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The Cauchy problem for Laplace’s equation via a modified

conjugate gradient method and energy space approaches

S. Amdouni 1, A. Ben Abda 2,

Abstract

In the present work, we focus on the resolution of the Cauchy Laplace problem using an
energetic variational minimization approach [18] in the framework of a finite element method.
A new strategy of regularization, called a filtering procedure regularization, is developed.
The advantage of using this new regularization is that it does not require a regularization
parameter and is easy to implement. An optimal a priori error estimate is proven, for the
first time up to our knowledge, in the context of the finite element method. Some numerical
results are presented to illustrate the performance of our approach.

Keywords: Cauchy problem, Energy space approaches, Conjugate gradient method, Finite ele-
ment method, Laplace problem

Introduction

The present paper is meant to present a new numerical procedure for the resolution of the Cauchy
problem. It is situated, for simplicity, within the framework of the Laplace equation which
can be easily extended for any elliptic equation. The Cauchy problem has arisen from many
practical contexts, such as non-destructive testing, electrocardiography, electroencephalography
and hydro-geology. A tremendous body of literature has referred back to the leading work of
Hadamard [7]. In his work, Hadamard highlighted the ill-posedness of such an inverse problem
which enormously increases the difficulties of its numerical treatment. There are many strategies
used to circumvent these difficulties. We can cite the quasi-reversibility approach (see [4, 3, 16]),
the Kozlov approach [15, 14], the Fading approach [6, 8], the Steklov-Poincaré approach [1] and
the variational minimization approach [12, 11, 18]. For a detailed literature review in the context
of the Laplace equation we can see [?].
In this study, we adopted a variational minimization method with an energy space approach
similar to that presented in [18]. The main feature is the use of a filtering procedure as a new
regularization strategy in the context of the finite element method and a conjugate gradient
method. This strategy does not require a regularization parameter. It is easy to implement and
leads to a good accuracy similar to that of the direct problem. An optimal error estimate is
shown, for the first time up to our knowledge, in the context of the finite element method.

The present contribution is organized as follows: In section 1, we define some useful space
and operator needed for our study. In section 2, we model our energetic variational minimization
problem. Section 3 presents a proof of the equivalence between the energetic variational mini-
mization formulation and the Cauchy problem. Then we show the stability of our formulation
according to the noise level. We also prove that our cost functional is twice Fréchet differentiable,
strictly convex and coercive. In section 4, the discretization of the energetic variational mini-
mization problem is presented in the framework of the finite element method. Then a stability
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result of our discrete formulation is proved. An optimal and an original a priori error estimate
of this formulation is shown. In section 5, a modified conjugate gradient algorithm is presented.
In order to illustrate the performance of our approach, the numerical results for some synthetic
examples are presented in section 6. In all cases, the numerical results are compared to the “exact
solutions” of the Cauchy problem. Finally, the conclusions are given in section 7.

1 Preliminary

Let Ω be a bounded Lipschitz domain in R2 and Γ = Γ0 ∪ Γi ∪ Γc. We assume that Γi and Γc
are separated by a non-zero measure portion Γ0. Then following [17] let’s define:

H
1
2 (Γk) =

{
v = ṽ|Γk

: ṽ ∈ H
1
2 (Γ)

}
, with k ∈ {i, c},

and

Ĥ
1
2 (Γk) =

{
v = ṽ|Γk

: ṽ ∈ H
1
2 (Γ), supp(ṽ) ⊂ Γk

}
⊂ H

1
2 (Γk), with k ∈ {i, c}.

Now, in order to define a norm in the Sobolev spaces Ĥ
1
2 (Γi) and Ĥ

1
2 (Γc), the following two

operators are constructed:
Let vk, with k ∈ {i, c} be the unique weak solution of the problem

−∆vk = 0 in Ω,

vk = w on Γk,

vi = 0 on Γ\Γk, w ∈ Ĥ
1
2 (Γk),

(1)

then

Ak : Ĥ
1
2 (Γk) −→ H−

1
2 (Γk),

w 7−→ Akw = ∂nvk|Γk
.

Thereby we define the norms in the Sobolev spaces Ĥ
1
2 (Γk) with k ∈ {i, c} by:

‖w‖2
Ĥ

1
2 (Γk)

=
〈
Akw,w

〉
= ‖ 5 vk‖2L2(Ω). (2)

For the numerical procedure, the Neumann to Dirichlet operator is defined by:

SND : H−
1
2 (Γi) −→ Ĥ

1
2 (Γi)

λ 7−→ SNDλ = ξ|Γi
,

where ξ is the weak solution of: 
−∆ξ = 0 in Ω,

∂nξ = λ on Γi,

ξ = 0 on Γ\Γi.
(3)

In this paper we use the notation a . b to signify that there exists a constant C > 0, independent
of mesh size and noisy level, such that a ≤ C b.
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2 The model problem

Let Ω be a bounded Lipschitz domain in R2. We assume that the boundary Γ of Ω is split into
three open parts Γ0, Γi and Γc such that Γ = Γ0 ∪ Γi ∪ Γc. We suppose that Γi and Γc are
separated by a non-zero measure portion Γ0. We consider the Cauchy problem for the Laplace
equation: 

−∆u = 0 in Ω,

u = T on Γc,

∂nu = φ on Γc,

(4)

where ∆ is the Laplace operator, T and φ are two given functions in Ĥ
1
2 (Γc) and H−

1
2 (Γc). We

assume that there exists a pair of compatible data (T, φ), and we denote by v the corresponding

Cauchy solution. We consider a family of unnecessary compatible data (T δ, φδ) ∈ Ĥ
1
2 (Γc) ×

H−
1
2 (Γc) such that :

‖T − T δ‖2
Ĥ

1
2 (Γc)

+ ‖φ− φδ‖2
H− 1

2 (Γc)
≤ δ2 (5)

To solve problem (4), we define the energetic variational minimization problem:

min
η∈Ĥ

1
2 (Γi)

H(η) (6)

where
H(η) = J(u(φ, η)), ∀η ∈ Ĥ

1
2 (Γi),

with

J(u) =
1

2
‖u− T‖2

Ĥ
1
2 (Γc)

,

and u(φ, η) is the unique weak solution of
−∆u = 0 in Ω,

∂nu = φ on Γc,

u = η on Γi,

u = 0 on Γ0.

