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Abstract The aim of this article is to study neutral type Clifford-valued high-
order Hopfield neural networks with mixed delays and D operator.
New criteria are established for the existence, uniqueness and global exponen-
tial stability of (µ, ν)−pseudo almost automorphic solutions of the considered
model via Banach’s fixed point principle and differential inequality techniques.
An example is given to show the effectiveness of the main new criteria.

Keywords Clifford algebra · High-order Hopfield neural network ·
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1 Introduction

Artificial Neural Networks (NNs) are a computational technique that belongs
to the field of Machine Learning (ML). Their goal is to achieve a fairly sim-
plified model of the brain. High-Order Hopfield Neural Network (HOHNN)
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is one of the most powerful and efficient types of NNs. The key factors that
affect its success are its strong approximation ability, its fast convergence rate
and its high fault tolerance capability. HOHNNs have widespread applications
in various fields such as associative memory, pattern recognition, signal pro-
cessing, robotics, medical image edge detection, medical event detection in
electronic health records, diagnosis prediction in health care and many others.
The study of high-order NNs has attracted considerable multidisciplinary re-
search. For instance, the exponential convergence of high-order cellular NNs
(CNNs) with time-varying leakage delays has been obtained in [28]; the au-
thors of [14] discussed the existence and uniqueness of pseudo almost periodic
solutions of high-order type of NNs; the authors of [29] studied the existence
and exponential stability of the weighted pseudo almost periodic solutions of
high-order cellular NNs with mixed delays; the dynamics of the pseudo almost
automorphic solutions of HOHNNs with mixed delays has been investigated
in [3]; to name but a few.

One can easily see that all the NN models considered in the above-mentioned
works are under time-delay effect. The investigation of delayed NNs has be-
come an interesting world-wide focus and several types of delays such as dis-
crete, distributed, proportional and leakage delay have been used, see for in-
stance [4,5,8,26]. To precisely describe the dynamics of complex neural re-
actions, systems must contain information about the derivative of the past
states. Here, we are talking about another type called ”neutral-type delay”.
It should be mentioned that neutral type NN models can be classified into
two categories: Non-Operator-Based Neutral Functional Differential Equations
(NOBNFDEs) and D-Operator-Based Neutral Functional Differential Equa-
tions (DOBNFDEs). It is important to notice that neutral type NNs with
D operator have more realistic significance than non-operator-based ones in
many practical applications of NN dynamics. Recently, new success stories of
neutral type NNs with D operator have been provided. In [16], the global ex-
ponential stability of the anti-periodic solutions for neutral type cellular NNs
with D operator has been studied. In [30], the anti-periodic solutions for neu-
tral shunting inhibitory cellular NNs with time-varying delays and D operator
have been investigated. Reference [31] dealt with the global convergence of
CNNs with neutral type delays and D operator. In [32], the authors analyzed
the global exponential convergence of neutral type shunting inhibitory cellular
NNs with D operator. Zhang studied the oscillation dynamics of almost pe-
riodic solutions for shunting inhibitory CNNs with neutral type proportional
delays and D operator in [33] and extended the results to the pseudo almost
periodic solutions of the same model in [34].

On the one hand, to follow real phenomena in biological systems, re-
searchers have proposed several classes of functions such as the class of Almost
Automorphic (AA) functions in [27], the class of Pseudo Almost Automorphic
(PAA) functions in [17] and the class of Weighted Pseudo Almost Automor-
phic (WPAA) functions which have extended to the class of (µ, ν)−Pseudo
Almost Automorphic ((µ, ν)−PAA) functions [2]. (µ, ν)−PAA functions have
been rarely used in NN theory where the main task consists of finding an an-
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swer to the following problem: “what will be the nature of output when all the
parameters of the NN model are (µ, ν)−PAA functions?”. In [7], we found an
answer to this problem by studying the dynamic oscillations of (µ, ν)−PAA
solutions of bidirectional associative memory NNs. On the other hand, Clifford
introduced Clifford algebra in the 19th century. It is important associative alge-
bras within the theories of quadratic forms, orthogonal groups and theoretical
physics. As an extension of real value models, Clifford-value NNs have become
active research domain due to their powerful applications in many fields such
as neural computing, robotic vision, image processing, control problems and
other areas. Success stories of Clifford-value NNs are reported in the follow-
ing. The existence and global exponential stability of the equilibrium point of
Clifford-valued recurrent NNs have been studied in [37]; sufficient conditions
ensuring the existence and global stability of Clifford-valued NNs with time-
varying delays have been derived in [23,21]; the globally asymptotic almost au-
tomorphic synchronization of almost automorphic solutions of Clifford-valued
recurrent NNs with mixed delays is developed in [20].

In this brief, we tried to manipulate neutral type HOHNNs in Clifford
algebra with (µ, ν)−PAA parameters. To our best knowledge, there are no
public results considering the dynamic behavior of (µ, ν)−PAA solutions of
neutral type Clifford-valued NNs.

The main aim of this work is to obtain new sufficient conditions for en-
suring the existence and global exponential stability of (µ, ν)−pseudo almost
automorphic solutions of neutral-type Clifford-valued HOHNNs. Most of the
published articles on neutral type NNs focused on the first-order systems and
analyzed real-valued, complex-valued and quaternion-valued NNs. So, this ar-
ticle brings several advancements listed below:

1. The study of the existence and uniqueness of the (µ, ν)−pseudo almost
automorphic solutions for neutral type HOHNN.

2. The analysis of the global exponential stability of the (µ, ν)−pseudo al-
most automorphic solutions for the considered model without using the
Lyapunov functional method.

3. The class of (µ, ν)−PAA functions covers larger classes of functions that
are very sophisticated and difficult to handle. We generalize many earlier
publications [3,5,14].

4. The parameters are (µ, ν)−PAA functions which have been considered in
Clifford algebra for the first time in such context. Some previous works in
the literature are significantly extended and complemented, such as [18,19,
22].

5. Via direct method, we study the (µ, ν)−PAA solutions for Clifford-valued
HOHNNs without decomposing them into real-valued systems. Compared
with real-valued, complex-valued and quaternion-valued HOHNNs [24,25],
the dynamical behaviors of Clifford-valued HOHNNs are the most compli-
cated.

The outline of this paper is arranged as follows. In Section 2, we establish
useful definitions, assumptions and lemmas. Section 3 is devoted to establish
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new criteria for the existence, uniqueness and global exponential stability of
(µ, ν)−PAA solutions of HOHNNs. In section 4, a numerical example is given
to illustrate the feasibility of the obtained results. Conclusion and meaningful
remarks are drawn in Section 5.

2 Preliminaries

2.1 Real Clifford algebra

In this subsection, we recall some results about real Clifford algebra. For more
details, the reader may refer to [13] and the references therein. Let us denote
Rm the m−dimensional real vector space. The real Clifford algebra over Rm
is defined as

A =

{ ∑
A⊆{1···m}

aAeA; aA ∈ R
}
, where eA = eh1

· · · ehζ with A =

{
h1 · · ·hζ

}
,

1 ≤ h1 < h2 < · · · < hζ ≤ m and 1 ≤ ζ ≤ m.

A equipped with m generators is defined as the Clifford algebra over the real
number R with m multiplicative generators e1, · · · , em such that ei ∈ Rm,
e∅ = e0 = 1, e20 = 1 and

 e0ei = eie0 = ei, i = 1, 2, · · · ,m,
eiej + ejei = 0, i 6= j, i, j ∈ {1, · · · ,m},
e2i = −1, i = 1, 2, · · · ,m.

