distances.
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The rank scoring probability does not satisfy P2 and
P3 and is therefore not a statistical depth function. As
a counterexample, consider the uniform distribution on
{−5,−3, 3, 5}, which is rotationally invariant around 0
according to Definition 3. For this distribution, it is qR(0) =
8/16 < 9/16 = qR(2), which violates P2, because qR is
not maximal at the center of rotation 0, and P3, because it is
non-decreasing on lines away from 0.

The rank scoring probability satisfies P4 by Lebesgue’s
dominated convergence theorem and 1{d(x,y)<d(y,z)} → 0 as
‖x‖ → ∞ for any y, z ∈ R

d .

5.2 Rank score is approximately decreasing

We now show that the rank scoring probability at least satis-
fies a weaker version of P2 and P3 in Proposition 6, which
translates to the rank score itself in Theorem 2. First, we give
an alternative formula for the rank scoring probability:

Lemma 1 (Formula for rank scoring probability) Let x ∈
R
d , Y a random variable with distribution P, which is rota-

tionally invariant around the origin, and qR defined on P. Let
S and Rx be two independent random variables, distributed
as S ∼ Y1 and Rx ∼ (‖Y‖2 − ‖x‖2) / (2 ‖Y − x‖), where
Y1 denotes the first coordinate of Y . Then,

qR(x) = P(S ≤ Rx ) . (6)

Proof Here, we provide a sketch of the proof; for a full ver-
sion of the proof, we refer to Section B inAppendix. The idea
is to use the definition of qR and rotate the appearing areas
of integration such that they can be described in terms of
the marginal distribution Y1 alone. Because P is rotationally
invariant by assumption, doing so does not change the value
of qR . Analyzing the involved rotations, which determine the
distribution of Rx , concludes the proof. ��

Our next result is a weak version of properties P2 and P3
from Sect. 5.1 and states that the rank scoring probability qR
is at least approximately decreasing away from the center of
rotation.

Proposition 6 (qR is approximately decreasing) Let Y1 be
the first coordinate of Y , which is distributed as an around
the origin rotationally invariant distribution P. Then, for any
x, x ′ ∈ R

d with
∥∥x ′∥∥ ≤ ‖x‖, it holds that

qR(x) ≤ qR(x ′) + P(Y1 > ‖x‖) . (7)

Proof To derive the upper bound (7), we use the reformula-
tion of qR provided in Eq. (6) in combination with bounds
for the auxiliary function Rx . For a complete proof, we refer
to Appendix, Section C. ��

The bound in Proposition 6 uses the tail of the marginal
distribution of P . To control these tail probabilities, we con-
sider a special class of distributions:

Definition 4 (sub-Gaussian, [32, Section 3.4]) Let X ∼ P
be a random variable on R

d for some d ∈ N. We say that
P (or X ) is sub-Gaussian, if all one-dimensional marginals
〈X , x〉 for x ∈ R

d satisfy

P (|〈X , x〉| > t) ≤ 2e−cx t2

for all t ≥ 0 and suitable cx > 0.

Under the assumption that P is sub-Gaussian, we obtain
a more specific bound for the rank scoring probability qR .

Corollary 2 (sub-Gaussian bound for qR) Let Y1 be the first
coordinate of Y , which is distributed as an around the ori-
gin rotationally invariant and sub-Gaussian distribution P.
Then, for any x, x ′ ∈ R

d with
∥∥x ′∥∥ ≤ ‖x‖, it holds for

suitable c > 0 that

qR(x) ≤ qR(x ′) + e−c‖x‖2 .

Proof SinceY is sub-Gaussian, all one-dimensionalmarginals
〈Y , y〉 for y ∈ R

d satisfy

P (|〈Y , y〉| > t) ≤ 2e−cy t2 (8)

for all t ≥ 0 and suitable cy > 0. Under our assumption
on P to be rotationally invariant around the origin, Y being
sub-Gaussian is even equivalent to only requiring condition
Eq. (8) for y = e1, because the distribution of any one-
dimensional marginal depends only on ‖y‖. Furthermore, Y1
is necessarily symmetric and we obtain

P(Y1 > t) = 1

2
(P(Y1 > t) + P(Y1 < −t))

= 1

2
P (|〈Y , e1〉| > t) .

Denoting c := ce1 in Eq. (8) yields

P(Y1 > t) ≤ e−ct2 .

