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 in the framework of a finite element method. A new strategy of regularization, called a filtering procedure regularization, is developed. The advantage of using this new regularization is that it does not require a regularization parameter and is easy to implement. An optimal a priori error estimate is proven, for the first time up to our knowledge, in the context of the finite element method. Some numerical results are presented to illustrate the performance of our approach.

Introduction

The present paper is meant to present a new numerical procedure for the resolution of the Cauchy problem. It is situated, for simplicity, within the framework of the Laplace equation which can be easily extended for any elliptic equation. The Cauchy problem has arisen from many practical contexts, such as non-destructive testing, electrocardiography, electroencephalography and hydro-geology. A tremendous body of literature has referred back to the leading work of Hadamard [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF]. In his work, Hadamard highlighted the ill-posedness of such an inverse problem which enormously increases the difficulties of its numerical treatment. There are many strategies used to circumvent these difficulties. We can cite the quasi-reversibility approach (see [4,3,[START_REF] Lattès | Méthode de quasi-réversibilité et applications[END_REF]), the Kozlov approach [START_REF] Va Kozlov | An iterative method for solving the cauchy problem for elliptic equmâions£ 9[END_REF][START_REF] Jourhmane | Convergence of an alternating method to solve the cauchy problem for poisson's equation[END_REF], the Fading approach [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF][START_REF] Delvare | An iterative boundary element method for cauchy inverse problems[END_REF], the Steklov-Poincaré approach [START_REF] Andrieux | Solving cauchy problems by minimizing an energy-like functional[END_REF] and the variational minimization approach [START_REF] Dinh | The cauchy problem for laplace's equation via the conjugate gradient method[END_REF][START_REF] Dinh | A variational method and approximations of a cauchy problem for elliptic equations[END_REF][START_REF] Phan | Energy space approaches to the cauchy problem for poisson's equation[END_REF]. For a detailed literature review in the context of the Laplace equation we can see [?]. In this study, we adopted a variational minimization method with an energy space approach similar to that presented in [START_REF] Phan | Energy space approaches to the cauchy problem for poisson's equation[END_REF]. The main feature is the use of a filtering procedure as a new regularization strategy in the context of the finite element method and a conjugate gradient method. This strategy does not require a regularization parameter. It is easy to implement and leads to a good accuracy similar to that of the direct problem. An optimal error estimate is shown, for the first time up to our knowledge, in the context of the finite element method.

The present contribution is organized as follows: In section 1, we define some useful space and operator needed for our study. In section 2, we model our energetic variational minimization problem. Section 3 presents a proof of the equivalence between the energetic variational minimization formulation and the Cauchy problem. Then we show the stability of our formulation according to the noise level. We also prove that our cost functional is twice Fréchet differentiable, strictly convex and coercive. In section 4, the discretization of the energetic variational minimization problem is presented in the framework of the finite element method. Then a stability result of our discrete formulation is proved. An optimal and an original a priori error estimate of this formulation is shown. In section 5, a modified conjugate gradient algorithm is presented. In order to illustrate the performance of our approach, the numerical results for some synthetic examples are presented in section 6. In all cases, the numerical results are compared to the "exact solutions" of the Cauchy problem. Finally, the conclusions are given in section 7.

Preliminary

Let Ω be a bounded Lipschitz domain in R 2 and Γ = Γ 0 ∪ Γ i ∪ Γ c . We assume that Γ i and Γ c are separated by a non-zero measure portion Γ 0 . Then following [START_REF] Steinbach | Numerical approximation methods for elliptic boundary value problems: finite and boundary elements[END_REF] let's define:

H 1 2 (Γ k ) = v = ṽ| Γ k : ṽ ∈ H 1 2 (Γ) , with k ∈ {i, c},
and

H 1 2 (Γ k ) = v = ṽ| Γ k : ṽ ∈ H 1 2 (Γ), supp(ṽ) ⊂ Γ k ⊂ H 1 2 (Γ k ), with k ∈ {i, c}.
Now, in order to define a norm in the Sobolev spaces

H 1 2 (Γ i ) and H 1 2 (Γ c
), the following two operators are constructed:

Let v k , with k ∈ {i, c} be the unique weak solution of the problem

     -∆v k = 0 in Ω, v k = w on Γ k , v i = 0 on Γ\Γ k , w ∈ H 1 2 (Γ k ), (1) 
then

A k : H 1 2 (Γ k ) -→ H -1 2 (Γ k ), w -→ A k w = ∂ n v k | Γ k .
Thereby we define the norms in the Sobolev spaces H 1 2 (Γ k ) with k ∈ {i, c} by:

w 2 H 1 2 (Γ k ) = A k w, w = v k 2 L 2 (Ω) . (2) 
For the numerical procedure, the Neumann to Dirichlet operator is defined by:

S N D : H -1 2 (Γ i ) -→ H 1 2 (Γ i ) λ -→ S N D λ = ξ | Γ i ,
where ξ is the weak solution of:

     -∆ξ = 0 in Ω, ∂ n ξ = λ on Γ i , ξ = 0 on Γ\Γ i . (3) 
In this paper we use the notation a b to signify that there exists a constant C > 0, independent of mesh size and noisy level, such that a ≤ C b.