When one element is the product of multiple Clifford generators, we will write
its subscripts together such as eh1

eh2
= eh1h2

and eh1
eh2

eh5
= eh1h2h5

. It is

easy to see that dimRA =
m∑
k=0

(
m
k

)
= 2m. We also define the norm on A by

‖x‖A = max
1≤i≤n

{|xA|}, for x =
∑
A

xAeA ∈ A,

and the norm on An by

‖x‖An = max
1≤i≤n

{‖xi‖A}, for x = (x1, x2, · · · , xn)T ∈ An.

In the following, An denotes the n−dimensional real Clifford vector space.
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2.2 Model description

In this article, we deal with the following neutral type Clifford-valued HOHNNs
with mixed delays:[
xi(t)− qi(t)xi(t− ri(t))

]′
= −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t− τij(t)))

+

n∑
j=1

n∑
l=1

αijl(t)gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

+

n∑
j=1

βij(t)

+∞∫
0

Gij(s)hj(xj(t− s))ds

+

n∑
j=1

n∑
l=1

pijl(t)

+∞∫
0

Pijl(t− s)kj(xj(s))ds

×
+∞∫
0

Qijl(t− s)kl(xl(s))ds+ Ii(t), (1)

in which n corresponds to the number of units in the NN, xi(·) ∈ A corresponds
to the state vector of the ith unit, ci(·) represents the rate with which the ith

unit will reset its potential to the resting state in isolation when disconnected
from the network and external inputs, qi(·) ∈ A is the connection weights,
aij(·), βij(·) ∈ A are the synaptic connection weight of the jth unit on the
ith unit, αijl(·), pijl(·) ∈ A represent the second-order synaptic weights of the
NNs, fj(·), gj(.), hj(·), kj(·) ∈ A represent the activation functions of signal
transmission, Gij(·), Pijl(·), Qijl(·) ∈ A are the transmission delay kernels,
ri(·), τij(·), σijl(·), νijl(·) ∈ R+ are the transmission delays, Ii(·) ∈ A denotes
the external inputs. The initial conditions associated with (1) are of the form:

xi(s) = φi(s), s ∈ (−∞, 0], i = 1, 2, . . . , n, (2)

where φi ∈ C

(
(−∞, 0],A

)
which is the set of continuous functions from

(−∞, 0] to A.

Remark 1 In (1), the functions ri(·), τij(·), σijl(·) and νijl(·) correspond to
the transmission delays. In fact, time-delays exist in most NN systems be-
cause neurons cannot communicate or respond instantaneously. Sometimes
they make the dynamic behaviors more complex and may destabilize the sta-
ble equilibria (see [1,6,11,12]).

2.3 Notations and definitions

Definition 1 ([17]) A continuous function f : R → Rn is called almost
automorphic if for every real sequence (Sn)n∈N, there exists a subsequence
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(sn)n∈N such that g(t) = lim
n→∞

f(t + sn) is well defined for each t ∈ R and

lim
n→∞

g(t− sn) = f(t) for each t ∈ R. Denote by AA(R,Rn) the set of all such

functions.

Definition 2 ([20]) Let f = (f1, f2, · · · , fn)T : R 7→ An where fi =
∑
A

fAi eA.

fA : R 7→ R is called almost automorphic if for every i = 1, · · · , n we have
fAi ∈ AA(R,Rn). Denote by AA(R,An) the set of all such functions.

Let B the Lebesgue σ-field of R,M denotes the set of all positive measures
µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞ for all a, b ∈ R (a ≤ b).

Definition 3 For µ, ν ∈ M, the measures µ and ν are said to be equivalent
if there exist constants a0, a1 > 0 and a bounded interval Ω ⊂ R such that

a0ν(A) ≤ µ(A) ≤ a1ν(A)

for all A ∈ B satisfying A ∩Ω = ∅.

Now, we introduce a new concept of ergodicity, which generalizes those
previously given in the literature.

Definition 4 Let µ, ν ∈ M. A bounded continuous function f : R 7→ An is
said to be (µ, ν) ergodic if

lim
r−→+∞

1

ν([−r, r])

∫
[−r,r]

‖ f(t) ‖A dµ(t) = 0.

We denote the collection of all such functions by ξ(R,An, µ, ν).

Let us denote BC(R,An) the set of bounded continued functions from R
to An, then (BC(R,An), ‖ · ‖∗) is a Banach space where ‖ · ‖∗ is the norm

‖ f ‖∗:= sup
t∈R

max
1≤i≤n

{‖fi(t)‖A}.

Definition 5 ([7]) Let µ, ν ∈ M, f ∈ BC(R,An) is (µ, ν)-pseudo almost
automorphic if it can be expressed as

f = f1 + f2

where f1 ∈ AA(R,An) and f2 ∈ ξ(R,An, µ, ν). The collection of such functions
will be denoted by PAA(R,An, µ, ν).

The following assumptions are fundamental in this function space:

(A1) For all µ, ν ∈M, we have lim sup
n→∞

µ([−r,r])
ν([−r,r]) <∞.

(A2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) ≤ βµ(A)

when A ∈ B satisfies A ∩ I = ∅.
Let us state two useful theorems proved in [7] as follows.
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Theorem 1 ([7]) Let µ, ν ∈ M satisfy (A2). Then the decomposition of a
(µ, ν)-pseudo almost automorphic function of the form f = f1 + f2 where
f1 ∈ AA(R,An) and f2 ∈ ξ(R,An, µ, ν) is unique.

Theorem 2 ([7]) Let µ, ν ∈M satisfy (A1) and (A2). Then PAA(R,An, µ, ν)
is a Banach space.

2.4 Technical lemmas

For 1 ≤ i, j, l ≤ n, we denote q∗i = sup
t∈R
‖qi(t)‖A, c∗i = sup

t∈R
‖ci(t)‖A, ci∗ =

inf
t∈R
‖ci(t)‖A, a∗ij = sup

t∈R
‖aij(t)‖A, α∗ijl = sup

t∈R
‖αijl(t)‖A, β∗ij = sup

t∈R
‖βij(t)‖A,

p∗ijl = sup
t∈R
‖pijl(t)‖A, I∗ij = sup

t∈R
‖Iij(t)‖A,r∗i = sup

t∈R
ri(t),τ

∗
ij = sup

t∈R
τij(t), σ

∗
ijl =

sup
t∈R

σijl(t), ν
∗
ijl = sup

t∈R
νijl(t).

Moreover, assume that for all 1 ≤ i, j, l ≤ n, we have

ci(·), ri(·), τij(·), σijl(·), νijl(·) ∈ AA(R,Rn)

and
qi(·), aij(·), αijl(·), βij(·), pijl(·), Ii(·) ∈ PAA(R,An, µ, ν).

Assumption 1 For all 1 ≤ j ≤ n, and all u, v ∈ R there exist nonnegative
constants Lfj , L

g
j , L

h
j , L

k
j , d

g
j , d

k
j such that

||fj(u)− fj(v)||A ≤ Lfj ||u− v||A, ||gj(u)− gj(v)||A ≤ Lgj ||u− v||A,
||gj(u)||A ≤ dgj , ||hj(u)− hj(u)||A ≤ Lhj ||u− v||A,
||kj(u)− kj(u)||A ≤ Lkj ||u− v||A, ||kj(u)||A ≤ dkj .