We use this upper bound in Eq. (7) to complete the proof. ��

Combining Corollary 2 and Theorem 1 yields the main
result of this section, which shows that under reasonable
assumptions on the distribution P , the rank score SR is
approximately decreasing for points x far away from the cen-
ter of symmetry.
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Theorem 2 (SR is approximately decreasing) Let P be an
around the origin rotationally invariant and sub-Gaussian
distribution on R

d . Then, for suitable c > 0, any 0 < δ < 1
and x, x ′ ∈ R

d with
∥∥x ′∥∥ ≤ ‖x‖, the rank score SR, defined

on a dataset D = {x1, . . . , xn} of n ≥ 2 i.i.d. samples from
P, satisfies with probability greater than 1 − δ that

SR(x) ≤ SR(x ′) + e−c‖x‖2 +
√
40

δn
. (9)

Proof Denote Aχ := {|SR(χ) − qR(χ)| ≤ √
10/(δn)

}
for

χ ∈ {
x, x ′}. Using Eq. (3) in Theorem 1 with δ/2 yields

P (Ax , Ax ′) = 1 − P
(
Ac
x ∪ Ac

x ′
) ≥ 1 − P

(
Ac
x

) − P
(
Ac
x ′
)

≥ 1 − δ

2
− δ

2
= 1 − δ .

Therefore, with probability greater than 1 − δ (on the set
Ax ∩ Ax ′ ), it holds that

SR(x) ≤ qR(x) +
√
10

δn
(Ax )

≤ qR(x ′) + e−c‖x‖2 +
√
10

δn
(Corollary 2)

SR(x) ≤ SR(x ′) + e−c‖x‖2 +
√
40

δn
, (Ax ′)

as claimed. ��
The bound in Eq. (9) depends on ‖x‖ and n, which are

decoupled in two terms exp
(−c ‖x‖2) and √

40/(δn). The
latter goes to 0 as n−0.5 in the large sample size limit and
accounts for the errormade by using a finite set of samplesD.
Although we would like the first term to be 0, the counterex-
ample in Sect. 5.1 shows that qR is not always decreasing as
a function of the norm, wherefore some dependency on ‖x‖
is necessary. It vanishes exponentially for datapoints of large
norm; in this case, however, we already have the statement
SR(x) → 0 by the property P4 (“vanishing at infinity”) of
qR and Theorem 1. There is no explicit dependency on the
other datapoint x ′ besides

∥∥x ′∥∥ ≤ ‖x‖, because this is suffi-
cient for bounding the auxiliary function Rx in Lemma 2 in
Appendix.

As a consequence of Theorem 2, the score SR cannot blow
up far away from the center of rotation with high probability.
Since it uses high scores to infer centrality, this means that
no obvious outliers are estimated to be central. A decreasing
score SR would imply that our score always recovers the
center of rotation as the most central point; in that sense,

this proposition controls the distance of our estimation to the
center.

We would like to improve the proposition by removing
the ‖x‖ term for dimensions d > 1. As mentioned above,
this term is necessary for d = 1, but simulations in higher
dimensions suggest that the scoring probability qR is actually
always decreasing.

6 Experiments

We have shown in Sect. 4 that the scores recover the median
for one-dimensional symmetric distributions. But to what
notion of centrality do the scores correspond in more general
settings? We also observed in Sect. 5 that only the central
score comes with the desirable property of being a statistical
depth function. But does this imply that it performs better in
practice? To answer these questions, we evaluate the scores
on medoid estimation and outlier detection tasks on real and
synthetic datasets. Medoid estimation aims to find the most
central point in a dataset, which minimizes the average dis-
tance to other points. Outlier detection has the opposing goal
of identifying points that are considerably different from the
majority of the dataset. The experiments on real datasets in
Sect. 6.1 show no notable difference between the three scores
and suggest that they recover the Euclidean notion of cen-
trality given by the average distance to the dataset. We then
highlight some of the more subtle weaknesses of and differ-
ences between the scores on synthetic datasets in Sect. 6.2.

6.1 Image datasets

Datasets and preprocessing. Our first dataset is the well-
known MNIST database of handwritten digits [20] reduced
to 300 randomly chosen images per digit. Since these ran-
dom subsets are unlikely to include clearly visible outliers,
each subset was expanded by the 5 images with largest aver-
age Euclidean distance within each class. Our other dataset
NATURE [22] consists of outdoor scene photographs for 8
landscape and urban categories (coast, forest, highway,

inside city, mountain, open country, street, tall

building). The number of images per category ranges from
260 to 410.