(7)

In the case of noisy data, we consider the noisy energetic variational minimization problem:

min
η∈Ĥ

1
2 (Γi)

Hδ(η), (8)

where
Hδ(η) = Jδ(u(φδ, η)), ∀η ∈ Ĥ

1
2 (Γi),

with

Jδ(u) =
1

2
‖u− T δ‖2

Ĥ
1
2 (Γc)

,

and u(φδ, η) is the unique weak solution of
−∆u = 0 in Ω,

∂nu = φδ on Γc,

u = η on Γi,

u = 0 on Γ0.

(9)
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3 The energetic variational minimization problem

Let S =
{
u(φ, η)|Γc

where u is the unique weak solution of (7) : such that η ∈ Ĥ
1
2 (Γi)

}
.

Proposition 1 S forms a dense set in Ĥ
1
2 (Γc) and we have inf

η∈Ĥ
1
2 (Γi)

H(η) = 0.

Proof. Let w in Ĥ
1
2 (Γc) such that∫

Γc

u(φ, η)wdΓ = 0 ∀η ∈ Ĥ
1
2 (Γi). (10)

We shall prove that w = 0, on Γi. Let ψ be the solution of
−∆ψ = 0 in Ω,

∂nψ = w on Γc,

ψ = 0 on Γi,

ψ = 0 on Γ0.

(11)

Using the variational formulations of (11) and (7) and equation (10), we have :∫
Γc

φψdΓ =

∫
Γi

∂nψ ηdΓ, ∀η ∈ Ĥ
1
2 (Γi). (12)

Replacing η by −η in the last equation, we obtain∫
Γc

φψdΓ =

∫
Γi

∂nψ ηdΓ = −
∫

Γi

∂nψ ηdΓ = 0, ∀η ∈ Ĥ
1
2 (Γi), (13)

which means that
∂nψ = 0 on Γi.

Thus, the function ψ ∈ H1(Ω) satisfies the Cauchy problem
−∆ψ = 0 in Ω,

ψ = 0 on Γi,

∂nψ = 0 on Γi

u = 0 on Γ0.

(14)

from which it follows that ψ ≡ 0 and therefore w = ∂nψ = 0 on Γc.
From the density of S, we immediately have inf

η∈Ĥ
1
2 (Γi)

H(η) = 0.

Proposition 2 Assume that problem (4) admits a solution (i.e. a case of compatible data), then
solving the Cauchy problem (4) is equivalent to solving (6).

Proof. In the case of the compatible Cauchy problem, let v be the unique solution of (4) such
that ηC = v|Γi

. The well-posed problem (7) has a unique solution u(φ, ηC) for η = ηC . Let
z = u(φ, ηC)− v, then it is the unique weak solution of (4) with φ = 0 and η = 0. Thus z = 0 on
Ω, v = u(φ, ηC) and H(ηC) = 0. This means that ηC solves the variational minimization problem
(6). Conversly, let η be a solution of (6) and u(φ, η) the corresponding weak solution of (7), then
H(η) = 0 ( inf

η∈Ĥ
1
2 (Γi)

H(η)=0) which follows that u(φ, η) = T|Γc
. In the case of compatible Cauchy

data, we deduce that u(φ, η) is the solution of (4) and η = ηC .
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Proposition 3 Assume there exists a unique Cauchy solution v ∈ H1(Ω) for a given compatible

pair of data (T, φ) ∈ Ĥ
1
2 (Γc) ×H−

1
2 (Γc). Let (T δ, φδ) ∈ Ĥ

1
2 (Γc) ×H−

1
2 (Γc) be any sequence of

noisy, unnecessary compatible, data such that

‖T − T δ‖2
Ĥ

1
2 (Γc)

+ ‖φ− φδ‖2
H− 1

2 (Γc)
≤ δ2, (15)

then the noisy energetic variational minimization problem (8) has a unique solution ηδ which
strongly converges, as δ → 0, to the Cauchy missing data ηC = v|Γi

. Moreover, the solution
u(φδ, ηδ) of (9) strongly converges in H1(Ω) to the Cauchy solution v.

Proof. It is clear that, the noisy energetic variational minimization problem (8) is found to have
the same property of the energetic variational minimization problem (6). Then problem (8) has
a unique solution ηδ and by using a triangular inequality and the trace theorem between H1(Ω)

et H
1
2 (Γ) we obtain:

Hδ(ηC) = Jδ(u(φδ, ηC)),

=
1

2
‖u(φδ, ηC)− T δ‖2

Ĥ
1
2 (Γc)

,

=
1

2
‖u(φδ, ηC)− u(φ, ηC) + u(φ, ηC)− T δ‖2

Ĥ
1
2 (Γc)

,

≤ ‖u(φδ, ηC)− u(φ, ηC)‖2
Ĥ

1
2 (Γc)

+ ‖u(φ, ηC)− T δ‖2
Ĥ

1
2 (Γc)

,

. ‖u(φδ, ηC)− u(φ, ηC)‖2H1(Ω) + ‖u(φ, ηC)− T δ‖2
Ĥ

1
2 (Γc)

.

Let z = u(φδ, ηC)− u(φ, ηC), then z is the weak solution of
−∆z = 0 in Ω,

∂nz = φδ − φ on Γc,

z = 0 on Γi,

u = 0 on Γ0.

(16)

then we have
‖z‖H1(Ω) . ‖φδ − φ‖H− 1

2 (Γc)
.

As u(φ, ηC) = v, then we obtain

Hδ(ηC) . ‖φ− φδ‖2
H− 1

2 (Γc)
+ ‖T − T δ‖2

Ĥ
1
2 (Γc)

. δ2.

