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I. INTRODUCTION

Sliding mode control (SMC) has been developed by Utkin in [START_REF] Utkin | Variable structure systems with sliding modes[END_REF] and then by many authors, see [START_REF] Shtessel | Sliding mode control and observation[END_REF] and the references therein for more details. The aim of SMC is to enforce a dynamical system to reach a manifold called "sliding surface" defined by a function called "sliding variable" with an appropriate controller ensuring that a constraint on the sliding variable is satisfied. After the constraint is checked, the system trajectories "slide" on the sliding surface towards the desired equilibrium. The main advantage of SMC lies in the simplicity of its feedback control strategy after choosing the sliding variable, its robustness when using discontinuous controllers and the finite-time convergence of the closed-loop system trajectories to reach the sliding surface. Moreover, it has been refined over time, for instance with the integral SMC [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty conditions[END_REF].

Finite-time stability has been developed by Bhat and Bernstein in [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] and then applied for finite-time stabilization, for instance in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF]. It ensures that dynamical systems reach their equilibrium in a finite-time called settling-time depending on the initial conditions. Finite-time stabilization using a SMC strategy has been developed in [START_REF] Feng | Non-singular terminal sliding mode control of rigid manipulators[END_REF], [START_REF] Yu | Continuous finite-time control for robotic manipulators with terminal sliding mode[END_REF] where a singularity problem is solved. The fixed-time stability was introduced by Polyakov in [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] and then developed by many authors, for instance in [START_REF] Chen | A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks[END_REF], [START_REF] Hu | Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks[END_REF], [START_REF] Parsegov | Nonlinear fixed-time control protocol for uniform allocation of agents on a segment[END_REF], [START_REF] Polyakov | Stability notions and lyapunov functions for sliding mode control systems[END_REF], [START_REF] Zuo | Fixed-Time Cooperative Control of Multi-Agent Systems[END_REF]. In addition to finite-time stability, fixed-time stability ensures that the settling-time does not depend on the initial conditions. Fixedtime stabilization provides a predefined convergence time E. Moulay is with XLIM (UMR CNRS 7252), Université de Poitiers, 11 bd Marie et Pierre Curie, 86073 Poitiers Cedex 9, France (e-mail: emmanuel.moulay@univ-poitiers.fr).
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towards the equilibrium which is a desirable property for engineering applications. In particular, fixed-time stabilization using a SMC strategy with time-independent controllers has been proposed in [START_REF] Levant | On fixed and finite time stability in sliding mode control[END_REF], [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF] also by solving a singularity problem. The singularity problem comes from the fact that the simplest finite-time and fixed-time sliding variables are non differentiable. It results in more complex feedback controls to implement. Finally, the notion of predefined/prescribed-time SMC has been introduced in [START_REF] Ferrara | Predefined-time output stabilization with second order sliding mode generation[END_REF], [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF], [START_REF] Song | Time-varying feedback for stabilization in prescribed finite time[END_REF] by using timedependent controllers.

In this article, new global robust fixed-time stability results are provided for scalar systems by using constant and statedependent variable exponent coefficients. State-dependent variable exponent coefficients have already been used in the context of homogeneous self-triggered control in [START_REF] Anta | To sample or not to sample: Self-triggered control for nonlinear systems[END_REF]. They have also been used for defining the controllers in [START_REF] Tahoumi | New robust control schemes based on both linear and sliding mode approaches: Design and application to an electropneumatic actuator[END_REF] for finite-time SMC. But to the best of the authors' knowledge, it has never been used for fixed-time stability. By employing the SMC strategy, global robust asymptotic stabilization of the global x-system of the state variable x with robust fixedtime stabilization of the s-system of the sliding variable s is obtained by using constant exponent coefficients in the sliding variable and the controllers for a class of uncertain nonlinear second-order systems. Moreover, global robust fixed-time stabilization of the global x-system is obtained by using state-dependent variable exponent coefficient in the sliding variable and the controllers. The new sliding mode controllers are time-independent, non singular, robust with respect to bounded disturbances and easy to implement. So using a variable exponent coefficient allows to obtain robust fixedtime SMC of the global x-system contrary to the constant exponent coefficient strategy. Actually, it is not easy to obtain fixed-time stabilization of the global x-system when dealing with SMC because some singularities appear when using the simplest fixed-time sliding variable, see [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF] and [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF]. With the use of a variable exponent coefficient in the sliding variable and the controllers, we obtain a simple solution because the controllers have no singularity.