Ideally, we would like to compute the scores within each
category based on triplets obtained in a crowdsourcing task.
However, the cubic number of triplets makes this infeasi-
ble even for medium-sized datasets (300 images yield ≈
4,500,000 triplets). Because we want to avoid any finite sam-
pling effects induced by using only a subset of triplets, we
use two rough proxies for triplets labeled by humans: triplets
are computed based on the Euclidean distances (1) in the
pixel space and (2) for a feature embedding given by a neural
network. For the latter, we use the AlexNet architecture [19]
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(a) MNIST. (b) MNIST (embedded).

(c) NATURE. (d) NATURE (embedded).

Fig. 3 Top 5 rankings on MNIST classes 3 and 4, and NATURE categories forest and mountain with and without AlexNet feature embedding.
Each quadrant shows top 5 central points and outliers of the respective dataset as predicted by the three scores and the average Euclidean distance
baseline

pre-trained on ImageNet [6]. The feature embedding is then
given by the network after removing the last three fully con-
nected and softmax layers. This transfer-learning approach
is motivated by the generality of representations learned in
the first few network layers across different domains [5,34].
Note that although a Euclidean representation of the data is
available, the scores can still only use the resulting triplet
information to access the data.
Experiment setup and evaluation metric. We compare the
scores in medoid estimation and outlier detection tasks for
each class of both datasets and for both Euclidean spaces.
For a fixed class and Euclidean space, let I = {x1, . . . , xn}
denote the corresponding set of image representations. First,
all three scores are computed for every image in I based on
the triplets given by the Euclidean distances. As a baseline
measure of centrality, we additionally consider the average
Euclidean distance from x ∈ I to the other elements, which

is given by (1/ |I|)∑y∈I d(x, y). Each of the four centrality
measures is then used to produce a ranking of the top 5 central
points by choosing the points with highest values for central
score and rank score, and the points with lowest values for
outlier score and average distance. Similarly, a ranking of
the top 5 outliers is obtained by choosing the points at the
opposite tail end of the centrality measures.

To quantify the distance between the top 5 rankings,
we use a normalized version of the averaging footrule dis-
tance Favg proposed by Fagin et al. [8], where low distance
implies that the rankings are similar. This distance general-
izes Spearman’s footrule, which is the L1-distance between
twopermutations, to top k lists. It considers both the order and
the number of shared elements, and values range from 0 for
identical rankings to 1 for rankings on disjoint elements. As
an example, it is Favg([1, 2, 3, 4, 5], [1, 3, 4, 5, 8]) = 0.16,
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Table 1 Average Favg distances
on top 5 rankings (a) between
outlier score, central score, and
rank score, and (b) from scores
to average Euclidean distance
baseline. Rankings are
computed across all classes for
MNIST and NATURE, both
feature representations, and both
top 5 central points and top 5
outliers

Pixel space AlexNet embedding

Top 5 Top 5 Top 5 Top 5
Central Outliers Central Outliers

(a) Average Favg distance on top 5 rankings between scores

Digit 0 0.11 0.09 0.08 0.16

— 1 0.32 0.11 0.27 0.16

— 2 0.15 0.08 0.32 0.31

— 3 0.13 0.03 0.39 0.11

— 4 0.19 0.11 0.03 0.15

— 5 0.37 0.16 0.08 0.16

— 6 0.37 0.05 0.16 0.05

— 7 0.11 0.05 0.11 0.21

— 8 0.24 0.03 0.05 0.15

— 9 0.20 0.05 0.15 0.24

Coast 0.13 0.27 0.03 0.08

Forest 0.03 0.08 0.11 0.25

Highway 0.17 0.17 0.07 0.05

Inside city 0.03 0.17 0.03 0.05

Mountain 0.03 0.21 0.11 0.11

Open country 0.05 0.12 0.08 0.08

Street 0.11 0.08 0.49 0.03

Tall building 0.15 0.27 0.15 0.08

(b) Average Favg distance on top 5 rankings from scores to average
Euclidean distance baseline