Now, since Hδ(ηδ) ≤ Hδ(ηC) . δ2 therefore lim
δ→0

Hδ(ηδ) = 0. Given the fact that Hδ is coercive

in Ĥ
1
2 (Γi), we can deduce that ηδ is uniformly bonded in Ĥ

1
2 (Γi). Thus vδi is uniformly bonded

in H1(Ω) where vδi is the unique solution of (1) with k = i and w = ηδ. Up to a subsequence, we
have vδi weakly converges to vi in H1(Ω) and strongly in L2(Ω) (vi is the unique solution of (1)
with k = i and w = η0)). Using Poincarè inequality, we have the strong convergence of vδi to vi

in H1(Ω). Consequently, ηδ strongly converges to η0 in Ĥ
1
2 (Γi). Since the sequence T δ strongly

converges to T in Ĥ
1
2 (Γc) and φδ strongly converges to φ in H−

1
2 (Γc) as well, we infer that the
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sequences u(φδ, ηδ) which are the solutions of (9), strongly converge in H1(Ω) to u(φ, η0) which
is the unique solution of 

−∆u = 0 in Ω,

∂nu = φ on Γc,

u = η0 on Γi,

u = 0 on Γ0.

(17)

As Hδ(ηδ) = 1
2‖u(φδ, ηδ)− T δ‖2

Ĥ
1
2 (Γc)

. δ2, we deduce that u(φδ, ηδ)− T δ strongly converges to

0 in Ĥ
1
2 (Γc). Hence u(φ, η0) = T over Γc. Thanks to the uniqueness of the Cauchy problem, we

conclude that u(φ, η0) = v and η0 = ηC .

Proposition 4 The functional H is twice Fréchet differentiable and strictly convex over Ĥ
1
2 (Γi).

Proof. Let h be a function in Ĥ
1
2 (Γi), then for all ε ≥ 0 we have:

H(η + εh) =
1

2
‖u(φ, η + εh)− T‖2

Ĥ
1
2 (Γc)

,

=
1

2
‖u(φ, η)− T + εu(0, h)‖2

Ĥ
1
2 (Γc)

,

=
1

2
‖u(φ, η)− T‖2

Ĥ
1
2 (Γc)

+ ε

∫
Γc

Ac
(
u(φ, η)− T

)
u(0, h)dΓ +

ε2

2
‖u(0, h)‖2

Ĥ
1
2 (Γc)

,

= H(η) + ε

∫
Γc

Ac
(
u(φ, η)− T

)
u(0, h)dΓ +

ε2

2
‖u(0, h)‖2

Ĥ
1
2 (Γc)

,

then

∇H(η).h = lim
ε→0

H(η + εh)−H(η)

ε
=

∫
Γc

Ac
(
u(φ, η)− T

)
u(0, h)dΓ. (18)

Let ψ be the weak solution of
−∆ψ = 0 in Ω,

∂nψ = Ac(u(φ, η)− T ) on Γc,

ψ = 0 on Γi,

ψ = 0 on Γ0.

(19)

and knowing that u(0, h) is the weak solution of (7) we infer∫
Γc

Ac
(
u(φ, η)− T

)
u(0, h)dΓ = −

∫
Γi

∂nψ u(0, h)dΓ = −
∫

Γi

∂nψ hdΓ, ∀h ∈ Ĥ
1
2 (Γi).

Consequently,

H ′(η) = −∂nψ|Γi
. (20)

Now we prove that J is twice differentiable and strictly convex.
Consider the problem: 

−∆ξ = 0 in Ω,

∂nξ = Acu(0, h) on Γc,

ξ = 0 on Γi,

ξ = 0 on Γ0.

(21)
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Following Green’s formula, we obtain∫
Γc

Ac
(
u(0, h)

)
u(0, h)dΓ = −

∫
Γi

∂nξ u(0, h)dΓ = −
∫

Γi

∂nξ hdΓ,∀h ∈ Ĥ
1
2 (Γi),

Using (18), we have

〈
H ′′(η)h, τ

〉
=

∫
Γc

Ac
(
u(0, τ)

)
u(0, h)dΓ,∀(h, τ) ∈ Ĥ

1
2 (Γi)× Ĥ

1
2 (Γi), (22)

Thus, 〈
H ′′(η)h, h

〉
=

∫
Γc

Ac
(
u(0, h)

)
u(0, h)dΓ = −

∫
Γi

∂nξ u(0, h)dΓ, ∀h ∈ Ĥ
1
2 (Γi). (23)

It follows that H is twice differentiable and its second gradient is given by:

H ′′(η)h = −∂nξ

Now we prove that functional H is strictly convex. First, we observe that it is convex since〈
H ′′(η)h, h

〉
=

∫
Γc

Ac
(
u(0, h)

)
u(0, h)dΓ = ‖u(0, h)‖2

Ĥ
1
2 (Γc)

≥ 0 (24)

Furthermore, if
〈
H ′′(η)h, h

〉
= 0 then u(0, h)|Γc

= 0. It follows that u(0, h) satisfies the Cauchy
problem with homogeneous Cauchy data:

−∆u = 0 in Ω,

u = 0 on Γc,

∂nu = 0 on Γc,

u = 0 on Γ0.

(25)

From Holmgren’s theorem [13], we have u(0, h) ≡ 0 in Ω. Hence, H is strictly convex on Ĥ
1
2 (Γi).

Proposition 5 The functional H is coercive over Ĥ
1
2 (Γi).

Proof. Assume by contradiction that H is not coercive over Ĥ
1
2 (Γi) then there exists a sequence

(ψn)∈N ⊂ Ĥ
1
2 (Γi) such that

‖ψn‖
Ĥ

1
2 (Γi)

= 1 and lim
n→+∞

H(ψn) = +∞.

We have H(ψn) = J(u(φ, ψn)) and by using the well-posedness of the weak formulation of (7),
we obtain

‖u(φ, ψn)‖H1(Ω) . ‖ψn‖Ĥ 1
2 (Γi)

+ ‖φ‖
H− 1

2 (Γc)
.