For simplicity of calculation and without loss of generality, we assume that
fj(0) = gj(0) = hj(0) = 0.

Assumption 2 Gij : [0,+∞)→ R is continuous and |Gij(t)|eκ1t is integrable
on [0,+∞) for a certain positive constant κ1. Pijl : [0,+∞)→ R is continuous
and |Pijl(t)|eκ2t is integrable on [0,+∞) for a certain positive constant κ2.
Qijl : [0,+∞)→ R is continuous and |Qijl(t)|eκ3t is integrable on [0,+∞) for
a certain positive constant κ3.

The following Lemma 1 and Lemma 2 are proved in [7].

Lemma 1 ([7]) If φ(·) ∈ PAA(R,A, µ, ν) then we have φ(·−a) ∈ PAA(R,A, µ, ν).

Lemma 2 ([7]) If ϕ,ψ ∈ PAA(R,A, µ, ν) then we have ϕ×ψ ∈ PAA(R,A, µ, ν).

By using Lemma 1 and Lemma 2, it is possible to prove the following
lemmas.

Lemma 3 ([7]) If f(·) ∈ C(A,A) satisfies the lf -Lipschitz condition, φ(·) ∈
PAA(R,A, µ, ν) and τ(·) ∈ AA(R,A, µ, ν) then we have f(φ(· − τ(·))) ∈
PAA(R,A, µ, ν).
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Lemma 4 ([7]) Assume that Assumptions 1–2 hold. For all 1 ≤ i, j ≤ n, if
φj(·) ∈ PAA(A,A, µ, ν) then we have

t 7→
+∞∫
0

Gij(s)hj(φj(· − s))ds ∈ PAA(R,A, µ, ν).

Definition 6 Let x(t) = (x1(t), . . . , xn(t))T be a (µ, ν)−pseudo almost auto-
morphic solution of the system (1) with the initial value ϕ(t) = (ϕ1(t), . . . , ϕn(t))T ∈

C

(
(−∞, 0],A

)
and y(t) = (y1(t), . . . , yn(t))T be an arbitrary solution of the

system (1) with the initial value ψ(t) = (ψ1(t), . . . , ψn(t))T ∈ C
(

(−∞, 0],A
)

respectively. If there exist positive constants λ and N such that

‖x(t)− y(t)‖An ≤ N‖φ‖εe−λt,∀t > 0,

where

‖φ‖ε = max
1≤i≤n

sup
t∈(−∞,0]

∥∥∥∥[φi(t)− di(t)φi(t− τi(t))]− [x∗i (t)− di(t)x∗i (t− τi(t))]
∥∥∥∥
A

(µ, ν)−pseudo almost automorphic solution of the system (1) is said to be
globally exponentially stable.

Assumption 3 For each 1 ≤ i ≤ n, t ∈ R,

M [ci] = lim
T→+∞

1

T

∫ t+T

t

ci(s)ds > 0

and there exist a bounded and continuous function c̃i : R → (0,+∞) and a
positive constant Ki such that

e−
∫ t
s
ci(u)du ≤ Kie

−
∫ t
s
c̃i(u)du, for all t, s ∈ R, t− s ≥ 0.

Lemma 5 For φ = (φ1, . . . , φn)T ∈ PAA(R,An, µ, ν), we define the nonlin-
ear operator Θ = Θφ as follows

Θφ(t) =



t∫
−∞

e
−

t∫
s

c1(u)du
F1(s)ds

...

t∫
−∞

e
−

t∫
s

cn(u)du
Fn(s)ds





Title Suppressed Due to Excessive Length 9

where

Fi(s) = ci(s)qi(s)φi(s− ri(s))

+

n∑
j=1

aij(s)fj(φj(s− τij(s))) +

n∑
j=1

n∑
l=1

αijl(s)gj(φj(s− σijl(s)))gl(φl(s− νijl(s)))

+

n∑
j=1

βij(s)

+∞∫
0

Gij(m)hj(φj(s−m))dm

+

n∑
j=1

n∑
l=1

pijl(s)

+∞∫
0

Pijl(m)kj(φj(s−m))dm

+∞∫
0

Qijl(m)kl(φl(s−m))dm+ Ii(s).

Then Θφ maps PAA(R,An, µ, ν) into itself.

Proof Let φ ∈ PAA(R,A, µ, ν). Using Lemma 3, we obtain fj(φj(s− τij(s))),
gj(φj(s−σijl(s))) and gl(φl(s−νijl(s))) in PAA(R,A, µ, ν). By using Lemma 4,
we have

+∞∫
0

Gij(m)hj(xj(s−m))dm,

+∞∫
0

Pijl(m)kj(xj(s−m))dm and

+∞∫
0

Qijl(m)kl(xl(s−m))dm

in PAA(R,A, µ, ν). Then, Fi is a (µ, ν)−PAA function. Via Theorem 1, we
have Fi = F 1

i + F 2
i with F 1

i ∈ AA(R,An) and F 2
i ∈ ξ(R,An, µ, ν).

Noting that M [ci] > 0 from Assumption 3 and using the theory of exponential
dichotomy, we obtain that

t∫
−∞

e
−

t∫
s

ci(u)du
F 1
i (s)ds ∈ AA(R,An) (3)

is a solution of the following almost automorphic differential equation

ẏ(t) = −ci(t)y(t) + F 1
i (t), 1 ≤ i, j ≤ n.

Now, let us show that

t∫
−∞

e
−

t∫
s

ci(u)du
F 2
i (s)ds ∈ ξ(R,An, µ, ν).

From Assumption 3, one has

lim
r−→∞

1

ν([−r, r])

∫
[−r,r]

‖F 2
i (t)‖Adµ(t) = lim

r−→∞

1

ν([−r, r])

∫
[−r,r]

∥∥∥∥∥∥
t∫

−∞

e
−

t∫
s

ci(u)du
F 2
i (s)ds

∥∥∥∥∥∥
A

dµ(t)

≤ lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

t∫
−∞

e−(t−s)c̃i∗‖F 2
i (s)‖Adsdµ(t).
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Let

E1 = lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

(∫ t

−r
‖e−(t−s)c̃i∗F 2

i (s)‖Ads
)
dµ(t),

E2 = lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

 −r∫
−∞

e−(t−s)c̃i∗‖F 2
i (s)‖Ads

 dµ(t)

and m = t− s, then by Fubini’s theorem we obtain

E1 = lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

(∫ t

−r
e−(t−s)c̃i∗‖F 2

i (s)‖Ads
)
dµ(t)

≤ lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

 +∞∫
0

e−mc̃i∗‖F 2
i (t−m)‖Adm

 dµ(t)

≤
+∞∫
0

e−mc̃i∗

(
lim

r−→∞

Ki

ν([−r, r])

∫
[−r,r]

‖F 2
i (t−m)‖Adµ(t)

)
dm

=

+∞∫
0

e−mc̃i∗

 lim
r−→∞

Ki

ν([−r, r])

r−m∫
−r−m

‖F 2
i (t)‖Adµm(t)

 dm

≤ Ki

∫ +∞

0

e−mc̃i∗

(
lim

r−→∞

ν([−r −m, r +m])

ν([−r, r]
β

ν([−r −m, r +m])

×
∫

[−r−m,r+m]

‖F 2
i (t)‖Adµ(t)

)
dm.