Digit 0 0.16 0.05 0.05 0.09

— 1 0.20 0.12 0.13 0.09

— 2 0.11 0.07 0.19 0.21

— 3 0.07 0.01 0.27 0.13

— 4 0.20 0.11 0.05 0.16

— 5 0.25 0.12 0.11 0.17

— 6 0.32 0.04 0.15 0.05

— 7 0.09 0.16 0.07 0.19

— 8 0.24 0.01 0.07 0.11

— 9 0.13 0.05 0.15 0.16

Coast 0.07 0.15 0.04 0.11

Forest 0.05 0.09 0.17 0.13

Highway 0.17 0.19 0.07 0.04

Inside city 0.08 0.19 0.03 0.07

Mountain 0.07 0.28 0.07 0.05

Open country 0.11 0.11 0.09 0.12

Street 0.05 0.19 0.32 0.01

Tall building 0.43 0.23 0.07 0.04

Numbers are bold, if the respective unordered rankings agree on at least 4 out of the 5 images, and italic, if
they agree on at most one. In every case, the rankings agree on at least one image. The low values in this table
imply that all rankings are very similar
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and the expected distance between any fixed top 5 ranking
and a random one on a domain with 300 elements is ≈ 0.98.

Evaluation. Figure 3 shows the results on two classes for
each dataset. The most striking observation is that the pre-
dictions for central points and outliers are almost consistent
across all four centrality measures. This shows that all three
scores have comparable performance in medoid estima-
tion and outlier detection tasks, despite their differences
in theoretical guarantees. Since the score-induced rankings
agree with those of the average Euclidean distance baseline,
this observation also suggests that the scores recover the
Euclidean notion of centrality. This is in line with our one-
dimensional findings of Sect. 4: the scores recover themedian
of a distribution P as the most central point, and the median
of a continuous distribution minimizes the expected distance
EX∼P [|x − X |] over all x ∈ R. These findings are supported
by Table 1, which quantifies the distance between the rank-
ings for all datasets. The small distances in Table 1a show
that the top 5 rankings produced by the three scores are very
similar, and the small distances in Table 1b show that these
rankings agree with those given by the average Euclidean
distance.

A second observation is that these findings are consis-
tent across both feature representations of the datasets,
the pixel space and the AlexNet embedding. Therefore, they
cannot be dismissed as an artifact of the pixel space. Since
triplets based on the AlexNet embedding might resemble the
human notion of similarity more closely, it is possible that
rankings on crowdsourced triplets display similar behavior.

The third observation concerns the quality of the estimated
medoids and outliers and has already been made for the out-
lier score [12] and the central score [18]: estimatedmedoids
are generic images of a class, while estimated outliers are
more diverse. This also holds true for the rank score. For
example, in Fig. 3d for the class forest, the central images
are thematically homogeneous and all show green trees. The
outliers contain different colors like green, red, and yellow
and include diversemotifs like a person, trees, andwater. The
notion of centrality captured by the scores changes with the
feature space, but the general concept of generic and diverse
stays the same. For example, in Fig. 3a, the pixel space repre-
sentation identifies almost exclusively thick digits as outliers,
while the AlexNet embedding in Fig. 3b also includes thin,
skewed digits.

6.2 Synthetic datasets

In this section, we partly repeat experiments fromKleindess-
ner and von Luxburg [18] on two simple synthetic datasets
for which we additionally include the rank score. First, we
demonstrate the relation between the scores and the aver-
age distance. We then highlight some of their more subtle

Fig. 4 Scores on a set X of 100 points from a two-dimensional
standard Gaussian, plotted against the average Euclidean distance
(1/ |X|)∑y∈X d(x, y)

differences for the tasks of medoid estimation and outlier
identification.
Relation to average distance. Figure 4 shows the scores for
a Gaussian dataset plotted against the average distance. As
expected, the outlier score is roughly increasing as a func-
tion of the average distance while central and rank score
are roughly decreasing. Hence the scores serve as a proxy
for the average distance, which was already observed in
Sect. 6.1. We can quantify this relationship with Spearman’s
rank correlation coefficient, which describes the monotonic-
ity between two variables. The respective values for outlier,
central, and rank score are 0.997, − 0.995, and − 0.999,
which implies an almost perfect monotonic relationship. The
corresponding tail ends of the scores therefore contain candi-
dates for medoid and outliers. However, this does not tell us
how many outliers there are, if any at all, because this would
require to identify gaps in the average distance. The scores
are less sensitive to such gaps, because they are based on rel-
ative rather than absolute information. This can be observed
in Fig. 4 for the two rightmost average distance values, whose
gap is not accompanied by a corresponding gap in the scores.
This behavior is further discussed in the next paragraph under
outlier identification.
Medoid estimation and outlier identification. This paragraph
highlights two respective weaknesses of outlier and central
score. The rank score shows neither of them, as it is a com-
promise between outlier and central score.