Consequently, by using the trace theorem form H1(Ω) to H
1
2 (Γ), we get

‖u(φ, ψn)‖
Ĥ

1
2 (Γc)

. ‖u(φ, ψn)‖
H

1
2 (Γ)

. ‖u(φ, ψn)‖H1(Ω) ≤ ‖φ‖H− 1
2 (Γc)

+ ‖ψn‖
Ĥ

1
2 (Γi)

,
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and u(φ, ψn) is bounded in Ĥ
1
2 (Γc) which is in contradiction with the fact that J is coercive in

Ĥ
1
2 (Γc).

Remark: Using the linearities of problems (7) and (9) we show that:

H(η) =
1

2
a(η, η)− l(η) + d, (26)

Hδ(η) =
1

2
a(η, η)− lδ(η) + dδ, (27)

with a a symmetric bilinear form on Ĥ
1
2 (Γi)× Ĥ

1
2 (Γi) defined by

a(η, h) =

∫
Γc

Ac
(
u(0, η)

)
u(0, h)dΓ, ∀(η, h) ∈ (Ĥ

1
2 (Γi)× Ĥ

1
2 (Γi)), (28)

l and lδ are two linear forms defined by:

l(h) = −
∫

Γc

Ac
(
u(0, h)

)(
u(φ, 0)− T

)
dΓ, ∀h ∈ Ĥ

1
2 (Γi),

lδ(h) = −
∫

Γc

Ac
(
u(0, h)

)(
u(φδ, 0)− T δ

)
dΓ, ∀h ∈ Ĥ

1
2 (Γi),

and d and dδ are two constant defined by:

d =

∫
Γc

Ac
(
u(φ, 0)− T

)(
u(φ, 0)− T

)
dΓ,

dδ =

∫
Γc

Ac
(
u(φδ, 0)− T δ

)(
u(φδ, 0)− T δ

)
dΓ.

Using Proposition (4) and (5), we deduce that a is a symmetric bilinear form strictly convex and

coercive on Ĥ
1
2 (Γi)× Ĥ

1
2 (Γi). Also, l and lδ are two continuous linear forms on Ĥ

1
2 (Γi).

Proposition 6 Under the assumption of Proposition (3), let ηδ (Resp. η) be the unique solution
of the noisy energetic variational minimization problem (8) (Resp. the energetic variational
minimization problem (6)). Then it yields

‖ηδ − η‖
Ĥ

1
2 (Γi)

. δ. (29)

Proof. Using the first order optimality condition of problems (8) and (6), it gives:

a(ηδ, h) = lδ(h), ∀h ∈ Ĥ
1
2 (Γi),

a(η, h) = l(h), ∀h ∈ Ĥ
1
2 (Γi).

Which lead to:

a(η − ηδ, η − ηδ) = l(η − ηδ)− lδ(η − ηδ),

=

∫
Γc

Ac
(
u(0, η − ηδ)

) (
u(φδ − φ, 0) +

(
T − T δ

))
dΓ.

From the Ĥ
1
2 (Γi)-ellipticity of a, the Cauchy and the triangular inequalities we have:

‖η − ηδ‖2
Ĥ

1
2 (Γi)

. a(η − ηδ, η − ηδ),

=

∫
Γc

Ac
(
u(0, η − ηδ)

) (
u(φδ − φ, 0) +

(
T − T δ

))
dΓ,

. ‖Ac
(
u(0, η − ηδ)

)
‖
H− 1

2 (Γc)
‖u(φδ − φ, 0) +

(
T − T δ

)
‖
Ĥ

1
2 (Γc)

,

. ‖Ac
(
u(0, η − ηδ)

)
‖
H− 1

2 (Γc)

(
‖u(φδ − φ, 0)‖

Ĥ
1
2 (Γc)

+ ‖T − T δ‖
Ĥ

1
2 (Γc)

)
.
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Using the continuities of the operator Ac and the trace operator between H1(Ω) and H
1
2 (Γ) we

obtain

‖η − ηδ‖2
Ĥ

1
2 (Γi)

. ‖u(0, η − ηδ)‖
Ĥ

1
2 (Γc)

(
‖u(φδ − φ, 0)‖

Ĥ
1
2 (Γc)

+ ‖T − T δ‖
Ĥ

1
2 (Γc)

)
,

. ‖u(0, η − ηδ)‖H1(Ω)

(
‖u(φδ − φ, 0)‖H1(Ω) + ‖T − T δ‖

Ĥ
1
2 (Γc)

)
,

. ‖η − ηδ‖
Ĥ

1
2 (Γi)

(
‖φδ − φ‖

H− 1
2 (Γc)

+ ‖T − T δ‖
Ĥ

1
2 (Γc)

)
.

By using assumption (15), we have the a priori error estimate (29).

4 Discrete energetic variational minimization problem

In this section, we present the discretized formulation of (8) using a classical C0 finite element
based on polynomials of the kth degree (k ≥ 1). Let τh be a regular mesh (see [5]) of the domain

Ω with a maximal size h, Ω =
⋃
K∈τh

K. We denote by Pk(T ) the space of polynomials of a degree

less or equal to k ∈ N∗ defined on T ∈ τh. Then we can define the following standard finite
element spaces:

V h =
{
vh ∈ C0(Ω) : vh|T ∈ Pk(T ), ∀T ∈ τh

}
,

W h =
{
vh ∈ L2(Ω) : vh|T ∈ Pk(T ), ∀T ∈ τh

}
,

V h
Γ = V h

|Γ ⊂ H
1
2 (Γ),

Mh
Γk

= W h
|Γk
⊂ H−

1
2 (Γk), with k ∈ {i, c},

Ĥh 1
2 (Γk) =

{
vh = ṽ|Γk

: ṽh ∈ V h
Γ , supp(ṽ

h) ⊂ Γk

}
⊂ Ĥ

1
2 (Γk), with k ∈ {i, c}.