On the one hand we have F 2
i ∈ ξ(R,R, µ, ν) then E1 = 0. On the other hand,

we have

E2 = lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

 −r∫
−∞

‖e−(t−s)c̃i∗F 2
i (s)‖Ads

 dµ(t)

= lim
r−→∞

Ki

ν([−r, r])

∫
[−r,r]

 −r∫
−∞

e−(t−s)c̃i∗‖F 2
i (s)‖Ads

 dµ(t)

≤ lim
r−→∞

Ki

ν([−r, r])

−r∫
−∞

esc̃i∗‖F 2
i (s)‖Ads

r∫
−r

e−tc̃i∗dµ(t)

= lim
r−→∞

Ki
‖F 2

i ‖A
c̃i∗

e−2rc̃i∗ = 0.

Combining with (3) it leads to Θφ maps PAA(R,An, µ, ν) into itself. ut
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3 Main results

In this section, we establish new results for the existence, uniqueness and
stability of (µ, ν)−PAA solution of the system (1). For (φ1, φ2, · · · , φn)T ∈
PAA(R,An, µ, ν), we define the norm of φ as

‖ φ ‖∗:= max
1≤i≤n

sup
t∈R

{
‖φi(t)‖A

}
.

And we consider the following assumption:

Assumption 4 For 1 ≤ i, j, l ≤ n, there exist strictly positive constants
M, Λi and Ωi such that

M = max
1≤i≤n

{
Ki

c̃i∗
I∗i

}

Λ = max
1≤i≤n

{
q∗i +

Ki

c̃i∗

[
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j +

n∑
j=1

n∑
l=1

α∗ijlL
g
jL

g
l +

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du

+

n∑
j=1

n∑
l=1

p∗ijlL
k
jL

k
l

+∞∫
0

|Pijl(u)|du
+∞∫
0

|Qijl(u)|du
]}

< 1,

Ω = max
1≤i≤n

{
q∗i +

Ki

c̃i∗

[
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j +

n∑
j=1

n∑
l=1

α∗ijl(L
g
jd
g
l + Lgl d

g
j )

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du+

n∑
j=1

n∑
l=1

p∗ijl

+∞∫
0

|Pijl(u)|du
+∞∫
0

|Qijl(u)|du(Lkj d
k
l + Lkl d

k
j )

]}
< 1

and a strictly negative constant Υ0 such that

Υ0 = sup
t∈R

{
− c̃i(t) +Ki

[
1

1− q∗i
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j

1

1− q∗j

+

n∑
j=1

n∑
l=1

α∗ijl

(
Lgjd

g
l

1

1− q∗j
+ Lgl d

g
j

1

1− q∗j

)
+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du 1

1− q∗j

+

n∑
j=1

n∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|du+ Lkl d
k
j

+∞∫
0

|Qijl(u)|du
]

1

1− q∗j

]}
.

Theorem 3 Suppose that Assumptions 1–4 hold. Then the system (1) has
only one (µ, ν)−PAA solution in the region

S =

{
φ ∈ PAA(R,An, µ, ν) :‖ φ− φ0 ‖∗≤

Λ

1− Λ
M

}
,
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where

φ0(t) =


∫ t
−∞ e−

∫ t
s
c1(u)duI1(s)ds

...∫ t
−∞ e−

∫ t
s
cn(u)duIn(s)ds

 .

which is globally exponentially stable.

Proof First part: existence and uniqueness of (µ, ν)−PAA solutions
Let

Yi(t) = xi(t)− qi(t)xi(t− ri(t)), for all 1 ≤ i ≤ n. (4)

Then, we have

Y ′i (t) =

[
xi(t)− qi(t)xi(t− ri(t))

]′
= −ci(t)Yi(t)− ci(t)qi(t)xi(t− ri(t)) +

n∑
j=1

aij(t)fj(xj(t− τij(t)))

+

n∑
j=1

n∑
l=1

αijl(t)gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

+

n∑
j=1

βij(t)

+∞∫
0

Gij(s)hj(xj(t− s))ds

+

n∑
j=1

n∑
l=1

pijl(t)

+∞∫
0

Pijl(s)kj(xj(t− s))ds
+∞∫
0

Qijl(s)kl(xl(t− s))ds

+Ii(t), i = 1, . . . , n. (5)

By using Lemma 5, we define an operator Θ as follows:

Θ : S → S

(φ1 · · · , φn)T 7→ (Θφ1
· · · , Θφn)T

such that Θφi = {qi(t)φi(t− ri(t))}+Θφ(t) for all φ ∈ S. One has

‖φ0‖∗ = max
1≤i≤n

{
sup
t∈R

∥∥∥∥∫ t

−∞
e−

∫ t
s
ci(u)duIi(s)ds

∥∥∥∥
A

}
≤ max

1≤i≤n

{
Ki sup

t∈R

∥∥∥∥∫ t

−∞
e−

∫ t
s
c̃i(u)duIi(s)ds

∥∥∥∥
A

}
≤ max

1≤i≤n

{
Ki

c̃i∗
I∗i

}
= M

is the unique (µ, ν)−pseudo almost automorphic solution of the following dif-
ferential equations:

Y ′i (t) = −ci(t)Yi(t) + Ii(t), i = 1, . . . , n.
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The set S =

{
φ ∈ PAA(R,An, µ, ν) :‖ φ− φ0 ‖∗≤ Λ

1−ΛM

}
is a closed convex

subset of PAA(R,An, µ, ν). If φ ∈ S, then

‖ φ ‖∗ ≤ ‖ φ− φ0 ‖∗ + ‖ φ0 ‖∗
≤ ‖ φ− φ0 ‖∗ +M. (6)

We claim that for any φ ∈ S the mapping Θφ ∈ S. Note that∥∥∥∥Θϕ − φ0∥∥∥∥
∗

= max
1≤i≤n

{
sup
t∈R

∥∥∥∥qi(t)φi(t− ri(t)) +

∫ t

−∞
e−

∫ t
s
ci(u)du

[
− ci(s)qi(s)φi(s− ri(s))

+

n∑
j=1

aij(s)fj(φj(s− τij(s)))

+

n∑
j=1

n∑
l=1

αijl(s)gj(φj(s− σijl(s)))gl(φl(s− νijl(s)))

+

n∑
j=1

βij(s)

+∞∫
0

Gij(u)hj(φj(s− u))du

+

n∑
j=1

n∑
l=1

pijl(s)

+∞∫
0

Pijl(u)kj(φj(s− u))du

+∞∫
0

Qijl(u)kl(φl(s− u))du

]
ds

∥∥∥∥
A

}

and then we have∥∥∥∥Θϕ − φ0∥∥∥∥
∗
≤ max

1≤i≤n

{
sup
t∈R
‖qi(t)φi(t− ri(t))‖A

+

∫ t

−∞
e−

∫ t
s
c̃i(u)duKi

[
sup
t∈R
‖ − ci(s)qi(s)‖A sup

t∈R
‖φi(s− ri(s))‖A

+

n∑
j=1

sup
t∈R
‖aij(s)‖A sup

t∈R
‖fj(φj(s− τij(s))‖A

+

n∑
j=1

n∑
l=1

sup
t∈R
‖αijl(s)‖A sup

t∈R
‖gj(φj(s− σijl(s)))‖A sup

t∈R
‖gl(φl(s− νijl(s))‖A

+

n∑
j=1

sup
t∈R
‖βij(s)‖A

+∞∫
0

|Gij(u)| sup
t∈R
‖hj(φj(s− u))‖Adu

+

n∑
j=1

n∑
l=1

sup
t∈R
‖pijl(s)‖A

+∞∫
0

|Pijl(u)| sup
t∈R
‖kj(φj(s− u))‖Adu

×
+∞∫
0

|Qijl(u)| sup
t∈R
‖kl(φl(s− u))‖Adu

]
ds

}
.
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It leads to∥∥∥∥Θϕ − φ0∥∥∥∥
∗
≤ max

1≤i≤n

{
q∗i +

∫ t

−∞
e−

∫ t
s
c̃i(u)duKi

[
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j

+

n∑
j=1

n∑
l=1

α∗ijlL
g
jL

g
l +

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du

+

n∑
j=1

n∑
l=1

p∗ijlL
k
jL

k
l

+∞∫
0

|Pijl(u)|du
+∞∫
0

|Qijl(u)|du
]
ds

}
‖φ‖∗

= Λ‖φ‖∗.