For the first task of medoid estimation, we consider the
circular dataset shown in Fig. 6. Each score tries to predict
the medoid by returning the point at its corresponding tail
end. That is, the outlier score returns the point with lowest
score, whereas central and rank scores return the point with
highest score. Central and rank scores correctly predict the
origin, but the outlier score predicts the point indicated by the
red circle. The heatmap for the outlier score shows that the
area around the medoid is in fact a local maximum instead of
the global minimum. This effect was already observed in one
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(a) Dataset. (b) Histogram and kernel density estimation of scores.

Fig. 5 300 points drawn from a standard Gaussian and 2 outliers (stars) added by hand. Histograms with kernel density estimate show the three
scores, for which the outliers are indicated with stars

Fig. 6 300 points drawn froma rotationally symmetric distributionwith
norm distributed asN(1, 0.01) andmedoid at origin added by hand. The
heatmap shows the outlier score of x ∈ R

2 with respect to this dataset,
and the red circle indicates the point in the dataset with lowest outlier
score

dimension for bimodal symmetric distributions as discussed
in Sect. 5 and attests to the fact that the outlier score is not a
statistical depth function. A statistical depth function would
declare points at heart of the dataset as central, even if this
region is sparse, because it ignores multimodal aspects of
distributions. Another example in which the outlier score
respects themultimodality of a dataset is given by themixture
of Gaussians in Fig. 2.

For the second task of outlier identification, Fig. 5a shows
points from a standard Gaussian with two clearly visible out-
liers added by hand. Similar tomedoid estimation, each score
now proposes candidates for outliers at its other tail end, that
is, highest points for the outlier score and lowest points for
central and rank score. Figure 5b shows that both outliers are
correctly placed at the corresponding tail end for all three
scores. However, only outlier and rank score show a clear
gap between the scores of the outliers and the other points.
The lack of such a gap makes it hard for the central score to
estimate the amount of outliers.

7 Conclusion and future work

In this paper, we consider three comparison-based centrality
measures on triplets, one of which we propose as a natural
compromise between the other two. We provide a theoreti-
cal analysis of the scores for one-dimensional distributions
to characterize their most central points and investigate their
connection to statistical depth functions. We conclude with
experiments for the tasks of medoid estimation and outlier
detection: on image datasets, we demonstrate the behavior of
the three scores and hint toward their connection to the aver-
age Euclidean distance. On synthetic datasets, we highlight
two respective weaknesses of the existing two scores, which
are mitigated by our proposed score.

As for future work, it is an open question whether the
rank score is a statistical depth function for dimensions
d ≥ 2. Similarly, fixing the proof for the lens depth function
would solidify the motivation for the central score. We fur-
ther plan to investigate and formalize the connection between
the scores and the average Euclidean distance.
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Appendix

A Proof of Theorem 1

In this section, we prove the convergence of the scores to
their corresponding scoring probabilities.

Theorem 1 (Concentration inequality for scores) Let S ∈
{SO , SC , SR} be any score on a set of i.i.d. random variables
D = {X1, . . . , Xn} and q ∈ {qO , qC , qR} the corresponding
scoring probability. Then, for n ≥ 2, ε > 0, and any x ∈ X,
it holds that

P (|S(x) − q(x)| > ε) ≤ 4

ε2n
. (2)

Equivalently, with probability greater than 1−δ it holds that

|S(x) − q(x)| ≤
√

4

δn
. (3)

Proof All three scores are of the generic form

S(x) = 1

n(n − 1)

n∑

i, j=1,
i �= j

I (x, Xi , X j ) ,

where I (x, Xi , X j ) is the corresponding indicator function
takingvalues in {0, 1}. In order to useChebyshev’s inequality,
we first upper bound the variance of S(x) using the known
formula

Var(S(x)) = 1

(n(n − 1))2

⎛

⎜⎜⎝
n∑

i, j=1,
i �= j

Var
(
I (x, Xi , X j )

)

+
n∑

i, j=1,
i �= j

n∑

i ′, j ′=1,
i ′ �= j ′,

(i, j) �=(i ′, j ′)

Cov
(
I (x, Xi , X j ), I (x, Xi ′ , X j ′)

)

⎞

⎟⎟⎟⎟⎟⎠
.