Let Th = Πh

Ĥh 1
2 (Γc)

T, φh = πh
Mh

Γc

φ, T δh = Πh

Ĥh 1
2 (Γc)

T δ, and φδh = πh
Mh

Γc

φδ where Πh

Ĥh 1
2 (Γc)

is

the standard Lagrange interpolation operators in Ĥh 1
2 (Γc) and πh

Mh
Γc

is the L2(Γc)-orthogonal

projection operator on Mh
Γc

. We recall that for all φ ∈ Hs(Γc) and T ∈ Hs+1(Γc) with 1 ≤ s ≤
k + 1 we have [5, 9]:

‖φ− πh
Mh

Γc

φ‖
H− 1

2 (Γc)
. hs+

1
2 ‖φ‖Hs(Γc), (30)

‖T −Πh

Ĥh 1
2 (Γc)

T‖
H

1
2 (Γc)

. hs+
1
2 ‖T‖Hs+1(Γc). (31)

We define the discrete energetic variational minimization problem by:

min
η∈Ĥh 1

2 (Γi)

Hh(η), (32)

where
Hh(η) = Jh(uh(φδh, η)), ∀η ∈ Ĥh 1

2 (Γi),

with

Jh(uh) =
1

2
‖uh − Th‖2

Ĥh 1
2 (Γc)

,

9



and uh(φh, η) is the unique weak discrete solution of
−∆uh = 0 in Ω,

∂nu
h = φh on Γc,

uh = η on Γi,

uh = 0 on Γ0.

(33)

Similarly, we define the noisy discrete energetic variational minimization problem by :

min
η∈Ĥh 1

2 (Γi)

Hδ
h(η), (34)

where
Hδ
h(η) = Jδh(uh(φδh, η)), ∀η ∈ Ĥh 1

2 (Γi),

with

Jδh(uh) =
1

2
‖uh − T δh‖2

Ĥh 1
2 (Γc)

,

and uh(φδh, η) is the unique weak solution of
−∆uh = 0 in Ω,

∂nu
h = φδh on Γc,

uh = η on Γi,

uh = 0 on Γ0.

(35)

Proposition 7 Assume there exists a unique discrete Cauchy solution vh ∈ V h for a given
discrete compatible pair of data (Th, φh) ∈ Ĥh 1

2 (Γc)×Mh
Γc

. Let (T δh , φ
δ
h) ∈ Ĥh 1

2 (Γc)×Mh
Γc

be any
sequence of noisy, unnecessary compatible, data such that

‖Th − T δh‖2
Ĥ

1
2 (Γc)

+ ‖φh − φδh‖2
H− 1

2 (Γc)
≤ δ2 (36)

Then the noisy discrete energetic variational minimization problem (34) has a unique solution
ηδh which strongly converges, as δ → 0, to the Cauchy missing data ηCh = vh|Γi

. Moreover,
the solution u(φδh, η

δ
h) of (35) strongly converges in V h to the discrete Cauchy solution vh =

u(φh, ηCh).

Proof. The proof is the same as that of Proposition (3) with the little difference that weak
convergence implies strong convergence in a finite dimension space.

Proposition 8 Under assumption of Proposition (7), let ηδh (Resp. ηh) be the unique solution of
the discrete noisy energetic variational minimization problem (34) (Resp. the discrete energetic
variational minimization problem (32)). Then it yields

‖ηδh − ηh‖Ĥ 1
2 (Γi)

. δ. (37)

Proof. The proof is the same as the proof of Proposition (6).

Proposition 9 Let v be the exact solution of the continuous Cauchy problem for a couple of
compatible data (T, φ) ∈ Ĥh 1

2 (Γc) × Mh
Γc
, such that v ∈ Hs(Ω) with 1 ≤ s ≤ k + 1. Under

assumption of Proposition (6) and (8) the following estimates hold:

‖ηδh − η‖Ĥ 1
2 (Γi)

. hs−1

(
‖v‖

Hs− 1
2 (Γi)

+ ‖φ‖
Hs− 3

2 (Γc)
+ ‖T‖

Hs− 1
2 (Γc)

)
+ δ, (38)

‖uh(φδh, η
δ
h)− v‖H1(Ω) . hs−1‖v‖Hs(Ω) + δ. (39)

10



Proof. Let η̃h be the unique solution of the variational formulation:

a(η̃h, ψh) = l(ψh), ∀ψh ∈ Ĥh 1
2 (Γi). (40)

To prove (38), we use the triangular inequality to obtain:

‖ηδh − η‖Ĥ 1
2 (Γi)

≤ ‖ηδh − ηh‖Ĥ 1
2 (Γi)

+ ‖η̃h − η‖
Ĥ

1
2 (Γi)

+ ‖ηh − η̃h‖Ĥ 1
2 (Γi)

(41)

For the second term of the right-hand side of inequality (41), we use Céa Lemma, the Galerkin
orthogonality and standard finite element a priori error estimate of the Lagrange interpolation
operator Πh

Ĥh 1
2 (Γi)

to find:

‖η̃h − η‖
Ĥ

1
2 (Γi)

. hs−1‖η‖
Hs− 1

2 (Γi)
. (42)

To estimate the third term of the right-hand side of inequality (41), we first write the optimality
condition of problems (6) and (32):

a(η̃h, ψh) = l(ψh), ∀ψh ∈ Ĥh 1
2 (Γi),

a(ηh, ψh) = lh(ψh), ∀ψh ∈ Ĥh 1
2 (Γi),

with

lh(ψh) = −
∫

Γc

Ac
(
u(0, ψh)

)(
u(φh, 0)− Th

)
dΓ, ∀ψh ∈ Ĥ

1
2 (Γi).

Thus

a(ηh − η̃h, ηh − η̃h) = lh(ηh − η̃h)− l(ηh − η̃h),

=

∫
Γc

Ac
(
u(0, ηh − η̃h)

)(
u(φ− φh, 0) + Th − T

)
dΓ,

≤ ‖Ac
(
u(0, ηh − η̃h)

)
‖
H− 1

2 (Γc)

(
‖u(φ− φh, 0)‖

H
1
2 (Γc)

+ ‖Th − T‖
H

1
2 (Γc)

)
.