As Λ < 1, it implies that Θϕ ∈ S. Next, we prove that the mapping Θ is a
contraction mapping of S. For φ, ψ ∈ S, we have∥∥∥∥Θφ −Θψ∥∥∥∥

∗
≤ max

1≤i≤n

{
sup
t∈R

∥∥∥∥qi(t)[φi(t− ri(t))− ψi(t− ri(t))]
+

∫ t

−∞
e−

∫ t
s
ci(u)du

[
− ci(s)qi(s)

(
φi(s− ri(s)) + ψi(s− ri(s))

)
+

n∑
j=1

aij(s)

(
fj(φj(s− τij(s)))− fj(ψj(s− τij(s)))

)

+

n∑
j=1

n∑
l=1

αijl(s)

(
gj(φj(s− σijl(s)))gl(φl(s− νijl(s)))

−gj(ψj(s− σijl(s)))gl(ψl(s− νijl(s)))
)

+

n∑
j=1

βij(s)

+∞∫
0

Gij(u)

(
hj(φj(s− u))− hj(ψj(s− u)

)
du

+

n∑
j=1

n∑
l=1

pijl(s)

( +∞∫
0

Pijl(u)hj(φ(s− u))du

+∞∫
0

Qijl(u)kl(φ(s− u))du

−
+∞∫
0

Pijl(u)hj(ψ(s− u))du

+∞∫
0

Qijl(u)kl(φ(s− u))du

+

+∞∫
0

Pijl(u)hj(ψ(s− u))du

+∞∫
0

Qijl(u)kl(φ(s− u))du

−
+∞∫
0

Pijl(u)hj(ψ(s− u))du

+∞∫
0

Qijl(u)kl(ψ(s− u))du

)]
ds

∥∥∥∥
A

}
.

It leads to
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∥∥∥∥Θφ −Θψ∥∥∥∥
∗
≤ max

1≤i≤n

{
q∗i +

∫ t

−∞
e−

∫ t
s
c̃i(u)duKi

[
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j +

n∑
j=1

n∑
l=1

α∗ijl(L
g
jd
g
l + Lgl d

g
j )

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du+

n∑
j=1

n∑
l=1

p∗ijl

+∞∫
0

|Pijl(u)|du

×
+∞∫
0

|Qijl(u)|du(Lkj d
k
l + Lkl d

k
j )

]
ds

}
‖φ− ψ‖∗

and then

∥∥∥∥Θφ −Θψ∥∥∥∥
∗
≤ max

1≤i≤n

{
q∗i +

Ki

c̃i∗

[
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j +

n∑
j=1

n∑
l=1

α∗ijl
(
Lgjd

g
l + Lgl d

g
j

)

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)| du+

n∑
j=1

n∑
l=1

p∗ijl

+∞∫
0

|Pijl(u)| du

×
+∞∫
0

|Qijl(u)| du(Lkj d
k
l + Lkl d

k
j )

]}
‖φ− ψ‖∗

= Ω‖φ− ψ‖∗.

AsΩ < 1, then we obtain thatΘ is a contraction. Via Theorem 2, PAA(R,An, µ, ν)
is a Banach space. Then due to Banach’s fixed point principle, Θ possesses
one and only one fixed point x∗ = {x∗i (t)} ∈ S, such that

x∗i (t) = {qi(t)x∗i (t− ri(t))}+Θx∗(t)

= qi(t)x
∗
i (t− ri(t)) +

∫ t

−∞
e−

∫ t
s
ci(u)du

[
− ci(s)qi(s)x∗i (s− ri(s))

+

n∑
j=1

aij(s)fj(x
∗
j (s− τij(s))) +

n∑
j=1

n∑
l=1

αijl(s)gj(s− x∗j (σijl(s)))gl(x∗l (s− νijl(s)))

+

n∑
j=1

βij(s)

+∞∫
0

Gij(u)hj(x
∗
j (s− u))du

+

n∑
j=1

n∑
l=1

pijl(s)

+∞∫
0

Pijl(u)kj(xj(s− u))du

+∞∫
0

Qijl(u)kl(xl(s− u))du+ Ii(s)

]
ds.
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Then it leads to

[
x∗i (t)− qi(t)x∗i (t− ri(t))

]′
= −ci(t)x∗i (t) +

n∑
j=1

aij(s)fj(x
∗
j (t− τij(t)))

+

n∑
j=1

n∑
l=1

αijl(t)gj(x
∗
j (t− σijl(t)))gl(x∗l (t− νijl(t)))

+

n∑
j=1

βij(t)

+∞∫
0

Gij(u)hj(x
∗
j (t− u))du

+

n∑
j=1

n∑
l=1

pijl(t)

+∞∫
0

Pijl(s)kj(x
∗
j (t− s))ds

×
+∞∫
0

Qijl(s)kl(x
∗
l (t− s))ds+ Ii(t).

Thus the system (1) has an unique (µ, ν)−PAA solution x∗(t).

Second part: global exponential stability of the (µ, ν)−PAA solution
In view of the first part, the system (1) has only one (µ, ν)−pseudo almost
automorphic solution denoted by x∗(t) = (x∗1(t), . . . , x∗n(t))T and satisfying
(2). Let x(t) = (x1(t), · · · , xn(t))T be an arbitrary solution of the system (1)
with initial value φ(t) = (φ1(t), · · · , φn(t))T satisfying (2). Let

zi(t) = xi(t)− x∗i (t),

Zi(t) =

[
xi(t)− qi(t)xi(t− ri(t))

]
−
[
x∗i (t)− qi(t)x∗i (t− ri(t))

]
.