The variance and covariances in the formula above are upper
bounded by 1, because the involved random variables only
take values in {0, 1}. Since D consists of independent sam-
ples, the covariance is 0, if i, i ′, j, j ′ are distinct. Therefore,
the covariances are only summed over the set A of all remain-
ing pairs. Denoting B := {

((i, j) ∈ {1, . . . , n}2 | i �= j
}2

the set of all possible pairs, we have

A = B \ ({
((i, j), (i ′, j ′)) ∈ B | (i, j) = (i ′, j ′)

}

� {
((i, j), (i ′, j ′)) ∈ B | i, i ′, j, j ′ distinct})

and thus

|A| = (n(n − 1))2 − (n(n − 1) + n(n − 1)(n − 2)(n − 3))

= n(n − 1)(4n − 7) .

This yields

Var(S(x)) ≤ 1

(n(n − 1))2
(n(n − 1) + n(n − 1)(4n − 7))

≤ 4

n
.

As shown in Proposition 2, it is E [S(x)] = q(x) and there-
fore Chebyshev’s inequality completes the first part of the
proof. The reformulation follows by choosing δ := 4/(ε2n).

��
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B Proof of Lemma 1

Lemma 1 (Formula for rank scoring probability)Let x ∈ R
d ,

Y a random variable with distribution P, which is rotation-
ally invariant around the origin, and qR defined on P. Let S
and Rx be two independent random variables, distributed as
S ∼ Y1 and Rx ∼ (‖Y‖2 − ‖x‖2) / (2 ‖Y − x‖), where Y1
denotes the first coordinate of Y . Then,

qR(x) = P(S ≤ Rx ) . (6)

Proof Let x ∈ R
d and denote the marginal density of Y1

by p1. For clarity, we explicitly indicate the corresponding
random variable at the density as in p = pY . By definition,
it is qR(x) = P(d (x,Y ) < d (Y , Z)). Since Y and Z are
i.i.d. and δ is symmetric in its arguments, the right hand side
is equal to P(d (x,Y ) < d (Y , Z)), and marginalizing over
Y yields

qR(x) =
∫

Rd
pY (y)

∫

{z∈Rd |d(x,z)<d(y,z)}
pZ (z) dz dy .

Because P is rotationally invariant around the origin, we can
rotate thehalf-spaceHx (y) := {

z ∈ R
d | d (x, z) < d (y, z)

}

for fixed y ∈ R
d , the area of integration for the inner inte-

gral, without changing its mass under P . In order to express
qR(x) solely by a marginal distribution of P , we rotate the
half-space with the unique rotation R that yields the rotated
set

{
z ∈ R

d | z1 < Rx (y)
}
for an appropriate value of Rx (y).

By doing so, we obtain

qR(x) =
∫

Rd
pY (y)

∫

{z∈Rd |z1<Rx (y)}
pZ (z) dz dy

=
∫

Rd
pY (y)

∫ Rx (y)

−∞
p1(s) ds dy .

A change of variables under the function y �→ Rx (y) yields

qR(x) =
∫

R

pRx (Y )(r)
∫ r

−∞
p1(s) ds dr

=
∫

R

∫

R

1{s≤r} pRx (Y )(r)p1(s) ds dr ,

which we describe in terms of independent random variables
S ∼ Y1 and Rx as

qR(x) = P (S ≤ Rx ) .

It is left to prove Rx ∼ (‖Y‖2 − ‖x‖2) / (2 ‖Y − x‖),
which we achieve by determining a closed form for Rx (y).
Let ξx (y) denote the unique point on ∂Hx (y) that satisfies
R (ξx (y)) = Rx (y)e1; this situation is depicted in Fig. 7.
Because (y − x)/ ‖y − x‖ is the outward pointing normal

Fig. 7 Illustration of situation in proof of Lemma 1. Rotation of point
ξx (y) ∈ ∂Hx (y) with smallest distance to origin onto the x-axis for
x = (1, 2)� and y = (2, 3)� results in point Rx (y)e1. Half-space
Hx (y) (shaded area) is rotated with same rotation (resulting in hatched
area)

vector for Hx (y) before rotating and e1 is the outward point-
ing normal vector after rotating, we get that

R

(
Rx (y)

y − x

‖y − x‖
)

= Rx (y)R

(
y − x

‖y − x‖
)

= Rx (y)e1 .