Then using the Ĥ
1
2 (Γi)-ellipticity of the operator a and the continuities of the operator Ac and

the trace operator between H1(Ω) and H
1
2 (Γ) we deduce

‖ηh − η̃h‖2
Ĥ

1
2 (Γi)

≤ ‖Ac
(
u(0, ηh − η̃h)

)
‖
H− 1

2 (Γc)

(
‖u(φ− φh, 0)‖

H
1
2 (Γc)

+ ‖Th − T‖
H

1
2 (Γc)

)
,

. ‖
(
u(0, ηh − η̃h)

)
‖
H

1
2 (Γc)

(
‖u(φ− φh, 0)‖

H
1
2 (Γc)

+ ‖Th − T‖
H

1
2 (Γc)

)
,

. ‖
(
u(0, ηh − η̃h)

)
‖H1(Ω)

(
‖u(φ− φh, 0)‖H1(Ω) + ‖Th − T‖

H
1
2 (Γc)

)
,

. ‖ηh − η̃h‖Ĥ 1
2 (Γi)

(
‖φ− φh‖

H− 1
2 (Γc)

+ ‖Th − T‖
H

1
2 (Γc)

)
.

Due to the a priori error estimates (30) and (31) we have:

‖ηh − η̃h‖Ĥ 1
2 (Γi)

. hs−1

(
‖φ‖

Hs− 3
2 (Γc)

+ ‖T‖
Hs− 1

2 (Γc)

)
. (43)
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From Proposition (8), inequalities (41), (42) and (43) we establis:

‖ηδh − η‖Ĥ 1
2 (Γi)

. hs−1

(
‖v‖

Hs− 1
2 (Γi)

+ ‖φ‖
Hs− 3

2 (Γc)
+ ‖T‖

Hs− 1
2 (Γc)

)
+ δ. (44)

Now to prove (39), we use a triangular inequality to have:

‖uh(φδh, η
δ
h)− v‖H1(Ω) ≤ ‖uh(φδh, η

δ
h)− uh(φδh, ηh)‖H1(Ω) + ‖uh(φδh, ηh)− uh(φh, ηh)‖H1(Ω)

+‖uh(φh, ηh)− v‖H1(Ω).

Thanks to the classical regularity results for elliptic Boundary Value Problems type (35), we
obtain:

‖uh(φδh, η
δ
h)− v‖H1(Ω) . ‖ηδh − ηh‖Ĥ 1

2 (Γi)
+ ‖φh − φδh‖H− 1

2 (Γc)
+ ‖uh(φh, ηh)− v‖H1(Ω).

As uh(φh, ηh) is the weak discrete solution of (33) and v is also the exact solution of (7), we have
by using a standard finite element a priori error estimate (see [9]):

‖uh(φh, ηh)− v‖H1(Ω) . hs−1‖v‖Hs(Ω). (45)

Finally, using Proposition (8) and inequalities (36) and (45), we deduce:

‖uh(φδh, η
δ
h)− v‖H1(Ω) . δ + hs−1‖v‖Hs(Ω).

5 Numerical procedure

To solve numerically the proposed formulation (9) of the data completion problem, we apply the
following modified conjugate gradient algorithm:

1. Choose η0 and set n = 0.

2. Solve the direct problem (7) with η = ηn and determine the residual:

rn =
(
u(φδ, ηn)− T δ

)
|Γc

3. Determine the gradient gn = H ′(ηn) by solving the adjoint problem (19) with

H ′(ηn) = −∂nψ|Γi
,

then calculate
dn = −gn + βn−1 dn−1,

with the convention β−1 = 0, βn−1 =

‖gn‖2
Ĥ

1
2 (Γi)

‖gn−1‖2
Ĥ

1
2 (Γi)

,∀n > 0.

4. Calculate zn = SND dn by solving (3).
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5. Determine u(0, zn) by solving the direct problem (7) with φ = 0 and η = zn

αn =

‖gn‖2
Ĥ

1
2 (Γi)

‖u(0, zn)‖2
Ĥ

1
2 (Γc)

,

ηn+1 = ηn + αn zn.

6. Increase n by one and go to (2) if ‖rn+1‖
Ĥ

1
2 (Γc)

≤ ‖rn‖
Ĥ

1
2 (Γc)

.

The fourth step of the algorithm is a filtering procedure. It can be viewed as a regularization
strategy that allows our algorithm to converge numerically with the same optimal rates of con-
vergence proved in Proposition (9).
As a stopping criterion, we choose a classical one (see [10]), the first k such that:

‖rn+1‖
Ĥ

1
2 (Γc)

< β ∗ δ,

where β is some number which is greater than unity. Similar to [10, 12] we take β = 1.1.

6 Numerical results

To illustrate the performance of our method, we consider four cases. In the first case, the numerical

(a) Two-dimensional exact solution (b) Example of a non-structured mesh for h =
1/40

Figure 1: Exact solution and an example of non-structured mesh on the square domain

tests are made on a square domain defined by Ω =]0, 0.5[×] − 0.25, 0.25[. The boundary of Ω
(∂Ω) is divided into three parts:

Γc =
{

(x,−0.25) : 0 < x < 0.5
}
,

Γi =
{

(x, 0.25) : 0 < x < 0.5
}
,

Γ0 = Γ \ (Γc ∪ Γi).

With regard to the second case, the numerical tests are performed on an upper annular half disc
centred on the point (0,0) with an external radius R1 = 0.5 and an internal radius R2 = 0.75R1.
The boundary of this domain is divided into three parts:

Γ0 =
{

(x, 0) : R2 <| x |< R1

}
,

Γi =
{

(x, y) : x2 + y2 = R2, y > 0
}
,

Γc =
{

(x, y) : x2 + y2 = R1, y > 0
}
.