The model problem

Let Ω be a bounded Lipschitz domain in R 2 . We assume that the boundary Γ of Ω is split into three open parts Γ 0 , Γ i and Γ c such that Γ = Γ 0 ∪ Γ i ∪ Γ c . We suppose that Γ i and Γ c are separated by a non-zero measure portion Γ 0 . We consider the Cauchy problem for the Laplace equation:

     -∆u = 0 in Ω, u = T on Γ c , ∂ n u = φ on Γ c , (4) 
where ∆ is the Laplace operator, T and φ are two given functions in H 1 2 (Γ c ) and H -1 2 (Γ c ). We assume that there exists a pair of compatible data (T, φ), and we denote by v the corresponding Cauchy solution. We consider a family of unnecessary compatible data (T δ , φ

δ ) ∈ H 1 2 (Γ c ) × H -1 2 (Γ c ) such that : T -T δ 2 H 1 2 (Γc) + φ -φ δ 2 H -1 2 (Γc) ≤ δ 2 (5) 
To solve problem (4), we define the energetic variational minimization problem:

min η∈ H 1 2 (Γ i ) H(η) (6) 
where

H(η) = J(u(φ, η)), ∀η ∈ H 1 2 (Γ i ), with J(u) = 1 2 u -T 2 H 1 2 (Γc)
, and u(φ, η) is the unique weak solution of

           -∆u = 0 in Ω, ∂ n u = φ on Γ c , u = η on Γ i , u = 0 on Γ 0 . (7) 
In the case of noisy data, we consider the noisy energetic variational minimization problem:

min η∈ H 1 2 (Γ i ) H δ (η), (8) 
where

H δ (η) = J δ (u(φ δ , η)), ∀η ∈ H 1 2 (Γ i ), with J δ (u) = 1 2 u -T δ 2 H 1 2 (Γc)
, and u(φ δ , η) is the unique weak solution of

           -∆u = 0 in Ω, ∂ n u = φ δ on Γ c , u = η on Γ i , u = 0 on Γ 0 . (9) 
3 The energetic variational minimization problem

Let S = u(φ, η) | Γc
where u is the unique weak solution of [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF] : such that η ∈ H 1 2 (Γ i ) .

Proposition 1 S forms a dense set in H 1 2 (Γ c ) and we have inf

η∈ H 1 2 (Γ i ) H(η) = 0. Proof. Let w in H 1 2 (Γ c ) such that Γc u(φ, η)wdΓ = 0 ∀η ∈ H 1 2 (Γ i ). ( 10 
)
We shall prove that w = 0, on Γ i . Let ψ be the solution of

           -∆ψ = 0 in Ω, ∂ n ψ = w on Γ c , ψ = 0 on Γ i , ψ = 0 on Γ 0 . (11) 
Using the variational formulations of ( 11) and [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF] and equation [START_REF] Hanke | Regularization methods for large-scale problems: Surveys on mathematics for industry[END_REF], we have :

Γc φψdΓ = Γ i ∂ n ψ ηdΓ, ∀η ∈ H 1 2 (Γ i ). (12) 
Replacing η by -η in the last equation, we obtain

Γc φψdΓ = Γ i ∂ n ψ ηdΓ = - Γ i ∂ n ψ ηdΓ = 0, ∀η ∈ H 1 2 (Γ i ), (13) 
which means that ∂ n ψ = 0 on Γ i .

Thus, the function ψ ∈ H 1 (Ω) satisfies the Cauchy problem

           -∆ψ = 0 in Ω, ψ = 0 on Γ i , ∂ n ψ = 0 on Γ i u = 0 on Γ 0 . (14) 
from which it follows that ψ ≡ 0 and therefore w = ∂ n ψ = 0 on Γ c . From the density of S, we immediately have inf

η∈ H 1 2 (Γ i ) H(η) = 0.
Proposition 2 Assume that problem (4) admits a solution (i.e. a case of compatible data), then solving the Cauchy problem (4) is equivalent to solving [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF].

Proof. In the case of the compatible Cauchy problem, let v be the unique solution of (4) such that η C = v | Γ i . The well-posed problem [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF] has a unique solution u(φ, η C ) for η = η C . Let z = u(φ, η C ) -v, then it is the unique weak solution of (4) with φ = 0 and η = 0. Thus z = 0 on Ω, v = u(φ, η C ) and H(η C ) = 0. This means that η C solves the variational minimization problem [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF]. Conversly, let η be a solution of [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF] and u(φ, η) the corresponding weak solution of [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF], then

H(η) = 0 ( inf η∈ H 1 2 (Γ i ) H(η)=0) which follows that u(φ, η) = T | Γc
. In the case of compatible Cauchy data, we deduce that u(φ, η) is the solution of (4) and η = η C .

Proposition 3 Assume there exists a unique Cauchy solution v ∈ H 1 (Ω) for a given compatible pair of data (T, φ) ∈ H

1 2 (Γ c ) × H -1 2 (Γ c ). Let (T δ , φ δ ) ∈ H 1 2 (Γ c ) × H -1 2 (Γ c
) be any sequence of noisy, unnecessary compatible, data such that

T -T δ 2 H 1 2 (Γc) + φ -φ δ 2 H -1 2 (Γc) ≤ δ 2 , ( 15 
)
then the noisy energetic variational minimization problem (8) has a unique solution η δ which strongly converges, as δ → 0, to the Cauchy missing data η C = v | Γ i . Moreover, the solution u(φ δ , η δ ) of ( 9) strongly converges in H 1 (Ω) to the Cauchy solution v.