Because ξx (y) is the unique point that satisfies R (ξx (y)) =
Rx (y)e1, we obtain

ξx (y) = Rx (y)
y − x

‖y − x‖ . (10)

Since ξx (y), (x + y)/2 ∈ ∂Hx (y) are both points on the
dividing hyperplane, they have to satisfy the equation 0 =
〈ξx (y) − (x + y)/2, y − x〉. Combined with Eq. (10), this
yields

0 =
〈
ξx (y) − x + y

2
, y − x

〉

=
〈
Rx (y)

y − x

‖y − x‖ − x + y

2
, y − x

〉

= Rx (y) ‖y − x‖ − 1

2

(
‖y‖2 − ‖x‖2

)
,

or equivalently

Rx (y) = ‖y‖2 − ‖x‖2
2 ‖y − x‖ ,
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Fig. 8 Decision surface for inequality Rx (y) ≤ Rx ′ (y) as function of y
with x = (4, 0) and x ′ = (2, 0), corresponding to α = 0.5 in Lemma 2.
Left side of line at 〈x, ·〉 = 〈x, x〉 corresponds to the first case, and right
side of line at 〈x, ·〉 = 3/2(1 + α) 〈x, x〉 to the second case

which concludes the proof. ��

C Proof of Proposition 6

The proof of Proposition 6 is based on the reformulation
Eq. (6) of qR , which uses an auxiliary function Rx . In order
to bound qR , we first provide bounds for Rx in the following
lemma:

Lemma 2 (Bounds for Rx ) Let x, x ′ ∈ R
d with x ′ = αx for

some 0 ≤ α ≤ 1 and y ∈ R
d with y �= x, x ′. Then, it holds

that

〈x, y〉 ≤ 〈x, x〉 ⇒ Rx (y) ≤ Rx ′(y) ,

〈x, y〉 ≥ 3

2
(1 + α) 〈x, x〉 ⇒ Rx (y) > Rx ′(y) .

The first part of this lemma yields a tractable bound for
the set {Rx (Y ) ≤ Rx ′(Y )}, whereas the second part tells us
that the bound cannot be improved substantially.

Proof For given x and y, we abbreviate c := 〈x, x〉 and
d := 〈y, y〉. By definition of Rx , we have

Rx (y) ≤ Rαx (y) ⇔ ‖y‖2 − ‖x‖2
2 ‖y − x‖ ≤ ‖y‖2 − ‖αx‖2

2 ‖y − αx‖
⇔ d − c

‖y − x‖ ≤ d − α2c

‖y − αx‖ . (11)

We distinguish between three different cases depending on
the signs of both sides.
Case I: α2c < d < c . Here, the left hand side in Eq. (11)
is negative, whereas the right hand side is positive, and the
inequality holds trivially.

I

II

 III

Fig. 9 Three different cases in proof of Lemma 2 for x =
(4, 0)� and α = 3/4. Case I

{
y ∈ R

2 | α ‖x‖ < ‖y‖ < ‖x‖},
case II

{
y ∈ R

2 | ‖x‖ < ‖y‖ , 〈x, y〉 ≤ 〈x, x〉}, and case III{
y ∈ R

2 | ‖y‖ < α ‖x‖}

Case II: c ≤ d . Next, we consider the case where both
sides in Eq. (11) are nonnegative. Squaring both sides and
rearranging the inequality yields

Rx (y) ≤ Rαx (y)

⇔ f (α, x, y) := ‖y − αx‖2 (d − c)2 − ‖y − x‖2
(
d − α2c

)2

≤ 0 . (12)

By expanding and regrouping all products we obtain

f (α, x, y) = −3
(
1 − α2) cd2 + (1 − α4)c2d + α2 (1 − α2) c3

+ 2(1 − α)
(
d2 + 2αcd − α

(
1 + α + α2) c2

)
︸ ︷︷ ︸

=:g(α,c,d)

〈x, y〉 . (13)

Next, we want to use the inequality 〈x, y〉 ≤ c. We have

g(α, c, d) = d2 + 2αcd − α
(
1 + α + α2

)
c2 (c ≤ d)

≥ c2 + 2αc2 − α
(
1 + α + α2

)
c2

= c2(1 − α)(1 + α)2

g(α, c, d) ≥ 0 ,

and therefore 〈x, y〉 ≤ c yields

f (α, x, y) ≤ c ≤ d

− 3
(
1 − α2

)
cd2 + (1 − α4)c2d + α2

(
1 − α2

)
c3
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+ 2(1 − α)
(
d2 + 2αcd − α