The paper is organized as follows. After some preliminaries in Section II, the main results on robust fixed-time stability are given in Section III. The application to SMC is developed in Section IV. Finally, a conclusion is addressed in Section V.

II. PRELIMINARIES

In the following, denote R + the set of positive real numbers and e the constant such that ln(e) = 1. Recall some results on finite-time stability and fixed-time stability. Consider the following ordinary differential equation

ẋ(t) = f (x(t)), x(t) ∈ R n (1) x(0) = x 0
with f a continuous function such that f (0) = 0.

Definition 1: [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] System (1) is globally finite-time stable if it is Lyapunov stable and for all x 0 ∈ R n there exists T (x 0 ) ≥ 0 dependent on the initial conditions such that, for any x(•) solution of (1) with x(0) = x 0 , lim t→T (x0) x(t) = 0, i.e. x(t) ≡ 0 for all t ≥ T (x 0 ). The function T is called the settling-time.

Definition 2: [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] System (1) is globally fixed-time stable if: (1) it is globally finite-time stable;

(2) the settling-time function T is upper bounded by a constant T > 0, i.e. for all x 0 ∈ R n , T (x 0 ) ≤ T and T does not depend on the initial conditions. Lemma 1: [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], [START_REF] Zuo | Fixed-Time Cooperative Control of Multi-Agent Systems[END_REF] If there exists a continuously differentiable positive definite radially unbounded function

V : R n → R + such that V (x) ≤ -aV (x) γ -bV (x) α (2)
where x ∈ R n , a > 0, b > 0 and 0 < γ < 1 < α, then system (1) is globally fixed-time stable and the settling-time satisfies

T (x 0 ) ≤ 1 a(1 -γ) + 1 b(α -1) . ( 3 
)
V is called a Lyapunov function for system (1).

In the following, all simulations are performed with a fixed step simulation equal to 0.1ms.

III. ROBUST FIXED-TIME STABILITY

A. Constant exponent coefficient

Consider the following robust fixed-time stability result. Theorem 1: The system

ẋ = -k 1 sgn(x) -k 2 |x| α sgn(x) -k 3 |x| γ sgn(x) -k 4 x + d x(0) = x 0 (4) with x(t) ∈ R, α > 1, 0 < γ < 1, d(t) ∈ R an external disturbance such that |d(t)| < δ for a given δ > 0, k 1 > δ, k 2 > 0, k 3 ≥ 0, k 4 ≥ 0 is globally fixed-time stable with the settling-time T satisfying T (x 0 ) ≤ 1 k 1 -δ + 1 k 2 (α -1) . ( 5 
)
Proof. Consider the following quadratic Lyapunov function

V (x) = x 2 (6) 
Then it leads to

V (x) = -2k 1 |x| -2k 2 |x| α+1 -2k 3 |x| γ+1 -2k 4 x 2 + 2dx ≤ -2(k 1 -δ)|x| -2k 2 |x| α+1 ≤ -2(k 1 -δ)V (x) 1 2 -2k 2 V (x) α+1 2 (7) 
with α+1 2 > 1. By using Lemma 1, the result follows. Remark 1: On the one hand, the function x → |x| γ sgn(x) with 0 < γ < 1 is not necessary to obtain the fixed-time stability while still used for instance in [START_REF] Zuo | Fixed-Time Cooperative Control of Multi-Agent Systems[END_REF], [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. On the other hand, the sign function x → sgn(x) coupled with the function x → |x| α sgn(x) where α > 1 allows the fixed-time stability and is known to reject the disturbances. This is the reason why robust fixed-time stability is obtained. Moreover, if only the first term is used, i.e. if k 2 = k 3 = k 4 = 0, one only obtains robust finite-time stability.