Proof. It is clear that, the noisy energetic variational minimization problem ( 8) is found to have the same property of the energetic variational minimization problem [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF]. Then problem (8) has a unique solution η δ and by using a triangular inequality and the trace theorem between H 1 (Ω) et H 1 2 (Γ) we obtain:

H δ (η C ) = J δ (u(φ δ , η C )), = 1 2 u(φ δ , η C ) -T δ 2 H 1 2 (Γc) , = 1 2 u(φ δ , η C ) -u(φ, η C ) + u(φ, η C ) -T δ 2 H 1 2 (Γc) , ≤ u(φ δ , η C ) -u(φ, η C ) 2 H 1 2 (Γc) + u(φ, η C ) -T δ 2 H 1 2 (Γc) , u(φ δ , η C ) -u(φ, η C ) 2 H 1 (Ω) + u(φ, η C ) -T δ 2 H 1 2 (Γc) 
.

Let z = u(φ δ , η C ) -u(φ, η C ), then z is the weak solution of            -∆z = 0 in Ω, ∂ n z = φ δ -φ on Γ c , z = 0 on Γ i , u = 0 on Γ 0 . (16) 
then we have

z H 1 (Ω) φ δ -φ H -1 2 (Γc)
.

As u(φ, η C ) = v, then we obtain

H δ (η C ) φ -φ δ 2 H -1 2 (Γc) + T -T δ 2 H 1 2 (Γc) δ 2 . Now, since H δ (η δ ) ≤ H δ (η C ) δ 2 therefore lim δ→0 H δ (η δ ) = 0. Given the fact that H δ is coercive in H 1 2 (Γ i ), we can deduce that η δ is uniformly bonded in H 1 2 (Γ i ). Thus v δ i is uniformly bonded in H 1 (Ω) where v δ
i is the unique solution of (1) with k = i and w = η δ . Up to a subsequence, we have v δ i weakly converges to v i in H 1 (Ω) and strongly in L 2 (Ω) (v i is the unique solution of (1) with k = i and w = η 0 )). Using Poincarè inequality, we have the strong convergence of v δ i to v i in H 1 (Ω). Consequently, η δ strongly converges to η 0 in H 1 2 (Γ i ). Since the sequence T δ strongly converges to T in H 1 2 (Γ c ) and φ δ strongly converges to φ in H -1 2 (Γ c ) as well, we infer that the sequences u(φ δ , η δ ) which are the solutions of ( 9), strongly converge in H 1 (Ω) to u(φ, η 0 ) which is the unique solution of

           -∆u = 0 in Ω, ∂ n u = φ on Γ c , u = η 0 on Γ i , u = 0 on Γ 0 . (17) 
As

H δ (η δ ) = 1 2 u(φ δ , η δ ) -T δ 2 H 1 2 (Γc)
δ 2 , we deduce that u(φ δ , η δ ) -T δ strongly converges to

0 in H 1 2 (Γ c ). Hence u(φ, η 0 ) = T over Γ c .
Thanks to the uniqueness of the Cauchy problem, we conclude that u(φ, η 0 ) = v and η 0 = η C .

Proposition 4

The functional H is twice Fréchet differentiable and strictly convex over

H 1 2 (Γ i ).
Proof. Let h be a function in H 1 2 (Γ i ), then for all ε ≥ 0 we have:

H(η + εh) = 1 2 u(φ, η + εh) -T 2 H 1 2 (Γc) , = 1 2 u(φ, η) -T + εu(0, h) 2 H 1 2 (Γc) , = 1 2 u(φ, η) -T 2 H 1 2 (Γc) + ε Γc A c u(φ, η) -T u(0, h)dΓ + 2 2 u(0, h) 2 H 1 2 (Γc) , = H(η) + ε Γc A c u(φ, η) -T u(0, h)dΓ + 2 2 u(0, h) 2 H 1 2 (Γc) , then ∇H(η).h = lim ε→0 H(η + εh) -H(η) ε = Γc A c u(φ, η) -T u(0, h)dΓ. ( 18 
)
Let ψ be the weak solution of

           -∆ψ = 0 in Ω, ∂ n ψ = A c (u(φ, η) -T ) on Γ c , ψ = 0 on Γ i , ψ = 0 on Γ 0 . (19) 
and knowing that u(0, h) is the weak solution of ( 7) we infer

Γc A c u(φ, η) -T u(0, h)dΓ = - Γ i ∂ n ψ u(0, h)dΓ = - Γ i ∂ n ψ hdΓ, ∀h ∈ H 1 2 (Γ i ).
Consequently,

H (η) = -∂ n ψ | Γ i . ( 20 
)
Now we prove that J is twice differentiable and strictly convex.

Consider the problem:

           -∆ξ = 0 in Ω, ∂ n ξ = A c u(0, h) on Γ c , ξ = 0 on Γ i , ξ = 0 on Γ 0 . (21) 
Following Green's formula, we obtain

Γc A c u(0, h) u(0, h)dΓ = - Γ i ∂ n ξ u(0, h)dΓ = - Γ i ∂ n ξ hdΓ, ∀h ∈ H 1 2 (Γ i ),
Using [START_REF] Phan | Energy space approaches to the cauchy problem for poisson's equation[END_REF], we have

H (η) h, τ = Γc A c u(0, τ ) u(0, h)dΓ, ∀(h, τ ) ∈ H 1 2 (Γ i ) × H 1 2 (Γ i ), (22) 
Thus,

H (η) h, h = Γc A c u(0, h) u(0, h)dΓ = - Γ i ∂ n ξ u(0, h)dΓ, ∀h ∈ H 1 2 (Γ i ). ( 23 
)
It follows that H is twice differentiable and its second gradient is given by:

H (η) h = -∂ n ξ
Now we prove that functional H is strictly convex. First, we observe that it is convex since

H (η) h, h = Γc A c u(0, h) u(0, h)dΓ = u(0, h) 2 H 1 2 (Γc) ≥ 0 (24) Furthermore, if H (η) h, h = 0 then u(0, h) | Γc = 0.
It follows that u(0, h) satisfies the Cauchy problem with homogeneous Cauchy data:

           -∆u = 0 in Ω, u = 0 on Γ c , ∂ n u = 0 on Γ c , u = 0 on Γ 0 . (25) 
From Holmgren's theorem [START_REF] Albert | Über Systeme von linearen partiellen Differentialgleichungen[END_REF], we have u(0, h) ≡ 0 in Ω. Hence, H is strictly convex on H 1 2 (Γ i ).

