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preliminary issues of finite element relaxation schemes for elastodynamics
from physical modeling through analytical studies for numerical purposes

• relaxation approximations support entropy inequalities – dissipative
mechanism and damping effects on oscillations
• stability/convergence of finite elements schemes
• computational performance – adaptive meshing yields an extra
stabilization against the nonlinear response over shock regions
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physical modeling : relaxation mechanisms in continuum mechanics
and kinetic theory (models for elastodynamics, traffic flows, time
decaying of chemical elements, biological systems with reaction time)

analytical studies : diffusive relaxation limits for hyperbolic systems by
means of compensated compactness techniques, singular perturbations
of first order hyperbolic (pseudo-differential) equations, BGK-type
approximations towards degenerate parabolic equations
• D. Donatelli, P. Marcati, Convergence of singular limits for multi-D semilinear hyperbolic
systems to parabolic systems, Trans. Amer. Math. Soc. (2004)

numerical purposes : relaxation approximations of hyperbolic
conservation laws, reduced discrete velocity kinetic models, ...
• S. Jin, Z.P. Xin, The relaxation schemes for systems of conservation laws in arbitrary
space dimensions, Comm. Pure Appl. Math. (1995)
• M.K. Banda, A. Klar, L. Pareschi, M. Seäıd, Compressible and incompressible limits for
hyperbolic systems with relaxation, J. Comput. Appl. Math. (2004)

Chapman-Enskog expansions and parabolic scaling of hyperbolic systems
to evidence diffusive behaviors, under a sub-characteristic condition
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diffusive stress relaxation for elastodynamics in one space dimension

– deformation gradient uε(t, x)∈R and velocity vε(t, x)∈R
– kinematic viscosity µ = µ(ε)>0 , relaxation parameter ε>0

non-homogeneous (strictly) hyperbolic 3× 3 semilinear system uεt − vεx = 0
vεt − Z εx = 0
εZ εt − µ vεx = −Z ε + S(uε)

with the corresponding system for the original fields (one-field equation){
uεt − vεx = 0
vεt − S(uε)x −µ vεxx + ε vεtt = 0

from the 2× 2 incompletely parabolic system of visco-elastodynamics

– supplementary relaxation variable Z ε(t, x)∈R for the Piola-Kirchoff
stress-strain tensor S : R→ R (gradient of a convex internal/stored
energy for hyper-elastic materials with nonlinear response)
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viscoelastic materials exhibit time dependent stress-strain response when
undergoing deformations : viscosity/relaxation approximations describe
the (isothermal) motion in Lagrangian coordinates (with diffusive stress)(
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and the relaxation effects come from an (integral) memory-type term

putting ε = 0 into the system, the equilibrium relation Z = S(u) + µ vx
is formally recovered, that is interpreted as the passage from viscosity of
the memory-type to viscosity of the rate-type

• B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables,
J. Chem. Physics (1967)
• C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Fundamental
Principles of Mathematical Sciences 325, Springer-Verlag, Berlin, 2000
• A.E. Tzavaras, Materials with internal variables and relaxation to conservation laws,
Arch. Ration. Mech. Anal. (1999)
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for visco-elastodynamics , the well-posedness in Sobolev spaces for large
data is guaranteed by the results on weakly parabolic systems

• P. D’Ancona, S. Spagnolo The Cauchy problem for weakly parabolic systems, Math. Ann. (1997)

– in one space dimension, the assumption that the nonlinear flux
(stress-strain function) is globally Lipschitz , supu∈R |S ′(u)| < +∞ ,
stands for the sub-characteristic condition (the relaxation finite element
scheme yields weak solutions that dissipate all convex entropies, for the
method of symmetrizers, and the compensated compactness theory holds)

– in multi-dimensional systems, a sufficient condition to compensate
for the lack of parabolicity is a poly-convexity (or growth) assumption
on the internal/stored energy
• C. Lattanzio, A.E. Tzavaras, Structural properties of stress relaxation and convergence from
viscoelasticity to polyconvex elastodynamics, Arch. Ration. Mech. Anal. (2006)

– these are structural properties, whereas it should be proven for
Navier-Stokes and Euler equations

• Y. Brenier, R. Natalini, M. Puel, On a relaxation approximation of the incompressible
Navier-Stokes equations, Proc. Amer. Math. Soc. (2004)
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features that make finite element methods computationally attractive :

– formal high-order accuracy for smooth solutions, nonlinear stability
– in curved (spatial) domains, to easily incorporate complex geometries, and
support domain decomposition techniques for parallelization
– inherent implicit-explicit discretization of nonlinear terms

difficulties to solve hyperbolic and convection-dominated problems :

– to choose the correct regularization mechanism, to capture discontinuities or
strong gradients without producing spurious oscillations
– for relaxation approximations, the number of unknowns is increased

RELAXATION + ADAPTIVE MESHING

provides a dissipative mechanism against the destabilizing effect of nonlinear
response, combined with appropriate mesh refinement (by means of an error
indicator) to detect the location of the singularities