In the following, we compare in simulation the robustness of the state x(t) of system (4) and the term u(t) = -k 1 sgn(x)k 2 |x| α sgn(x) -k 3 |x| γ sgn(x) -k 4 x in several cases with the disturbance d(t) = sin(10t) leading to δ = 1, the initial condition x(0) = 3, α = 1.5 and γ = 0.5. Here are the three cases:

• Case 1. k 1 = 2, k 2 = 2, k 3 = 0, k 4 = 0; • Case 2. k 1 = 2, k 2 = 2, k 3 = 2, k 4 = 0; • Case 3. k 1 = 2, k 2 = 2, k 3 = 2, k 4 = 2;
that leads to T (x 0 ) ≤ 2s. Figure 1 shows that system (4) is robust with respect to the disturbance for all cases and Figure 2 shows the induced chattering for the steady state x(t). The settling-time of system (4) in case 3 is strictly lower than the settling-time in cases 1 and 2 because the time-derivative V is rendered more negative. This explains the interest of introducing additional terms in system (4) while keeping the robust fixed-time stability. 

B. Variable exponent coefficient

Consider the following new robust fixed-time stability result using a state-dependent variable exponent coefficient.

Theorem 2: The system

ẋ(t) = -k|x(t)| λx(t) 2 1+µx(t) 2 sgn(x(t)) + d(t) x(0) = x 0 (8) with x(t) ∈ R, λ > 0 and µ > 0 such that θ = λ 1+µ > 1, d(t) ∈ R an external disturbance such that |d(t)| < δ for a 2 2.1 2.2 2.3 2.4 2.5 time (s) -3 -2 -1 0 1 2 3 10 -3
Fig. 2. Zoom on the steady state x(t) versus time (sec)

given δ > 0 and k > δe λ 2e is globally fixed-time stable and the settling-time satisfies

T (x 0 ) ≤ 1 (k -δ)(θ -1) + 1 ke -λ 2e -δ . ( 9 
)
Proof. First note that the function φ :

x → |x| λx 2 1+µx 2 = exp ( λx 2 1+µx 2 ln(|x|)
)

is continuous at x = 0 with φ(0) = 1. Therefore the right-hand side of ( 8) is locally bounded.

Consider the following quadratic Lyapunov function

V (x) = x 2 . ( 10 
)
It leads to

V (x) = -2k|x| λx 2 1+µx 2 +1 + 2dx (11) 
Consider the case V (x) ≥ 1. We have

λx 2 1+µx 2 + 1 ≥ λ 1+µ + 1 > 2. As |x| ≥ 1 and θ = λ 1+µ > 1 it leads to V (x) ≤ -2 (k -δ) |x| θ+1 (12) ≤ -2 (k -δ) V (x) θ+1 2 (13) 
As k -δ > 0 and θ+1 2 > 1 the proof of [9, Lemma 1] ensures that all the solutions starting from {V (x) ≥ 1} reaches the set

{V (x) ≤ 1} in a fixed time T 1 ≤ 1 (k-δ)(θ-1) . Consider now the case V (x) ≤ 1. We have V (x) = -2k|x||x| λx 2 1+µx 2 + 2dx (14) 
As 1 + µx 2 ≥ 1 and |x| ≤ 1 it leads to min

( |x| λx 2 1+µx 2 ) ≥ min ( |x| λx 2 ) = e -λ
2e we have

V (x) ≤ -2 ( ke -δ ) |x| (15) ≤ -2 ( ke -λ 2e -δ ) V (x) 1 2 (16) 
with ke -λ 2e -δ > 0. Theorem 4.2 in [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] implies that all the solutions starting from {V (x) ≤ 1} reach the origin in a uniform time