Proposition 5

The functional H is coercive over

H 1 2 (Γ i ).
Proof. Assume by contradiction that H is not coercive over

H 1 2 (Γ i ) then there exists a sequence (ψ n ) ∈N ⊂ H 1 2 (Γ i ) such that ψ n H 1 2 (Γ i ) = 1 and lim n→+∞ H(ψ n ) = +∞.
We have H(ψ n ) = J(u(φ, ψ n )) and by using the well-posedness of the weak formulation of (7), we obtain

u(φ, ψ n ) H 1 (Ω) ψ n H 1 2 (Γ i ) + φ H -1 2 (Γc)
.

Consequently, by using the trace theorem form

H 1 (Ω) to H 1 2 (Γ), we get u(φ, ψ n ) H 1 2 (Γc) u(φ, ψ n ) H 1 2 (Γ) u(φ, ψ n ) H 1 (Ω) ≤ φ H -1 2 (Γc) + ψ n H 1 2 (Γ i )
,

and u(φ, ψ n ) is bounded in H 1 2 (Γ c ) which is in contradiction with the fact that J is coercive in H 1 2 (Γ c ).
Remark: Using the linearities of problems ( 7) and ( 9) we show that:

H(η) = 1 2 a(η, η) -l(η) + d, (26) 
H δ (η) = 1 2 a(η, η) -l δ (η) + d δ , (27) 
with a a symmetric bilinear form on

H 1 2 (Γ i ) × H 1 2 (Γ i ) defined by a(η, h) = Γc A c u(0, η) u(0, h)dΓ, ∀(η, h) ∈ ( H 1 2 (Γ i ) × H 1 2 (Γ i )), (28) 
l and l δ are two linear forms defined by:

l(h) = - Γc A c u(0, h) u(φ, 0) -T dΓ, ∀h ∈ H 1 2 (Γ i ), l δ (h) = - Γc A c u(0, h) u(φ δ , 0) -T δ dΓ, ∀h ∈ H 1 2 (Γ i ),
and d and d δ are two constant defined by:

d = Γc A c u(φ, 0) -T u(φ, 0) -T dΓ, d δ = Γc A c u(φ δ , 0) -T δ u(φ δ , 0) -T δ dΓ.
Using Proposition (4) and ( 5), we deduce that a is a symmetric bilinear form strictly convex and coercive on H

1 2 (Γ i ) × H 1 2 (Γ i ).
Also, l and l δ are two continuous linear forms on H 1 2 (Γ i ). Proposition 6 Under the assumption of Proposition (3), let η δ (Resp. η) be the unique solution of the noisy energetic variational minimization problem (8) (Resp. the energetic variational minimization problem ( 6)). Then it yields

η δ -η H 1 2 (Γ i ) δ. (29) 
Proof. Using the first order optimality condition of problems ( 8) and ( 6), it gives:

a(η δ , h) = l δ (h), ∀h ∈ H 1 2 (Γ i ), a(η, h) = l(h), ∀h ∈ H 1 2 (Γ i ).
Which lead to:

a(η -η δ , η -η δ ) = l(η -η δ ) -l δ (η -η δ ), = Γc A c u(0, η -η δ ) u(φ δ -φ, 0) + T -T δ dΓ.
From the H 1 2 (Γ i )-ellipticity of a, the Cauchy and the triangular inequalities we have:

η -η δ 2 H 1 2 (Γ i ) a(η -η δ , η -η δ ), = Γc A c u(0, η -η δ ) u(φ δ -φ, 0) + T -T δ dΓ, A c u(0, η -η δ ) H -1 2 (Γc) u(φ δ -φ, 0) + T -T δ H 1 2 (Γc) , A c u(0, η -η δ ) H -1 2 (Γc) u(φ δ -φ, 0) H 1 2 (Γc) + T -T δ H 1 2 (Γc)
.

Using the continuities of the operator A c and the trace operator between H 1 (Ω) and

H 1 2 (Γ) we obtain η -η δ 2 H 1 2 (Γ i ) u(0, η -η δ ) H 1 2 (Γc) u(φ δ -φ, 0) H 1 2 (Γc) + T -T δ H 1 2 (Γc) , u(0, η -η δ ) H 1 (Ω) u(φ δ -φ, 0) H 1 (Ω) + T -T δ H 1 2 (Γc) , η -η δ H 1 2 (Γ i ) φ δ -φ H -1 2 (Γc) + T -T δ H 1 2 (Γc)
.

By using assumption [START_REF] Va Kozlov | An iterative method for solving the cauchy problem for elliptic equmâions£ 9[END_REF], we have the a priori error estimate (29).