Title Suppressed Due to Excessive Length 17

We have

Z ′i(t) = −ci(t)Zi(t)− ci(t)qi(t)zi(t− ri(t))

+

n∑
j=1

aij(t)

[
fj(xj(t− τij(t))− fj(x∗j (t− τij(t))

]

+

n∑
j=1

n∑
l=1

αijl(t)

[
gj(xj(t− σijl(t))gl(xl(t− νijl(t))))− gj(x∗j (t− σijl(t)))gl(x∗l (t− νijl(t)))

]

+

n∑
j=1

βij(t)

+∞∫
0

Gij(u)

[
hj(xj(t− u))− hj(x∗j (t− u))

]
du

+

n∑
j=1

n∑
l=1

pijl(t)

[ +∞∫
0

Pijl(s)kj(xj(t− s))ds
+∞∫
0

Qijl(s)kl(xl(t− s))ds

−
+∞∫
0

Pijl(s)kj(x
∗
j (t− s))ds

+∞∫
0

Qijl(s)kl(x
∗
l (t− s))ds

]
. (7)

Set

Υ (γ) = sup
t∈R

{
γ − c̃i(t) +Ki

[
eγr

∗
i

1− q∗i eγr
∗
i
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j

eγτ
∗
ij

1− q∗j e
γr∗j

+

n∑
j=1

n∑
l=1

α∗ijl

(
Lgjd

g
l

eγσ
∗
ijl

1− q∗j e
γr∗j

+ Lgl d
g
j

eγν
∗
ijl

1− q∗j e
γr∗j

)

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|eγudu 1

1− q∗j e
γr∗j

+

n∑
j=1

n∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|eγudu

+Lkl d
k
j

+∞∫
0

|Qijl(u)|eγudu
]

1

1− q∗j e
γr∗j

]}
, γ ∈ [0, min

1≤ι≤3
κι]. (8)
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From Assumption 4 and by continuity of Υ (γ) we have

Υ (0) = sup
t∈R

{
− c̃i(t) +Ki

[
1

1− q∗i
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j

1

1− q∗j

+

n∑
j=1

n∑
l=1

α∗ijl

(
Lgjd

g
l

1

1− q∗j
+ Lgl d

g
j

1

1− q∗j

)

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du 1

1− q∗j
+

n∑
j=1

n∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|du

+Lkl d
k
j

+∞∫
0

|Qijl(u)|du
]

1

1− q∗j

]}
< 0.

(9)

We can choose a positive constant λ such that 0 < λ < min{κ1, κ2, κ3, , c̃1∗, . . . , c̃n∗}
satisfying 1− q∗i eλr

∗
j > 0, and

Υ (λ) = sup
t∈R

{
λ− c̃i(t) +Ki

[
eλr

∗
i

1− q∗i eλr
∗
i
c∗i q
∗
i +

n∑
j=1

a∗ijL
f
j

eλτ
∗
ij

1− q∗j e
λr∗j

+

n∑
j=1

n∑
l=1

α∗ijl

(
Lgjd

g
l

eλσ
∗
ijl

1− q∗j e
λr∗j

+ Lgl d
g
j

eλν
∗
ijl

1− q∗j e
λr∗j

)

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|eλudu 1

1− q∗j e
λr∗j

+

n∑
j=1

n∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|eλudu

+Lkl d
k
j

+∞∫
0

|Qijl(u)|eλudu
]

1

1− q∗j e
λr∗j

]}
< 0. (10)

Let

‖φ‖ε = max
1≤i≤n

sup
t∈(−∞,0]

∥∥∥∥[φi(t)− di(t)φi(t− τi(t))]− [x∗i (t)− di(t)x∗i (t− τi(t))]
∥∥∥∥
A
.(11)

For any ε > 0, we obtain

‖Z(0)‖A < (‖φ‖ε + ε). (12)

For all t ∈ (−∞, 0], we have

‖Z(t)‖A ≤ (‖φ‖ε + ε)e−λt

< N(‖φ‖ε + ε)e−λt (13)

where N is a constant satisfying N > max
1≤i≤n

Ki + 1. Let us now prove that

‖ Z(t) ‖A< N(‖φ‖ε + ε)e−λt, ∀t > 0. (14)
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If it is not the case, there exist i ∈ {1, . . . , n} and t1 > 0 such that

‖ Z(t1) ‖A= N(‖φ‖ε + ε)e−λt1 (15)

and

‖ Z(t) ‖A< N(‖φ‖ε + ε)e−λt ∀t ∈ (−∞, t1). (16)

Moreover, we have

eλ‖zj(η) ‖A ≤ eλη‖zj(η)− qj(η)zj(η − rj(η)) ‖A +eλη‖qj(η)zj(η − rj(η)) ‖A
≤ eλη‖Zj(η) ‖A +eλr

∗
i q∗j e

λ(η−rj(η))‖zj(η − rj(η)) ‖A
≤ (‖φ‖ε + ε)N + eλr

∗
j q∗j sup

s∈(−∞,t]
eλs‖zj(s) ‖A . (17)

For all η ∈ (−∞, t], t ∈ (−∞, t1), i ∈ {1, · · · , n}, it leads to

eλt‖zj(t)‖A ≤ sup
s∈(−∞,t]

eλs‖zj(s)‖A

≤ N(‖φ‖ε + ε)

1− eλq∗j r∗j
. (18)

Multiplying Equation (7) by e−
∫ s
0
ci(u)du and integrating on [0, t], we obtain

Zi(t) = Zi(0)e−
∫ t
0
ci(u)du +

∫ t

0

e−
∫ t
s
ci(u)du

{
− ci(s)qi(s)zi(s− ri(s))

+

n∑
j=1

aij(s)
[
fj(xj(s− τij(s))− fj(x∗j (s− τij(s))

]
+

n∑
j=1

n∑
l=1

αijl(s)[gj(xj(s− σijl(s))gl(xl(s− νijl(s))))

−gj(x∗j (s− σijl(s)))gl(x∗l (s− νijl(s)))]

+

n∑
j=1

βij(s)

∫ +∞

0

Gij(u)
[
hj(xj(s− u))− hj(x∗j (s− u))

]
du

+

n∑
j=1

n∑
l=1

pijl(s)

[ ∫ +∞

0

Pijl(u)kj(xj(s− u))du

×
∫ +∞

0

Qijl(u)kl(xl(s− u))du−
∫ +∞

0

Pijl(u)kj(x
∗
j (s− u))du

×
∫ +∞

0

Qijl(u)kl(x
∗
l (s− u))du

]}
ds, t ∈ [0, t1]. (19)
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Using equations (8), (10)-(19), we obtain

‖Zi(t1)‖A =

∥∥∥∥Zi(0)e−
∫ t1
0 ci(u)du +

∫ t1

0

e−
∫ t1
s
ci(u)du

{
− ci(s)qi(s)zi(s− ri(s))

+

n∑
j=1

aij(s)(fj(xj(s− τij(s)))− fj(x∗j (s− τij(s))))

+

n∑
j=1

n∑
l=1

αijl(s)(gj(xj(s− σijl(s)))gl(xl(s− σijl(s)))

−gj(x∗j (s− σijl(s)))gl(x∗l (s− σijl(s))))

+

n∑
j=1

βij(s)

+∞∫
0

Gij(u)[hj(xj(s− u))− hj(x∗j (s− u))]du

+

n∑
j=1

n∑
l=1

pijl(s)[

+∞∫
0

Pijl(u)kj(xj(s− u))du

×
+∞∫
0

Qijl(u)kl(xl(s− u))du−
+∞∫
0

Pijl(u)kj(x
∗
j (s− u))du

×
+∞∫
0

Qijl(u)kl(x
∗
l (s− u))du

}
ds

∥∥∥∥
A
.