T 2 ≤ 1 ke -λ 2e -δ .
Finally, system (8) reaches the origin in a fixed time

T (x 0 ) ≤ T 1 + T 2 .
Figure 3 displays the time variations of the state x(t) and [START_REF] Yu | Continuous finite-time control for robotic manipulators with terminal sliding mode[END_REF] with k = 3, λ = 2, µ = 0.1 and d(t) = sin(10t). As δ = 1, it leads to T (x 0 ) ≤ 1.5s . Moreover, a zoom on the steady state x(t) of system ( 8) is given in Figure 4. 

u(t) = -k|x(t)| λx(t) 2 1+µx(t) 2 sgn(x(t)) of system
Remark 2: When x → ∞, system (8) is equivalent to the system ẋ(t) = -k|x(t)| λ µ sgn(x(t)) + d(t) (17) 
with λ µ > 1. If λ ≈ µ, it is possible to obtain a linear behavior away from the origin. When x = 0, given the continuity of x → |x| λx 2 1+µx 2 , system (8) is equivalent to the system ẋ(t) = -k sgn(x(t)) + d(t) [START_REF] Ferrara | Predefined-time output stabilization with second order sliding mode generation[END_REF] which is known to be robust with respect to the disturbances but leads to chattering. This is the reason why high frequency oscillations appears on Figure 3 for u(t); by a similar way chattering appear on the steady state x(t) of system (8) as shown by Figure 4.

IV. APPLICATION TO SLIDING MODE CONTROL In this section, consider the following uncertain nonlinear second-order system ẋ1 = x 2 ẋ2 = f (x) + g(x)u + d [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF] with x = (x 1 , x 2 ) ∈ R 2 the state, u ∈ R the control input, f and g continuous functions such that f (0) = 0, g(x) = 0 for all x ∈ R 2 and d the external disturbance such that |d(t)| < δ. The second-order systems have been widely used in practice, see for instance [START_REF] Bartolini | Applications of a sub-optimal discontinuous control algorithm for uncertain second order systems[END_REF]. The objective is to use the previous results on robust fixed-time stability for designing sliding mode controllers.

A. Constant exponent coefficient

Consider the standard sliding variable

s(x) = x 2 + βx 1 (20) 
with β > 0 and the controller

u(x) = -g -1 (x) [ f (x) + βx 2 + k 1 sgn(s) +k 2 |s| α sgn(s) + k 3 |s| γ sgn(s) + k 4 s ] (21) 
with

k 1 > δ, k 2 > 0, k 3 ≥ 0, k 4 ≥ 0, α > 1 and 0 < γ < 1.
Proposition 1: The closed-loop system ( 19)-( 20)-( 21) reaches the sliding surface {s(x) = 0} in a fixed-time satisfying

T (s 0 ) ≤ 1 k 1 -δ + 1 k 2 (α -1) (22) 
is also asymptotically stable.

Proof. s-dynamics read as

=f (x) + g(x)u(x) + βx 2 + d = -k 1 sgn(s) -k 2 |s| α sgn(s) -k 3 |s| γ sgn(s) -k 4 s + d ( 23 
)
By using Theorem 1, the first part of the proposition is deduced. When the sliding surface is reached, one has

ẋ1 = -βx 1 ( 24 
)
which ensures the asymptotic stability of the closed-loop system ( 19)-( 20)-( 21) towards the origin.

For the simulations, consider the functions f ≡ 0, g ≡ 1, d(t) = sin(10t), the parameters β = 1, α = 1.5, γ = 0.5, δ = 1 and the gains k i where i = 1, • • • , 4 given by the different cases presented in Subsection III-A. Since all the parameters are the same as in Subsection III-A, one still has T (s 0 ) ≤ 2s. The time evolution of the sliding variable s(t) and the norms of the state variable x(t) associated to the closed-loop system ( 19)-( 20)-( 21) are shown on Figure 5.