Discrete energetic variational minimization problem

In this section, we present the discretized formulation of (8) using a classical C 0 finite element based on polynomials of the kth degree (k ≥ 1). Let τ h be a regular mesh (see [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]) of the domain Ω with a maximal size h, Ω = K∈τ h K. We denote by P k (T ) the space of polynomials of a degree less or equal to k ∈ N * defined on T ∈ τ h . Then we can define the following standard finite element spaces:

V h = v h ∈ C 0 (Ω) : v h | T ∈ P k (T ), ∀T ∈ τ h , W h = v h ∈ L 2 (Ω) : v h | T ∈ P k (T ), ∀T ∈ τ h , V h Γ = V h | Γ ⊂ H 1 2 (Γ), M h Γ k = W h | Γ k ⊂ H -1 2 (Γ k ), with k ∈ {i, c}, H h 1 2 (Γ k ) = v h = ṽ| Γ k : ṽh ∈ V h Γ , supp(ṽ h ) ⊂ Γ k ⊂ H 1 2 (Γ k ), with k ∈ {i, c}. Let T h = Π h H h 1 2 (Γc) T, φ h = π h M h Γc φ, T δ h = Π h H h 1 2 (Γc)
T δ , and

φ δ h = π h M h Γc φ δ where Π h H h 1 2 (Γc) is the standard Lagrange interpolation operators in H h 1 2 (Γ c ) and π h M h Γc is the L 2 (Γ c )-orthogonal
projection operator on M h Γc . We recall that for all φ ∈ H s (Γ c ) and T ∈ H s+1 (Γ c ) with 1 ≤ s ≤ k + 1 we have [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF][START_REF] Ern | Theory and practice of finite elements[END_REF]:

φ -π h M h Γc φ H -1 2 (Γc) h s+ 1 2 φ H s (Γc) , (30) 
T -Π h H h 1 2 (Γc) T H 1 2 (Γc) h s+ 1 2 T H s+1 (Γc) . (31) 
We define the discrete energetic variational minimization problem by:

min η∈ H h 1 2 (Γ i ) H h (η), (32) 
where

H h (η) = J h (u h (φ δ h , η)), ∀η ∈ H h 1 2 (Γ i ), with J h (u h ) = 1 2 u h -T h 2 H h 1 2 (Γc)
, and u h (φ h , η) is the unique weak discrete solution of

           -∆u h = 0 in Ω, ∂ n u h = φ h on Γ c , u h = η on Γ i , u h = 0 on Γ 0 . (33) 
Similarly, we define the noisy discrete energetic variational minimization problem by : min

η∈ H h 1 2 (Γ i ) H δ h (η), (34) 
where

H δ h (η) = J δ h (u h (φ δ h , η)), ∀η ∈ H h 1 2 (Γ i ), with J δ h (u h ) = 1 2 u h -T δ h 2 H h 1 2 (Γc)
,

and u h (φ δ h , η) is the unique weak solution of            -∆u h = 0 in Ω, ∂ n u h = φ δ h on Γ c , u h = η on Γ i , u h = 0 on Γ 0 . (35) 
Proposition 7 Assume there exists a unique discrete Cauchy solution v h ∈ V h for a given discrete compatible pair of data

(T h , φ h ) ∈ H h 1 2 (Γ c ) × M h Γc . Let (T δ h , φ δ h ) ∈ H h 1 2 (Γ c ) × M h
Γc be any sequence of noisy, unnecessary compatible, data such that

T h -T δ h 2 H 1 2 (Γc) + φ h -φ δ h 2 H -1 2 (Γc) ≤ δ 2 (36)
Then the noisy discrete energetic variational minimization problem (34) has a unique solution η δ h which strongly converges, as δ → 0, to the Cauchy missing data η Ch = v h | Γ i . Moreover, the solution u(φ δ h , η δ h ) of (35) strongly converges in V h to the discrete Cauchy solution v h = u(φ h , η Ch ).

Proof. The proof is the same as that of Proposition (3) with the little difference that weak convergence implies strong convergence in a finite dimension space.

Proposition 8 Under assumption of Proposition [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF], let η δ h (Resp. η h ) be the unique solution of the discrete noisy energetic variational minimization problem (34) (Resp. the discrete energetic variational minimization problem (32)). Then it yields

η δ h -η h H 1 2 (Γ i ) δ. ( 37 
)
Proof. The proof is the same as the proof of Proposition [START_REF] Cimetiere | Solution of the cauchy problem using iterated tikhonov regularization[END_REF].

Proposition 9 Let v be the exact solution of the continuous Cauchy problem for a couple of compatible data (T, φ)

∈ H h 1 2 (Γ c ) × M h Γc , such that v ∈ H s (Ω) with 1 ≤ s ≤ k + 1.
Under assumption of Proposition ( 6) and ( 8) the following estimates hold:

η δ h -η H 1 2 (Γ i ) h s-1 v H s-1 2 (Γ i ) + φ H s-3 2 (Γc) + T H s-1 2 (Γc) + δ, (38) 
u h (φ δ h , η δ h ) -v H 1 (Ω) h s-1 v H s (Ω) + δ. ( 39 
)
Proof. Let η h be the unique solution of the variational formulation:

a( η h , ψ h ) = l(ψ h ), ∀ψ h ∈ H h 1 2 (Γ i ). ( 40 
)
To prove (38), we use the triangular inequality to obtain:

η δ h -η H 1 2 (Γ i ) ≤ η δ h -η h H 1 2 (Γ i ) + η h -η H 1 2 (Γ i ) + η h -η h H 1 2 (Γ i ) (41) 
For the second term of the right-hand side of inequality (41), we use Céa Lemma, the Galerkin orthogonality and standard finite element a priori error estimate of the Lagrange interpolation operator Π h

H h 1 2 (Γ i )
to find:

η h -η H 1 2 (Γ i ) h s-1 η H s-1 2 (Γ i ) . ( 42 
)
To estimate the third term of the right-hand side of inequality (41), we first write the optimality condition of problems ( 6) and (32):

a( η h , ψ h ) = l(ψ h ), ∀ψ h ∈ H h 1 2 (Γ i ), a(η h , ψ h ) = l h (ψ h ), ∀ψ h ∈ H h 1 2 (Γ i ), with l h (ψ h ) = - Γc A c u(0, ψ h ) u(φ h , 0) -T h dΓ, ∀ψ h ∈ H 1 2 (Γ i ).
Thus

a(η h -η h , η h -η h ) = l h (η h -η h ) -l(η h -η h ), = Γc A c u(0, η h -η h ) u(φ -φ h , 0) + T h -T dΓ, ≤ A c u(0, η h -η h ) H -1 2 (Γc) u(φ -φ h , 0) H 1 2 (Γc) + T h -T H 1 2 (Γc)
.