• F. Coquel, B. Perthame, Relaxation of energy and approximate Riemann solvers for general
pressure laws in fluid dynamics, SIAM J. Num. Anal. (1998)
• L. Gosse, A.E. Tzavaras, Convergence of relaxation schemes to the equations of
elastodynamics, Math. Comp. (2001)
• Ch. Arvanitis, Th. Katsaounis, Ch. Makridakis, Adaptive finite element relaxation
schemes for hyperbolic conservation laws, M2AN Math. Model. Numer. Anal. (2001)
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standard semi-discrete finite element schemes

• let Th be (uniformly regular) partitions, with characteristic lenght h>0
• (conforming) finite element spaces Wh,k⊂H1

0 , k ≥ 1 , of piecewise
polynomials (globally continuous) on Th with consistency properties

inf
wh∈Wh,k

(
‖wh − w‖L2 + h ‖wh − w‖H1

)
≤ C hk ‖w‖Hk

• homogeneous/periodic boundary conditions
• finite element space Wh,k−1⊂L2 of piecewise discontinuous polynomials

variational formulation : to find uεh , v
ε
h ,Z

ε
h ∈Wh,k solution to

〈∂tuεh , φ1〉+ 〈vεh , ∂xφ1〉 = 0

〈∂tvεh , φ2〉+ 〈Z εh , ∂xφ2〉 = 0

ε 〈∂tZ εh , φ3〉+ µ 〈vεh , ∂xφ3〉 = −〈Z εh , φ3〉+ 〈S(uεh), φ3〉

for all φ1, φ2, φ3 ∈Wh,k (for the computational issues, semi-implicit
discretizations in time are eventually considered, for which analogous
estimates could also be proven)
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for µ > ε , the system admits a positive definite symmetrizer

Hε =

 µ/ε 0 − 1
0 µ/ε− 1 0
−1 0 1


which defines the hessian of a convex entropy-entropy flux pair
(with dissipative behavior for the stiff/lower order source term)

η(wε) =
1

2

(µ
ε
− 1
)(
|uε|2 + |vε|2

)
+

1

2
|uε − Z ε|2

q(wε) = −
(µ
ε
− 1
)
vεZ ε

with wε = (uε, vε,Z ε)T , in the sense that Hεwε = ∇wεη(wε)

because of the symmetry, the mechanical energy is given by

E ε(wε) =

∫
R
η(wε) dx =

1

2
〈Hεwε,wε〉 =

1

2
〈wε,Hεwε〉

and it satisfies
d

dt
E ε(wε(t)) = 〈wεt ,∇wεη(wε)〉
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moreover, it bounds from above (it is equivalent to) the Euclidean norm

E ε(wε) ≥ 1

4

∫
R

(µ
ε
|uε|2 +

µ

ε
|vε|2 + |Z ε|2

)
dx

under the (admissible) hypothesis that µ
ε ≥ 4

– the system is equipped with a positive definite energy functional,
namely εE ε(wε), which is in fact equivalent to the (square of the)
L2-norm of the triple (uε, vε,

√
εZ ε) for at least ε << 1

– thanks to the semi-linearity and the constant symmetrizer,

E εγ (wε) =

∫
R
η(∂γwε) dx =

1

2
〈∂γwε,Hε∂γwε〉

defines a high-order energy, which is equivalent to higher order
Sobolev norms Hγ(R) , γ ≥ 1

– it holds also for multi-dimensional systems, and for the equations of
elastodynamics with a (strictly) polyconvex internal/stored energy
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we use φ1 = µ
ε
uεh−Z εh , φ2 =(µ

ε
−1)vεh , φ3 =Z εh −uεh ∈Wh,k to obtain

d

dt
E ε(wεh) =

1

ε

〈
S(uεh )− Z εh ,Z

ε
h − uεh

〉
revealing that the symmetrized form of the system is actually introduced to
keep the conservation property for the finite element framework
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ε
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dx
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|Z εh |2dx +

3

2
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∣∣2dx +

3

2

∫
R
|uεh |2dx

)
≤ − 1

2ε
‖Z εh ‖2

L2 +
3

2ε

(
1 + sup

ξ(uε
h

)∈Wh

∣∣S ′(ξ(uεh ))
∣∣2 )‖uεh (t)‖2

L2

under the generic assumption S(0)=0 , and finally

E εT (wεh) +
1

2ε

∫ T

0

‖Z εh (t)‖2
L2dt ≤ E ε0 (wεh) +

C0

ε

∫ T

0

‖uεh (t)‖2
L2dt

for any T >0 , with C0 only depending upon the (global) Lipschitz condition for
the nonlinear stress-strain function
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• by testing weak derivatives of the finite element solution, we also get
H1-stability estimates = strong dissipative estimates

uniformly with respect to the relaxation and numerical parameters

• corresponding L2-error estimates hold for the numerical errors

indeed, for some projection operator Ph into the finite element space,
and the auxiliary relaxation variable given by Z =S(u)+µ∂xv , we have

W = wεh − w = (wεh − Phw) + (Phw − w) = S(wεh,Phw) + C(Phw,w)

which satisfies an analogous semilinear system : in particular, the last
equation can be rewritten as follows, for any φ3∈Wh,k