Remark 3:

Let us remark that if system (4) is used for building the simplest fixed-time sliding variable of the form with β 1 > 0, β 2 > 0, α > 1 and 0 < γ < 1 it leads to a singular controller, see for instance [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF]. With the classical sliding surface [START_REF] Song | Time-varying feedback for stabilization in prescribed finite time[END_REF], one can get the global robust fixed-time stabilization of the s-system [START_REF] Bartolini | Applications of a sub-optimal discontinuous control algorithm for uncertain second order systems[END_REF], as explained in Proposition 1, but only the global robust asymptotic stabilization of the x-system [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF]. However, the controller ( 21) is easy to implement. Global robust fixed-time stabilization of the global x-system [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF] is obtained in [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF] with complex sliding variables and controllers and in the next subsection by using a state-dependent variable power coefficient.

s(x) = x 2 + β 1 |x 1 | α sgn(x 1 ) + β 2 |x 1 | γ sgn(x 1 ) (25) 

B. Variable exponent coefficient

The main objective of this subsection is to design a new simple sliding variable leading to global robust fixed-time stabilization of system [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF]. Consider Theorem 2 and the induced sliding variable with a state-dependent variable exponent coefficient given by

s(x) = x 2 + β|x 1 | λ 1 x 2 1 1+µ 1 x 2 1 sgn(x 1 ) (26) 
with

θ 1 = λ1 1+µ1 > 1, β > 0 and the controller u(x) = -g(x) -1 [ f (x) + k|s| λ 2 s 2 1+µ 2 s 2 sgn(s) + βλ 1 |x 1 |x 2 1 + µ 1 x 2 1 ( 2 ln |x 1 | 1 + µ 1 x 2 1 + 1 ) |x 1 | λ 1 x 2 1 1+µ 1 x 2 1 ] (27) 
with

θ 2 = λ2 1+µ2 > 1, k > δe λ 2
2e . Proposition 2: The closed-loop system ( 19)-( 26)-( 27) is globally fixed-time stable and the settling-time satisfies

T (x 0 ) ≤ 1 (k -δ)(θ 2 -1) + 1 ke -λ 2 2e -δ + 1 β(θ 1 -1) + 1 βe -λ 1 2e . ( 28 
)
Proof. One has

ṡ = f (x) + g(x)u(x) + βλ 1 |x 1 |x 2 1 + µ 1 x 2 1 ( 2 ln |x 1 | 1 + µ 1 x 2 1 + 1 ) |x 1 | λ 1 x 2 1 1+µ 1 x 2 1 + d = -k|s| λ 2 s 2 1+µ 2 s 2 sgn(s) + d (29)
By using Theorem 2, one deduces that system (29) starting at s(0) = s 0 reaches the sliding surface {s = 0} in a fixed-time satisfying

T (s 0 ) ≤ 1 (k-δ)(θ2-1) + 1 ke -λ 2 2e -δ
. From (26), one has

ẋ1 = -β|x 1 | λ 1 x 2 1 1+µ 1 x 2 1 sgn(x 1 ). ( 30 
)
By using one more time Theorem 2, it is deduced that x 1 (t) starting at x 1 (0) = x 10 reaches the origin in a fixed-time satisfying T (x 10 ) ≤

1 β(θ1-1) + 1 βe -λ 1 2e
. Finally, the closedloop system ( 19)-( 26)-( 27) reaches the origin in a fixed-time T (x 0 ) = T (s 0 ) + T (x 10 ) that is bounded by (28). Consider the closed-loop system ( 19)-( 26)-( 27) with f = 0, g = 1, β = 0.2, λ 1 = 2, λ 2 = 4, µ 1 = 0.1 µ 2 = 1, k = 10, x(0) = [0.1, x 2 (0)] T and d(t) = sin(10t). In the case, one gets T (x 0 ) ≤ 13.7s. Figure 6 displays the time evolution of the sliding variable s(t) and the state variable x(t) = (x 1 (t), x 2 (t)). The time evolution of the sliding variable s(t) given by system (29) is plotted on Figure 7 for different initial conditions x 2 (0). with β > 0, λ > 0 is chosen and if the controller reads as

u(x) = -g -1 (x) [ f (x) + βλ ( x 2 (ln |x 1 | + 1) |x 1 | |x1| ) + k|s| |s| sgn(s) ] (32) 
with k > δ then