Then using the H 1 2 (Γ i )-ellipticity of the operator a and the continuities of the operator A c and the trace operator between H 1 (Ω) and

H 1 2 (Γ) we deduce η h -η h 2 H 1 2 (Γ i ) ≤ A c u(0, η h -η h ) H -1 2 (Γc) u(φ -φ h , 0) H 1 2 (Γc) + T h -T H 1 2 (Γc) , u(0, η h -η h ) H 1 2 (Γc) u(φ -φ h , 0) H 1 2 (Γc) + T h -T H 1 2 (Γc) , u(0, η h -η h ) H 1 (Ω) u(φ -φ h , 0) H 1 (Ω) + T h -T H 1 2 (Γc) , η h -η h H 1 2 (Γ i ) φ -φ h H -1 2 (Γc) + T h -T H 1 2 (Γc)
.

Due to the a priori error estimates (30) and (31) we have:

η h -η h H 1 2 (Γ i ) h s-1 φ H s-3 2 (Γc) + T H s-1 2 (Γc) . ( 43 
)
From Proposition [START_REF] Delvare | An iterative boundary element method for cauchy inverse problems[END_REF], inequalities (41), ( 42) and (43) we establis:

η δ h -η H 1 2 (Γ i ) h s-1 v H s-1 2 (Γ i ) + φ H s-3 2 (Γc) + T H s-1 2 (Γc) + δ. ( 44 
)
Now to prove (39), we use a triangular inequality to have:

u h (φ δ h , η δ h ) -v H 1 (Ω) ≤ u h (φ δ h , η δ h ) -u h (φ δ h , η h ) H 1 (Ω) + u h (φ δ h , η h ) -u h (φ h , η h ) H 1 (Ω) + u h (φ h , η h ) -v H 1 (Ω) .
Thanks to the classical regularity results for elliptic Boundary Value Problems type (35), we obtain:

u h (φ δ h , η δ h ) -v H 1 (Ω) η δ h -η h H 1 2 (Γ i ) + φ h -φ δ h H -1 2 (Γc) + u h (φ h , η h ) -v H 1 (Ω) .
As u h (φ h , η h ) is the weak discrete solution of (33) and v is also the exact solution of ( 7), we have by using a standard finite element a priori error estimate (see [START_REF] Ern | Theory and practice of finite elements[END_REF]):

u h (φ h , η h ) -v H 1 (Ω) h s-1 v H s (Ω) . (45) 
Finally, using Proposition (8) and inequalities ( 36) and ( 45), we deduce:

u h (φ δ h , η δ h ) -v H 1 (Ω) δ + h s-1 v H s (Ω) .

Numerical procedure

To solve numerically the proposed formulation [START_REF] Ern | Theory and practice of finite elements[END_REF] of the data completion problem, we apply the following modified conjugate gradient algorithm:

1. Choose η 0 and set n = 0.

2. Solve the direct problem [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF] with η = η n and determine the residual:

r n = u(φ δ , η n ) -T δ | Γc
3. Determine the gradient g n = H (η n ) by solving the adjoint problem (19) with

H (η n ) = -∂ n ψ | Γ i , then calculate d n = -g n + β n-1 d n-1 , with the convention β -1 = 0, β n-1 = g n 2 H 1 2 (Γ i ) g n-1 2 H 1 2 (Γ i )
, ∀n > 0.

4. Calculate z n = S N D d n by solving (3).

5. Determine u(0, z n ) by solving the direct problem [START_REF] Pj | Lectures on cauchy's problem in linear partial differential equations[END_REF] with φ = 0 and η = z n

α n = g n 2 H 1 2 (Γ i ) u(0, z n ) 2 H 1 2 (Γc) , η n+1 = η n + α n z n .
6. Increase n by one and go to (2

) if r n+1 H 1 2 (Γc) ≤ r n H 1 2 (Γc) 
.

The fourth step of the algorithm is a filtering procedure. It can be viewed as a regularization strategy that allows our algorithm to converge numerically with the same optimal rates of convergence proved in Proposition [START_REF] Ern | Theory and practice of finite elements[END_REF]. As a stopping criterion, we choose a classical one (see [START_REF] Hanke | Regularization methods for large-scale problems: Surveys on mathematics for industry[END_REF]), the first k such that:

r n+1 H 1 2 (Γc) < β * δ,
where β is some number which is greater than unity. Similar to [START_REF] Hanke | Regularization methods for large-scale problems: Surveys on mathematics for industry[END_REF][START_REF] Dinh | The cauchy problem for laplace's equation via the conjugate gradient method[END_REF] we take β = 1.1.