Then it leads to

‖Zi(t1)‖A ≤ (‖φ‖ε + ε)Kie
−
t1∫
0

c̃i(u)du
+

t1∫
0

e
−
t1∫
s

c̃i(u)du
Ki

{
c∗i q
∗
i ‖xi(s− ri(s))− x∗i (s− ri(s))‖A

+

n∑
j=1

a∗ij
∥∥fj(xj(s− τij(s))− fj(x∗j (s− τij(s))∥∥A

+

n∑
j=1

n∑
l=1

α∗ijl‖gj(xj(s− σijl(s))gl(xl(s− νijl(s))))

−gj(x∗j (s− σijl(s)))gl(x∗l (s− νijl(s)))‖A

+

n∑
j=1

β∗ij

+∞∫
0

|Gij(u)|
∥∥hj(xj(s− u))− hj(x∗j (s− u))

∥∥
A du

+

n∑
j=1

n∑
l=1

p∗ijl sup
t∈R

∥∥∥∥∫ +∞

0

Pijl(u)kj(xj(s− u))du

∫ +∞

0

Qijl(u)kl(xl(s− u))du

−
∫ +∞

0

Pijl(u)kj(x
∗
j (s− u))du

∫ +∞

0

Qijl(u)kl(x
∗
l (s− u))du

∥∥∥∥
A

}
ds
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and finally it yields

‖Zi(t1)‖A ≤ (‖φ‖ε + ε)e−λt1Kie
−

∫ t1
0 [c̃i(u)−λ]du +

∫ t1

0

e−
∫ t1
s

[c̃i(s)−λ]duKi

{
eλr

∗
i

1− q∗i eλr
∗
i
c∗i q
∗
i

+

n∑
j=1

a∗ijL
f
j

eλτ
∗
ij

1− q∗j e
λr∗j

+

n∑
j=1

n∑
l=1

α∗ijl

(
Lgjd

g
l

eλσ
∗
ijl

1− q∗j e
λr∗j

+ Lgl d
g
j

eλν
∗
ijl

1− q∗j e
λr∗j

)

+

n∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|eλudu 1

1− q∗j e
λr∗j

+

n∑
j=1

n∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|eλudu

+Lkl d
k
j

∫ +∞

0

|Qijl(u)|eλudu
]

1

1− q∗j e
λr∗j

}
dsN(‖φ‖ε + ε)e−λt1

and then

‖Zi(t1)‖A ≤ (‖φ‖ε + ε)e−λt1Kie
−

∫ t1
0 [c̃i(u)−λ]du

+

∫ t1

0

e−
∫ t1
s

[c̃i(s)−λ]du
{
c̃i(u)− λ

}
dsN(‖φ‖ε + ε)e−λt1

≤ N(‖φ‖ε + ε)e−λt1
{

(
Ki

N
− 1)e−

∫ t1
0 (c̃i(u)−λ)du + 1

}
< N(‖φ‖ε + ε)e−λt1

which contradicts equality (15), so (14) holds. Letting ε → 0+, then for all
t > 0, we have ‖Z(t)‖A ≤ N‖φ‖εe−λt. Similarly, we have

eλt‖zj(t)‖A ≤ sup
s∈(−∞,t]

eλs‖zj(s)‖A

≤ N‖φ‖ε
1− q∗j e

λr∗j

and

‖zj(t)‖A ≤
N‖φ‖ε

1− q∗j e
λr∗j

e−λt ∀t > 0, j ∈ {1, · · · , n}.

The (µ, ν)−PAA solution of the system (1) is global exponentially stable. ut
Remark 2 In this article, we not only consider the effects of the first-order
terms aij(·), βij(·) on NNs but also the influences of the second-order terms
αijl(·) and pijl(·). If αijl(·) = pijl(·) = 0 then the following classical (first
order) neutral type Hopfiled NNs[

xi(t)− qi(t)xi(t− ri(t))
]′

= −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t− τij(t)))

+

n∑
j=1

βij(t)

+∞∫
0

Gij(s)hj(xj(t− s))ds

+Ii(t), (20)
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has a unique (µ, ν)-pseudo almost automorphic solution which is global expo-
nential stable. Hence, our results generalize the results in [10].

Remark 3 If qi(t) = 0 then the following Hopfiled NN

ẋi(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t− τij(t)))

+

n∑
j=1

βij(t)

+∞∫
0

Gij(s)hj(xj(t− s))ds+ Ii(t), (21)

has an unique (µ, ν)-pseudo almost automorphic solution which is global ex-
ponential stable. It is worth pointing out that our main results are also valid
for the case of the non-neutral systems. Our results not only improve but also
complement earlier results in [3,5,7,8,14,29].

Remark 4 In [21], the authors considered a class of Clifford-valued neutral
HOHNN with leakage delays. They studied the existence and global exponen-
tial stability of pseudo-almost periodic solutions for this class of NNs. In [22],
the authors dealt with a class of inertial quaternion-valued HOHNNs with
state-dependent delays. They analyzed the existence of anti-periodic solutions
of the NNs. In our article, we investigate the (µ, ν)− pseudo almost automor-
phic solution for neutral-type HOHNNs. This class of functions covers larger
classes of functions such as almost periodic, pseudo almost periodic, almost
automorphic and pseudo almost automorphic functions. Hence, our results are
not only new but also most general.

Remark 5 Although the multiplication of Clifford numbers does not satisfy the
commutativity, which brings great difficulties to the study of Clifford-valued
systems, we have found a method that does not decompose Clifford-valued
systems into real-valued systems.

Remark 6 Pseudo almost automorphic functions play an important role in de-
scribing the dynamics of differential equations. In [3], the authors investigated
the dynamics behavior of the pseudo almost automorphic solutions of a class
of HOHNNs with mixed delays. Those results cannot be applicable for the sys-
tems studied in this article. Consequently, our analysis of dynamics behavior
of neutral type Clifford-valued HOHNNs model with (µ, ν)−PAA functions as
coefficients and mixed delays improve the previous study in [3]. If µ = ν = 1,
then the system (1) has an unique PAA solution in Clifford algebra.

Remark 7 In [7], the authors studied a class of delayed high-order Hopfield
bidirectional associative memory NNs. They used fixed delays because time-
varying delays are difficult to handle when dealing with (µ, ν)-pseudo almost
automorphic parameters. Hence, it is not obvious to prove the composition
theorem of (µ, ν)-pseudo almost automorphic functions i.e. f(φ(· − τ(·))) ∈
PAA(R,R, µ, ν). In 2020, this problem has been solved in article [10].
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Remark 8 In [9], the pseudo almost periodic solutions of Clifford-valued iner-
tial neutral NNs with time-varying delays and infinite distributed delay are
investigated. Then, by using the same approach we can extend the results to
the space of pseudo almost automorphic functions. Our results can comple-
ment the results in [9].

4 Simulation results

In this section, we apply our main results to a specific system and demonstrate
the efficiency of our new stability criteria. Consider the following neutral type
Clifford-valued HOHNNs model

[
xi(t)− qi(t)xi(t− ri(t))

]′
= −ci(t)xi(t) +

2∑
j=1

aij(t)fj(xj(t− τij(t)))

+
2∑
j=1

2∑
l=1

αijl(t)gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

+

2∑
j=1

βij(t)

+∞∫
0

Gij(s)hj(xj(t− s))ds

+

2∑
j=1

2∑
l=1

pijl(t)

+∞∫
0

Pijl(t− s)kj(xj(s))ds

×
+∞∫
0

Qijl(t− s)kl(xl(s))ds+ Ii(t), (22)

where xi(t) = x0i (t)e0 + x1i (t)e1 + x2i (t)e2 + x12i (t)e12 and i = 1, 2.

For 1 ≤ i ≤ 2, let e0 =

(
1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
and e12 =(

0 1
−1 0

)
.