13



(a) Two-dimensional exact solution (b) Example of a non-structured mesh for h =
1/40

Figure 2: Exact solution and an example of a non-structured mesh on an upper annular half disc
with mes(Γc) > mes(Γi)

The third case is the same as the second. We just switch between Γc and Γi to illustrate the

(a) Two-dimensional exact solution (b) Example of a non-structured mesh for h =
1/40

Figure 3: Exact solution and an example of a non-structured mesh on an upper annular half disc
with mes(Γc) < mes(Γi)

influence of the measure of the boundary Γc (when we have overabundant data) on the quality
of the recovered data on Γi. As for the fourth case, the numerical tests are done on an L-shaped
domain Ω =]0, 0.5[×]− 0.25, 0.25[\[0, 0.35]× [−0.25, 0.1]. The boundary of Ω (∂Ω) is also divided
in three parts:

Γ0 =
{

(0, y) : 0.1 < y < 0.25
}
∪
{

(0.5, y) : −0.25 < y < 0.25
}
,

Γi =
{

(x, 0.25) : 0 < x < 0.5
}
,

Γc = Γ \ Γ0 ∪ Γi.

We note that in the last case the boundary Γc presents two corner points at (0.35, 0.1) and (0.35, 0)
which decreases the regularity of the prescribed data on Γc. For the four cases, the over-specified
Cauchy data in Γc are extracted from the analytic solution:

u(x, y) = sin(k π x) cosh(k π y),

14



(a) Two-dimensional exact solution (b) Example of a non-structured mesh for h =
1/40

Figure 4: Exact solution and an example of a non-structured mesh on the L-shaped domain

with k = 0.5 for the first as well as the last cases, and k = 2 for the two remaining cases.
The perturbed Cauchy data (T δ, φδ) are calculated by adding a multiplicative white noise to the
Cauchy data (T, φ) :

T δ = (1 + δ ω)T ; φδ = (1 + δ ω)φ,

where δ denotes the noise level and ω is a normally distributed random function (with values
ranging between −1 and 1). For the first case (Resp. the second, third and fourth case), the
analytic solution is shown in Fig. 1(a) (Resp. in Fig. 2(a), Fig. 3(a) and Fig. 4(a)) on a
non-structured mesh with h = 1/40 (see Fig. 1(b), Fig. 2(b), Fig. 3(b) and Fig. 4(b)). In the
last four figures, the nodes of Γc (Resp. of Γi) are plotted with a red circle (Resp. with a blue
circle).

Note that we have chosen to use the Lagrange multiplier method to impose Dirichlet condition
in all the direct solved problems. This choice plays an important role in smoothing noisy data
in Γc. In all the performed tests, we used a P2 finite element method to approximate the primal
variable u and a P1 finite element method to approximate the multiplier (used to impose Dirichlet
condition).

6.1 First case: square domain

As illustrated in Fig. (5(a)), we can observe that the trace of the noisy approximated solution on
Γc is smoother than the exact noisy data imposed on Γc. This is due to the use of the Lagrange
multiplier. The regularity of the trace of the noisy approximated solution obtained on Γc led to an
accurate recovered missing data on Γi (see Fig. 6). In Fig. 7 (resp. Fig. 8), we plot the variation
of the trace of u and the normal derivative of u (∂nu) in Γc (resp. Γi) according to the variation
of δ with h = 1/80. Despite the high noise level on the over-specified data in Γc, our variational
minimization method gives an accurate reconstructed fields on Γi (u and ∂nu). As shown in Fig.
9 (Resp. Fig. 10 and Fig. 11), the variation of the relative error (norm L2(Ω), H1(Ω), L2(Γc)
and L2(Γi) of u and L2(Γc) and L2(Γi) of ∂nu) is depicted according to the mesh size h for δ = 0
(Resp. δ = h and δ = h2). First, we see that for a low level of noise (δ ≤ h2) the obtained relative
errors are very close to the relative error obtained when we solve direct problem with exact data.
This means that for a low level of noise our strategy to solve Cauchy problem allows to obtain the
same precision of the direct problem which is in concordance with the theoretical result proved
in Proposition (9). Then we can observe that optimal rates of convergence are obtained, which
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(a) Trace of u in Γc (b) Normal derivative of u (∂nu) in Γc

Figure 5: Trace and normal derivative of u on Γc for h = 1/60 and δ = 0.1

(a) Trace of u in Γi (b) Normal derivative of u (∂nu) on Γi

Figure 6: Trace and normal derivative of u on Γi for h = 1/60 and δ = 0.1

(a) Trace of u in Γc (b) Normal derivative of u in Γc

Figure 7: Variation of the trace of u and the normal derivative of u (∂nu) on Γc according to the
variation of δ.

approve the shown a priori errors estimates in Proposition (9). The same optimality of the rates
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(a) Trace of u in Γi (b) Normal derivative of u in Γi

Figure 8: Variation of the trace of u and the normal derivative of u (∂nu) on Γi according to the
variation of δ.

of convergence is obtained with a little difference for the remained cases. We note here that
the use of a filtering procedure plays a crucial role in obtaining rates of convergence. Now in

Figure 9: Variation of the relative error of u according to the variation of the mesh size (δ = 0).

order to illustrate the importance of using the filtering procedure, we list in Table 1 the relative
error found (norm L2(Ω), H1(Ω), and L2(Γi) of u and L2(Γi) of ∂nu) as well as the number of
iteration needed to have convergence. Moreover, in Fig. 11 we trace the variation of the relative
error (norm L2(Ω), H1(Ω), L2(Γc) and L2(Γi) of u and L2(Γc) and L2(Γi) of ∂nu) according to
the mesh size h for δ = 0 and without a filtering procedure. From Table 1 we can observe that
the relative errors obtained by the filtering procedure are less than the relative errors reached
without the filtering procedure. Which means that the filtering procedure improves enormously
the qualities of the recovered data. The same remark can be observed when comparing Fig. 12
and Fig. 9. Indeed in Fig. 12 the obtained rates of convergence of our method without the
filtering procedure are not optimal, compared to the theoretical result presented in Proposition
(9). It is limited to 2.2, 1.6 and 2 for the L2(Ω), H1(Ω), and L2(Γi) relative error of u and 1.2
for L2(Γi) relative error of ∂nu. Conversely the obtained rates of convergence of our method with
filtering procedure, as show in Fig. 9, are super-optimal. It’s limited to 3.9, 2.3 and 3.4 for the
L2(Ω), H1(Ω), and L2(Γi) relative error of u and 2.2 for L2(Γi) relative error of ∂nu.
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Figure 10: Variation of the relative error of u according to the variation of the mesh size (δ = h2).