〈∂tZ , φ3〉+
µ

ε
〈V , ∂xφ3〉 = −1

ε
〈Z , φ3〉+

1

ε
〈S(uεh)− S(u), φ3〉− 〈∂tz , φ3〉

• for well-prepared initial data, this implies convergence with the optimal
(polynomial) rate, without specific relationship between the parameters
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for the method of modulated energy, the approximation of the relaxation
variables is sought in lower-order finite element spaces

we select φ3 = ∂xφ
2∈Wh,k−1 to obtain

ε 〈∂tZ εh , ∂xφ2〉 − µ 〈∂xvεh , ∂xφ2〉 = −〈Z εh , ∂xφ2〉+ 〈S(uεh), ∂xφ
2〉

by differentiating the second equation with respect to time, we get

〈∂ttvεh , φ2〉+ 〈∂tZ εh , ∂xφ2〉 = 0

and finally the following one-field equation, for any φ2∈Wh,k

〈∂tvεh , φ2〉+ 〈S(uεh), ∂xφ
2〉+µ 〈∂xvεh , ∂xφ2〉+ ε 〈∂ttvεh , φ2〉= 0

together with, for any φ1∈Wh,k

〈∂tuεh , φ1〉+ 〈vεh , ∂xφ1〉 = 0

so that the numerical system admits an equivalent (mixed) formulation,
that is a standard finite element scheme perturbed by a wave operator
(similar computation for fully-conforming finite element spaces)
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we choose φ1 =uεh , φ2 =vεh ∈Wh,k to obtain

1

2

d

dt
‖uεh‖2

L2 + 〈vεh , ∂xuεh 〉 = 0 ,

1

2

d

dt
‖vεh ‖2

L2 + 〈S(uεh ),∂xv
ε
h 〉+ µ ‖∂xvεh ‖2

L2 + ε
d

dt
〈∂tvεh , vεh 〉L2− ε‖∂tvεh ‖2

L2 = 0 ,

• taking advantage from the relaxation term, we deduce an estimate
for the time derivative, and we modulate with a lower-order energy
coming from the wave equation

we fix λ > 1 and we choose φ2 =ελ∂tv
ε
h ∈Wh,k to obtain

ελ‖∂tvεh ‖2
L2 + ελ〈S(uεh ), ∂x∂tv

ε
h 〉+ µ ελ

1

2

d

dt
‖∂xvεh ‖2

L2 + ε2λ
1

2

d

dt
‖∂tvεh ‖2

L2 = 0

we sum together, rearranging the equalities as

1

2

d

dt

(
‖uεh‖2

L2 + ‖vεh + ε∂tv
ε
h ‖2

L2 + ε2(λ− 1)‖∂tvεh ‖2
L2 + µ ελ‖∂xvεh ‖2

L2

)
+ ε(λ− 1)‖∂tvεh ‖2

L2 +µ ‖∂xvεh ‖2
L2 + 〈S(uεh )− uεh , ∂xv

ε
h 〉

+ ελ
d

dt
〈S(uεh ), ∂xv

ε
h 〉− ελ〈∂tS(uεh ), ∂xv

ε
h 〉= 0
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– for the generic assumption S(0)=0 , it holds∣∣∣〈S(uεh)− uεh , ∂xv
ε
h 〉
∣∣∣ ≤ (1 + LS)2

µ
‖uεh‖2

L2 +
1

4
µ ‖∂xvεh ‖2

L2

with LS>0 the Lipschitz constant of the stress-strain function

– using φ1 =S ′(uεh) ∂xv
ε
h ∈Wh,k−1 (with abuse of notation), we get

〈∂tuεh ,S ′(uεh)∂xv
ε
h 〉 = 〈∂xvεh ,S ′(uεh)∂xv

ε
h 〉

that implies

µ ‖∂xvεh ‖2
L2 − ελ〈S ′(uεh)∂tu

ε
h , ∂xv

ε
h 〉 ≥ (µ− ελLS)‖∂xvεh ‖2

L2 ≥ 0

under the sub-characteristic condition given by µ ≥ ελLS , which is
satisfied for ε small enough in diffusive relaxation limits, but also
essentially for a hyperbolic scaling

thus, we conclude strong dissipative estimates for the modulated energy
functional suggested by the relaxation terms (uniformly with respect to
the relaxation and numerical parameters)
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??? ??? ???

1) implementation for multi-dimensional problems (including boundary
conditions) and inverse inequalities for weak finite element spaces

2) to employ discontinuous finite elements to effectively handle shock
waves arising in nonlinear elastic materials, for real applications

3) generalization to physical models with viscosity of memory-type
leading to integro-differential operators (non-local with general kernels)

4) kinetic formulation of elastodynamics and related topics, as the
relaxation method corresponds to some discrete kinetic approximation
(equations of gas dynamics and magneto-hydrodynamics, shallow water
equations, compressible Navier-Stokes equations with high Reynolds
numbers, hydrodynamic models for semiconductor devices, ...)

5) for the Euler equations, to devise an (incomplete) artificial/numerical
viscosity with a (mesh dependent) higher order parameter, in view of
an alternative approach to the resolution of contact discontinuities
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