Numerical results

To illustrate the performance of our method, we consider four cases. In the first case, the numerical The third case is the same as the second. We just switch between Γ c and Γ i to illustrate the 

Γ i = (x, 0.25) : 0 < x < 0.5 , Γ c = Γ \ Γ 0 ∪ Γ i .
We note that in the last case the boundary Γ c presents two corner points at (0.35, 0.1) and (0.35, 0) which decreases the regularity of the prescribed data on Γ c . For the four cases, the over-specified Cauchy data in Γ c are extracted from the analytic solution: The perturbed Cauchy data (T δ , φ δ ) are calculated by adding a multiplicative white noise to the Cauchy data (T, φ) :

u(x, y) = sin(k π x) cosh(k π y),
T δ = (1 + δ ω) T ; φ δ = (1 + δ ω) φ,
where δ denotes the noise level and ω is a normally distributed random function (with values ranging between -1 and 1). For the first case (Resp. the second, third and fourth case), the analytic solution is shown in Fig. 1 Note that we have chosen to use the Lagrange multiplier method to impose Dirichlet condition in all the direct solved problems. This choice plays an important role in smoothing noisy data in Γ c . In all the performed tests, we used a P 2 finite element method to approximate the primal variable u and a P 1 finite element method to approximate the multiplier (used to impose Dirichlet condition).

First case: square domain

As illustrated in Fig. (5(a)), we can observe that the trace of the noisy approximated solution on Γ c is smoother than the exact noisy data imposed on Γ c . This is due to the use of the Lagrange multiplier. The regularity of the trace of the noisy approximated solution obtained on Γ c led to an accurate recovered missing data on Γ i (see Fig. 6). In Fig. 7 (resp. Fig. 8), we plot the variation of the trace of u and the normal derivative of u (∂ n u) in Γ c (resp. Γ i ) according to the variation of δ with h = 1/80. Despite the high noise level on the over-specified data in Γ c , our variational minimization method gives an accurate reconstructed fields on Γ i (u and ∂ n u). As shown in Fig. 9 (Resp. Fig. 10 and Fig. 11), the variation of the relative error (norm L 2 (Ω), H 1 (Ω), L 2 (Γ c ) and L 2 (Γ i ) of u and L 2 (Γ c ) and L 2 (Γ i ) of ∂ n u) is depicted according to the mesh size h for δ = 0 (Resp. δ = h and δ = h 2 ). First, we see that for a low level of noise (δ ≤ h 2 ) the obtained relative errors are very close to the relative error obtained when we solve direct problem with exact data. This means that for a low level of noise our strategy to solve Cauchy problem allows to obtain the same precision of the direct problem which is in concordance with the theoretical result proved in Proposition [START_REF] Ern | Theory and practice of finite elements[END_REF]. Then we can observe that optimal rates of convergence are obtained, which approve the shown a priori errors estimates in Proposition [START_REF] Ern | Theory and practice of finite elements[END_REF]. The same optimality of the rates of convergence is obtained with a little difference for the remained cases. We note here that the use of a filtering procedure plays a crucial role in obtaining rates of convergence. Now in Figure 9: Variation of the relative error of u according to the variation of the mesh size (δ = 0).

order to illustrate the importance of using the filtering procedure, we list in Table 1 the relative error found (norm L 2 (Ω), H 1 (Ω), and L 2 (Γ i ) of u and L 2 (Γ i ) of ∂ n u) as well as the number of iteration needed to have convergence. Moreover, in Fig. 11 we trace the variation of the relative error (norm L 2 (Ω), H 1 (Ω), L 2 (Γ c ) and L 2 (Γ i ) of u and L 2 (Γ c ) and L 2 (Γ i ) of ∂ n u) according to the mesh size h for δ = 0 and without a filtering procedure. From Table 1 we can observe that the relative errors obtained by the filtering procedure are less than the relative errors reached without the filtering procedure. Which means that the filtering procedure improves enormously the qualities of the recovered data. The same remark can be observed when comparing Fig. 12 and Fig. 9. Indeed in Fig. 12 the obtained rates of convergence of our method without the filtering procedure are not optimal, compared to the theoretical result presented in Proposition [START_REF] Ern | Theory and practice of finite elements[END_REF]. It is limited to 2.2, 1.6 and 2 for the L 2 (Ω), H 1 (Ω), and L 2 (Γ i ) relative error of u and 1.2 for L 2 (Γ i ) relative error of ∂ n u. Conversely the obtained rates of convergence of our method with filtering procedure, as show in Fig. 9, are super-optimal. It's limited to 3.9, 2.3 and 3.4 for the L 2 (Ω), H 1 (Ω), and L 2 (Γ i ) relative error of u and 2.2 for L 2 (Γ i ) relative error of ∂ n u. Table 1: Variation of the relative error of recovered data and the number of iteration required to find optimal convergence according to the use or not of the filtering procedure (δ = 0 and h = 0.5/60) In Fig. 13 (resp. Fig. 14), we represent the variation of the trace of u and the normal derivative of u (∂ n u) on Γ c (resp. Γ i ) with h = 1/60 and δ = 0.05. We can see that a good approximated solutions are obtained but they are less than the one obtained in the first case. It can be explained by the fact that the ratio between the measure of Γ c plus the measure of Γ 0 over the measure of Γ i is more than the one obtained for the first case. In Fig. 15 (resp. Fig. 16), we plot the variation of the trace of u and the normal derivative of u (∂ n u) in Γ c (resp. Γ i ) according to the 6.3 Third case: upper annular half disc with mes(Γ c ) < mes(Γ i )

Strategy of resolution u L 2 (Γ i ) ∂ n u L 2 (Γ i ) u L 2 (Ω) u H 1 (Ω)
Now we switch between Γ c and Γ i in order to illustrate the influence of the ratio ρ = mes(Γ c ) mes(Γ i ) on the quality of the recovered data and the sensitivity to noise levels.