Figure 11: Variation of the relative error of u according to the variation of the mesh size (δ = h).

Table 1: Variation of the relative error of recovered data and the number of iteration required
to find optimal convergence according to the use or not of the filtering procedure (δ = 0 and
h = 0.5/60)

Strategy of resolution ‖u‖L2(Γi) ‖∂nu‖L2(Γi) ‖u‖L2(Ω) ‖u‖H1(Ω) Number of iteration

Without a filtering 6.5e− 5 1.4e− 3 1.27e− 5 2.5e− 4 3

With a filtering 1e− 6 4.64e− 5 3e− 7 2.4e− 5 83

6.2 Second case: upper annular half disc with mes(Γc) > mes(Γi)

In Fig. 13 (resp. Fig. 14), we represent the variation of the trace of u and the normal derivative
of u (∂nu) on Γc (resp. Γi) with h = 1/60 and δ = 0.05. We can see that a good approximated
solutions are obtained but they are less than the one obtained in the first case. It can be explained
by the fact that the ratio between the measure of Γc plus the measure of Γ0 over the measure
of Γi is more than the one obtained for the first case. In Fig. 15 (resp. Fig. 16), we plot the
variation of the trace of u and the normal derivative of u (∂nu) in Γc (resp. Γi) according to the
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Figure 12: Variation of the relative error of u according to the variation of the mesh size (δ = h)
without filtering procedure.

(a) Trace of u in Γc (b) Normal derivative of u (∂nu) on Γc

Figure 13: Trace and normal derivative of u in Γc for h = 1/60 and δ = 0.05

variation of δ with h = 1/80. We can note that for lower level of noisy parameter (δ) we have a
good approximated solution on u and ∂nu. When δ increases, the quality of the approximated
normal derivative of u decreases more than the trace of u. For all the values of the noisy level δ,
the obtained relative errors of our approximation solution (for all study norms) are less than the
noisy level which confirm the given a priori error estimates shown in (38) and (39).

6.3 Third case: upper annular half disc with mes(Γc) < mes(Γi)

Now we switch between Γc and Γi in order to illustrate the influence of the ratio ρ =
mes(Γc)

mes(Γi)
on the quality of the recovered data and the sensitivity to noise levels. Fig. 18 shows the
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(a) Trace of u in Γi (b) Normal derivative of u (∂nu) in Γi

Figure 14: Trace and normal derivative of u on Γi for h = 1/60 and δ = 0.05

(a) Trace of u in Γc (b) Normal derivative of u in Γc

Figure 15: Variation of the trace of u and the normal derivative of u (∂nu) on Γc according to
the variation of δ

reconstructed data u and ∂nu for h = 1/60 and δ = 0.05. Compared to the result obtained in the
second case (Fig. 6), we deduce that the quality of reconstructed data decrease when ρ decreases.
It’s can be explained by the fact that when ρ decreases the quality of subscribed data on Γc
decrease (as shown in Fig.13 and Fig.17 ), which affect the quality of the recovered data on Γi.

Fig. 19 (Resp. Fig. 20) represents the reconstruction data u and ∂nu on Γc (Resp. Γi) with
different noise levels (δ = 5e − 3, δ = 1e − 2 and δ = 5e − 2). Compared to the result obtained
in the second case (Fig. 15 and Fig. 16), we can see that the quality of the recovered data in
this case is less than the one obtained in the second case. Which means that when the ratio ρ
decreases the sensitivity of the noisy level increases.

6.4 Fourth case: L-shape domain

In this case we like to test the influence of the presence of two corner points, at (0.35, 0.1) and
(0.35, 0), on the recovered data on Γi. For a lower level of noisy (δ ≤ 5e − 4), our algorithm
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(a) Trace of u in Γi (b) Normal derivative of u in Γi

Figure 16: Variation of the trace of u and the normal derivative of u (∂nu) on Γi according to
the variation of δ

(a) Trace of u in Γc (b) Normal derivative of u (∂nu) in Γc

Figure 17: Trace and normal derivative of u in Γc for h = 1/60 and δ = 0.05

converges slowly but gives a good quality of solution. For a high level of noisy (≥ 5e − 3), our
algorithm converges quickly but it requires more iteration than the other cases. Also, the quality
of the recovered data on Γi (see Fig. 22) are less than the other cases. It can be explained by the
fact that the presence of the two corner points which decrease the regularity of the prescribed data
on Γc. Fig 23 shows the recovered data u and ∂nu on Γi with different noisy levels (δ = 5e− 3,
δ = 1e − 2 and δ = 5e − 2). The quality of the recovered data in this case is less than the ones
obtained in the other cases. For all tested noisy levels, the quality of the recovered trace of u on
Γi is similar to that obtained in the other cases 23(a). And the quality of the recovered trace
of the normal derivative of u on Γi is less than the ones obtained for the other cases (see Fig.
23(b)). This means that the presence of two corner points on Γc increases the sensitivity of our
algorithm to noisy data.
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(a) Trace of u in Γi (b) Normal derivative of u (∂nu) in Γi

Figure 18: Trace and normal derivative of u in Γi for h = 1/60 and δ = 0.05

(a) Trace of u in Γc (b) Normal derivative of u in Γc

Figure 19: Variation of the trace of u and the normal derivative of u (∂nu) in Γc according to the
variation of δ

7 Concluding remarks

In this paper, we proposed an energetic variational minimization method to solve numerically the
Cauchy Laplace problem in the framework of a finite element method. A filtering procedure has
been used as a new regularization procedure to the suggested method. The shown a priori error
estimates are optimal and take into account the level of noise. The numerical results confirm the
theoretical estimates: The numerical solution converge, with optimal rate of convergence, when
decreasing the mesh size and the noise level.
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