(
1 + α + α2

)
c2
)
c

= −c(1 − α)(d − c)
(
(1 + 3α)d − α(2 + α + α2)c

)

≤ 0,

which completes this case.
Case III: d ≤ α2c . For the remaining case, we consider
the function β �→ Rβx (y) and show that it is decreasing
on

[√
d/c,∞)

. Since d ≤ α2c implies
√
d/c ≤ α and by

assumption it is α ≤ 1, this yields the desired inequality
R1x (y) ≤ Rαx (y). We have

∂

∂β
Rβx (y) = ∂

∂β

d − β2c

2 ‖y − βx‖
= −2βc ‖y − βx‖2 − (

d − β2c
) 〈x, βx − y〉

2 ‖y − βx‖3

and therefore

∂

∂β
Rβx (y) ≤ 0

⇔ f̃ (β, x, y) := −2βc ‖y − βx‖2 −
(
d − β2c

)
〈x, βx − y〉

≤ 0 . (14)

Expanding the terms in f̃ yields

f̃ (β, x, y) = −β3c2 + (3β2c + d) 〈x, y〉 − 3βcd
(Cauchy–Schwarz)

≤ −β3c2 + (3β2c + d)
√
cd − 3βcd

= √
c
(√

d − β
√
c
)3

β ≥ √
d/c

f̃ (β, x, y) ≤ 0.

Therefore, by Eq. (14), the function β �→ Rβx (y) is
decreasing on

[√
d/c,∞)

, which completes the proof of this
remaining case, and thus the first implication.
For the second implication 〈x, y〉 ≥ 3/2(1 + α) 〈x, x〉 ⇒
Rx (y) > Rx ′(y), we go back to Eq. (13) and show
f (α, x, y) ≥ 0. As before, we are in the case

d ≥ 〈x, y〉2
c

(Cauchy-Schwarz)

≥ 9

4
(1 + α)2 c 〈x, y〉 ≥ 3

2
(1 + α) c

d ≥ c ,

thus it is g(α, c, d) ≥ 0 and using the inequality 〈x, y〉 ≥
3/2 (1 + α) c in Eq. (13) yields

f (α, x, y) ≥
− 3

(
1 − α2

)
cd2 + (1 − α4)c2d + α2

(
1 − α2

)
c3

+ 2(1 − α)
(
d2 + 2αcd − α

(
1 + α + α2

)
c2

) 3

2
(1 + α) c

= c2(1 − α)(1 + α)
(
(α2 + 6α + 1)d − α(3α2 + 2α + 3)c

)

(∗)≥ 1

4
c3 (1 − α) (1 + α) (3 + α)2 (1 + 3α)2

≥ 0 ,

where the inequality at (∗) holds, because d ≥ 9
4 (1 + α)2 c.

By Eq. (12), this completes the proof. ��
With these bounds, we are now prepared to proof Propo-

sition 6.

Proposition 6 (qR is approximately decreasing) Let Y1 be
the first coordinate of Y , which is distributed as an around
the origin rotationally invariant distribution P. Then for any
x, x ′ ∈ R

d with
∥∥x ′∥∥ ≤ ‖x‖, it holds that

qR(x) ≤ qR(x ′) + P(Y1 > ‖x‖) . (7)

Proof Let x ∈ R
d and S, Rx , and R0 as in Lemma 1, where

Rx and R0 are coupled via Y . Define Ex := {Rx ≤ Rx ′ }. By
Lemma 1, it holds that

qR(x) = P(S ≤ Rx ) = P(S ≤ Rx , Ex ) + P(S ≤ Rx , E
c
x )

≤ P(S ≤ Rx ′) + P(Ec
x )

= qR(x ′) + P(Ec
x ) .

By the first inequality of Lemma 2, we can upper bound
P(Ec

x ) ≤ P(〈x,Y 〉 > 〈x, x〉). Lastly, Proposition 3 allows
replacing x by ‖x‖ e1 to obtain

qR(x) = qR(‖x‖ e1)
≤ qR(x ′) + P(Ec‖x‖e1)
≤ qR(x ′) + P(〈‖x‖ e1,Y 〉 > 〈‖x‖ e1, ‖x‖ e1〉)
= qR(x ′) + P(Y1 > ‖x‖) ,

which completes the proof. ��
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