Fig. 18 shows the 6), we deduce that the quality of reconstructed data decrease when ρ decreases. It's can be explained by the fact that when ρ decreases the quality of subscribed data on Γ c decrease (as shown in Fig. 13 and Fig. 17 ), which affect the quality of the recovered data on Γ i . Fig. 19 (Resp. Fig. 20) represents the reconstruction data u and ∂ n u on Γ c (Resp. Γ i ) with different noise levels (δ = 5e -3, δ = 1e -2 and δ = 5e -2). Compared to the result obtained in the second case (Fig. 15 and Fig. 16), we can see that the quality of the recovered data in this case is less than the one obtained in the second case. Which means that when the ratio ρ decreases the sensitivity of the noisy level increases.

Fourth case: L-shape domain

In this case we like to test the influence of the presence of two corner points, at (0.35, 0.1) and (0.35, 0), on the recovered data on Γ i . For a lower level of noisy (δ ≤ 5e -4), our algorithm 
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 402 Figure 2: Exact solution and an example of a non-structured mesh on an upper annular half disc with mes(Γ c ) > mes(Γ i )
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 403 Figure 3: Exact solution and an example of a non-structured mesh on an upper annular half disc with mes(Γ c ) < mes(Γ i ) influence of the measure of the boundary Γ c (when we have overabundant data) on the quality of the recovered data on Γ i . As for the fourth case, the numerical tests are done on an L-shaped domain Ω =]0, 0.5[×] -0.25, 0.25[\[0, 0.35] × [-0.25, 0.1]. The boundary of Ω (∂Ω) is also divided in three parts: Γ 0 = (0, y) : 0.1 < y < 0.25 ∪ (0.5, y) : -0.25 < y < 0.25 ,
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 404 Figure 4: Exact solution and an example of a non-structured mesh on the L-shaped domain

  (a) (Resp. in Fig. 2(a), Fig. 3(a) and Fig. 4(a)) on a non-structured mesh with h = 1/40 (see Fig. 1(b), Fig. 2(b), Fig. 3(b) and Fig. 4(b)). In the last four figures, the nodes of Γ c (Resp. of Γ i ) are plotted with a red circle (Resp. with a blue circle).

  (a) Trace of u in Γc (b) Normal derivative of u (∂nu) in Γc
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 5 Figure 5: Trace and normal derivative of u on Γ c for h = 1/60 and δ = 0.1
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 6 Figure 6: Trace and normal derivative of u on Γ i for h = 1/60 and δ = 0.1
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 7 Figure 7: Variation of the trace of u and the normal derivative of u (∂ n u) on Γ c according to the variation of δ.
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 a Trace of u in Γi (b) Normal derivative of u in Γi
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 8 Figure 8: Variation of the trace of u and the normal derivative of u (∂ n u) on Γ i according to the variation of δ.
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 10 Figure 10: Variation of the relative error of u according to the variation of the mesh size (δ = h 2 ).
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 11 Figure 11: Variation of the relative error of u according to the variation of the mesh size (δ = h).

Figure 12 :

 12 Figure 12: Variation of the relative error of u according to the variation of the mesh size (δ = h) without filtering procedure.
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 a Trace of u in Γc (b) Normal derivative of u (∂nu) on Γc
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 13 Figure 13: Trace and normal derivative of u in Γ c for h = 1/60 and δ = 0.05
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 a Trace of u in Γi (b) Normal derivative of u (∂nu) in Γi
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 14 Figure 14: Trace and normal derivative of u on Γ i for h = 1/60 and δ = 0.05
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 15 Figure 15: Variation of the trace of u and the normal derivative of u (∂ n u) on Γ c according to the variation of δ

  (a) Trace of u in Γi (b) The normal derivative of u in Γi

Figure 20 :

 20 Figure 20: Variation of the trace of u and the normal derivative of u (∂ n u) in Γ i according to the variation of δ
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 21 Figure 21: Trace and normal derivative of u in Γ c for h = 1/60 and δ = 0.05
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 22 Figure 22: Trace and normal derivative of u in Γ i for h = 1/60 and δ = 0.05
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 23 Figure 23: Variation of the trace of u and the normal derivative of u (∂ n u) in Γ i according to the variation of δ
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(a) Two-dimensional exact solution (b) Example of a non-structured mesh for h = 1/40 Figure 1: Exact solution and an example of non-structured mesh on the square domain tests are made on a square domain defined by Ω =]0, 0.5[×] -0.25, 0.25[. The boundary of Ω (∂Ω) is divided into three parts: Γ c = (x, -0.25) : 0 < x < 0.5 ,Γ i = (x, 0.25) : 0 < x < 0.5 , Γ 0 = Γ \ (Γ c ∪ Γ i ).With regard to the second case, the numerical tests are performed on an upper annular half disc centred on the point (0,0) with an external radius R 1 = 0.5 and an internal radius R 2 = 0.75 R 1 . The boundary of this domain is divided into three parts:Γ 0 = (x, 0) : R 2 <| x |< R 1 , Γ i = (x, y) : x 2 + y 2 = R 2 , y > 0 , Γ c = (x, y) : x 2 + y 2 = R 1 , y > 0 .

In this paper, we proposed an energetic variational minimization method to solve numerically the Cauchy Laplace problem in the framework of a finite element method. A filtering procedure has been used as a new regularization procedure to the suggested method. The shown a priori error estimates are optimal and take into account the level of noise. The numerical results confirm the theoretical estimates: The numerical solution converge, with optimal rate of convergence, when decreasing the mesh size and the noise level.