For µ, ν ∈ M, satisfying (A1) and (A2), we consider the measure µ(t) where
its Radon-Nikodym derivative is ρ1(t) = esin t, and the measure ν(t) where its
Radon-Nikodym derivative is

ρ2(t) =

{
et if t ≤ 0,

1 if t > 0.
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We take the following parameters:

f(xi) = g(xi) = h(xi) = k(xi), i = 1, 2,

f(xi) =
|x0i + 1| − |x0i + 1|

22
e0 +

1

20
cosx1i e1 +

1

27
cosx2i e2 +

1

21
cosx12i e12

⇒ Lfj = Lgj = Lhj = Lkj = 1, dgj = dkj = 0.1,

ri(t) = 0.5, τij(t) = σijl(t) = νijl(t) = 0.5| cos t|.
Let

Gij(t) = Pijl(t) = Qijl(t) = e−t, Ki = e0.1 and κι = 0.5 for ι = 1, 2, 3.

c1(t) = (4 + cos2 t)e0, c2(t) = (4 + sin2 t)e0,

and

q1(t) = 0.12 sin(t)e0,

q2(t) = 0.12 cos(t)e0,

and

a11(t) = 0.1 sin

(
2π

2 + sin t+ sin
(√

3t
)) e0 + 0.3 sin

(√
3t
)
e1,

a12(t) = 0.1e0 + 0.1e−t
2

e2,

a21(t) = 0, a22(t) = 0.1e0 + 0.1e−te12,

and

α111(t) = α121(t) = α122(t) = 0,

α112(t) = 0.3 cos

(
1

2 + sin t+ sin
√

2t

)
e0 +

0.1

1 + t2
e12,

α211(t) = 0.6 sin(
√

5t)e1 + 0.3 sin

(
1

2 + cos t+ sin
√

5t

)
e2 +

0.1

1 + t
e12,

α212(t) = α221(t) = α222(t) = 0,

and

β11(t) = 0.4 sin

(
1

2 + cos t+ cos
√

2t

)
e0 + 0.4 sin

(√
2t
)
e1,

β12(t) = β21(t) = 0,

β22(t) = 0.2e0 + 0.2 cos
(√

7t
)
e1 +

0.1

1 + t2
e12,

and

p111(t) = p121(t) = p122(t) = 0,

p112(t) = 0.2 sin

(
1

2 + sin t+ sin
√

2t

)
e2 +

0.1

1 + t
e12,

p211(t) = p212(t) = p222(t) = 0,

p221(t) = 0.4 sin

(
1

2 + sin t+ sin
√

2t

)
e1 +

0.1

1 + t
e2,
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and

I1(t) = 0.7 sin

(
1

2 + sin t+ sin
√

2t

)
e0 + 0.7e1 + 0.7 sin te2 + 0.7 cos

(√
2t
)
e12,

I2(t) = 0.7 cos

(
1

2 + cos t+ cos
√

5t

)
e0 + 0.7

(
sin t+

0.3

1 + t2

)
e1

+0.7 cos t e2 + 0.7 sin
(√

7t
)

+ e−t
2

e12.

We have

Λ = max
1≤i≤2

{
q∗i +

Ki

c̃i∗

[
c∗i q
∗
i +

2∑
j=1

a∗ijL
f
j +

2∑
j=1

2∑
l=1

α∗ijlL
g
jL

g
l +

2∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du

+

2∑
j=1

2∑
l=1

p∗ijlL
k
jL

k
l

+∞∫
0

|Pijl(u)|du
+∞∫
0

|Qijl(u)|du
]}

= 0.9509 < 1,

Ω = max
1≤i≤2

{
q∗i +

Ki

c̃i∗

[
c∗i q
∗
i +

2∑
j=1

a∗ijL
f
j +

2∑
j=1

2∑
l=1

α∗ijl(L
g
jd
g
l + Lgl d

g
j )

+

2∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du+

2∑
j=1

2∑
l=1

p∗ijl

+∞∫
0

|Pijl(u)|du
+∞∫
0

|Qijl(u)|du(Lkj d
k
l + Lkl d

k
j )

]}
= 0.8825 < 1

and

Υ0 = sup
t∈R

{
− c̃i(t) +Ki

[
1

1− q∗i
c∗i q
∗
i +

2∑
j=1

a∗ijL
f
j

1

1− q∗j

+

2∑
j=1

2∑
l=1

α∗ijl

(
Lgjd

g
l

1

1− q∗j
+ Lgl d

g
j

1

1− q∗j

)

+

2∑
j=1

β∗ijL
h
j

+∞∫
0

|Gij(u)|du 1

1− q∗j
+

2∑
j=1

2∑
l=1

p∗ijl

[
Lkj d

k
l

+∞∫
0

|Pijl(u)|du

+Lkl d
k
j

+∞∫
0

|Qijl(u)|du
]

1

1− q∗j

]}
= −1.1779 < 0.

By a direct computation, we can check that all the conditions of Theorem 3
are satisfied. Therefore, the system (22) has an unique (µ, ν)−PAA solution
which is represented in Figures 1, 2, 3 and 4. Besides, the unique (µ, ν)−PAA
solution of the system (22) is global exponential stable. Almost automorphy
is not always as easy to identify visually. In the above example x0i , x

1
i , x

2
i

and x12i with i = 1, 2 never exactly repeat themselves. They are not periodic.
Figures 5,6,7 and 8 confirm the global exponential stability of the (µ, ν)−PAA
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Fig. 1 Curves of x0i , i = 1, 2, of the system (22).

solution for the system (22). Figures 1 to 8 confirm that the proposed condi-
tions in our theoretical results are effective for the above example.

Remark 9 In the above example, ri(·), τij(·), σijl(·), νijl(·) represent the
time-delay functions. The time-delay as an inherent feature of signal trans-
mission between different neurons is one of the main sources for causing dy-
namic properties of the system (22). It should be mentioned that the presence
of time-delay is a particularly harmful source of potential instability. In this
example, the established criteria are straightforward to test and independent
of delays, that is, the stability of the considered NN models is insensitive to
the presence of the delays.

5 Conclusion

In this manuscript, neutral type Clifford-valued HOHNNs with mixed delays
and D operator have been studied. By employing the fixed point theorem and
differential inequalities, new sufficient conditions for the existence, uniqueness
and global exponential stability of the (µ, ν)-pseudo almost automorphic so-
lutions have been established. To our best knowledge, this is the first paper
studying the (µ, ν)-pseudo almost automorphic solutions in Clifford algebra
for such kind of NNs. As future research, there are some paths in this article
that can be explored further. For instance:
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Fig. 2 Curves of x11 and x12 of the system (22).

1. In the model (1), the activation functions of signal transmission fj(·), gj(.), hj(·)
and kj(·) are continuous functions. They can be considered as discontinu-
ous functions due to the impulse behavior of firing neurons.

2. The concept of Stepanov like pseudo weighted almost automorphy (WPAASp)
is quite sophisticated. However, the dynamic oscillations of delayed systems
with WPAASp parameters are still relatively new. Soon, we will try to in-
vestigate dynamic oscillations of HOHNNs with WPAASp parameters in
Clifford algebra.

3. The study of second-order such systems [35,36].

References

1. Achouri, H., Aouiti, C., & Hamed, B. B. (2020). Bogdanov-Takens Bifurcation in a
Neutral Delayed Hopfield Neural Network with Bidirectional Connection. International
Journal of Biomathematics, 13(06), 2050049.

2. Ait Dads, E. H., Ezzinbi, K., Miraoui, M. (2015). (µ, ν)-Pseudo almost automorphic so-
lutions for some non-autonomous differential equations. International Journal of Math-
ematics, doi.org/10.1142/S0129167X15500901
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