ṡ = f (x) + g(x)u(x) (33) +βλ ( x 2 (ln |x 1 | + 1) |x 1 | |x1| ) + d (34) = -k|s| |s| sgn(s) + d (35)
The fixed-time stabilization is obtained but the controller u(x) is singular due to the fact that

lim x1→0 |x 1 | |x1| ln |x 1 | = -∞.
In order to reduce the chattering induced by the use of controller (27), consider the following controller

u(x) = -g -1 (x) [ f (x) + k 1 sgn(s) + k 2 |s| α sgn(s) + βλ 1 |x 1 |x 2 1 + µ 1 x 2 1 ( 2 ln |x 1 | 1 + µ 1 x 2 1 + 1 ) |x 1 | λ 1 x 2 1 1+µ 1 x 2 1 ] (36) 
with

k 1 > δ, k 2 > 0, α > 1.
Proposition 3: The closed-loop system ( 19)-( 26)-( 36) is globally fixed-time stable and the settling-time satisfies

T (x 0 ) ≤ 1 k 1 -δ + 1 k 2 (α -1) (37) 
+ 1 β(θ 1 -1) + 1 βe -λ 1 2e . ( 38 
)
Proof. One has

ṡ = f (x) + g(x)u(x) + βλ 1 |x 1 |x 2 1 + µ 1 x 2 1 ( 2 ln |x 1 | 1 + µ 1 x 2 1 + 1 ) |x 1 | λ 1 x 2 1 1+µ 1 x 2 1 + d = -k 1 sgn(s) -k 2 |s| α sgn(s) + d (39)
By using Theorem 1, one deduces that system (39) starting at s(0) = s 0 reaches the sliding surface {s = 0} in a fixed-time satisfying

T (s 0 ) ≤ 1 k1-δ + 1 k2(α-1) . Then it yields ẋ1 = -β|x 1 | λ 1 x 2 1 1+µ 1 x 2 1 sgn(x 1 ) (40) 
By using Theorem 2, it is deduced that x 1 (t) starting at x 1 (0) = x 10 reaches the origin in a fixed-time satisfying

T (x 10 ) ≤ 1 β(θ1-1) + 1 βe -λ 1 2e
. Finally, the closed-loop system ( 19)-( 26)-(36) reaches the origin in a fixed-time T (x 0 ) = T (s 0 ) + T (x 10 ).

The time evolution of the sliding variable s(t) and the state variable x(t) = (x 1 (t), x 2 (t)) associated to the closed-loop system ( 19)-( 26)-( 36) is plotted on Figure 8 with the same parameters as before and k 1 = k 2 = 20, α = 1.5. So one gets T (x 0 ) ≤ 13.5s. Remark 5: The use of the sliding variable (26) with a statedependent variable exponent coefficient leads to the global robust fixed-time stabilization of the global x-system [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF] with the simple controllers (27) and (36) such that the closedloop system behaves like the standard SMC around the sliding surface. So, a robust behavior of the closed-loop system is obtained similar to the standard SMC but in fixed time. When using system (1) with constant exponent coefficients for building a sliding variable for fixed-time stabilization, the associated controller is singular, see [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF].

Remark 6: Note that the proposed fixed-time SMC solution has the advantage of being simple and easy to tune with respect to the methods presented in [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF]. Indeed, our controllers have 6 parameters to tune whereas the controllers in [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF] have 14 parameters. In [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF], 6 scalar parameters need to be chosen as well as a function to define the sliding surface. The choice of this function is not obvious since it is based on properties of its time-derivative. Finally, both controllers in [START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of nonlinear systems[END_REF], [START_REF] Corradini | Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF] have a singularity which imposes to use a switched structure and this makes the controller more complex.

V. CONCLUSION

This article deals with global robust fixed-time stability. Several robust fixed-time stability results involving constant and state-dependent variable exponent coefficients are provided and applied to the robust fixed-time stabilization of a class of uncertain nonlinear second-order systems by using sliding-mode control. For future works, a high order sliding mode strategy could be used for reducing the chattering when dealing with robust fixed-time stabilization.
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