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From the supersymmetric version of Biedenharn-Elliott identity, two 3-term recurrence relations satisfied by the Racah coefficients are derived. Each super Racah coefficient 6j S with parities (alpha, beta or gamma) can generally be written as linear combination of two generalized hypergeometric 4F3 series. For alpha parity only one series is enough. The 144 symmetries, including those of Regge, are well recovered like in the classic case except for beta parity which only counts 48. It is realized that the polynomials associated with the 4F3 series actually consist simply of two Wilson polynomials. The role of Saalschützian property is emphasized.

Introduction

Using a modern terminology one could say that the so called 'Racah problem' for the superalgebra osp(1|2) found a solution thanks to Daumens et al. [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF] in 1993. Indeed, it was done by a using a finite-dimensional R j -spin irreducible representation of osp(1|2, see [2, p. 971-972] for a clear description. The reduction of the tensor product of three representations R j by two intermediate ways naturally led them to define a super-Racah coefficient 6j S in a similar approach to that used for su [START_REF] Livine | Three-dimensional Quantum SuperGravity and Supersymmetric Spin Foam Models[END_REF]. The Casimir operator of the representations was not used. Nowadays with a different point of view, the Racah problem is to find the overlap between respective eigenstates of some intermediate Casimir operators when adding three algebras. With the representations used, it is shown that the Bannai-Ito polynomials [START_REF] Bannai | Algebraic Combinatorics I: Association Schemes[END_REF] are the Racah coefficients of the super-algebra osp(1|2 ) [START_REF] Genest | Structures algébriques, systèmes superintégrables et polynômes orthogonaux[END_REF]Part III]. Besides, we continued studies [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF][START_REF] Bréhamet | Regge Symmetry of 6-j or super 6-jS Symbols: a Re-Analysis with Partition Properties[END_REF][START_REF] Bréhamet | The Ponzano-Regge asymptotic of the Supersymmetric 6jS symbols[END_REF] rather in a practical perspective. Thus any supersymmetric {6j} S symbols (or supersymmetric Racah coefficients) can be computed thanks to a single summation formula over an integer z and a whole set of tools was built for osp(1|2) (tables, product formulas of tensor operators using them, Ponzano-Regge asymptotic, definition of a {9j} S coefficient and so on, equivalent to those we can find in standard books about angular momentum for su [START_REF] Livine | Three-dimensional Quantum SuperGravity and Supersymmetric Spin Foam Models[END_REF]. These super-Racah coefficients, called {6j} susy by Livine and Oeckl [START_REF] Livine | Three-dimensional Quantum SuperGravity and Supersymmetric Spin Foam Models[END_REF] were invoked for their supersymmetric spin foam model. Recently for deformed q-algebras like U q(sl N ) the symmetries of quantum 6j-symbols have been studied thoroughly by Alekseev et al. [START_REF] Alekseev | Multiplicity-free U q (sl N) 6-j symbols: relations, asymptotics, symmetries[END_REF], with the discovering of new ones [START_REF] Alekseev | Interplay between symmetries of quantum 6-j symbols and the eigenvalue hypothesis[END_REF] in terms of q-analogues 4 Φ 3 or 5 Φ 4 q-hypergeometric functions. In addition from a decade a lot of studies on various algebras (including osp(1|2)) related to hypergeometric orthogonal polynomials, mainly from Montreal University, pushed us to delve deeper into unexplored properties of the {6j} S coefficients. Since a long time standard 6j coefficients are recognized as 4 F 3 generalized hypergeometric functions and orthogonal poynomials [START_REF] Wilson | Hypergeometric series recurrence relations and some new orthogonal functions[END_REF][START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF], it remained today to further explore the properties of the supersymmetric 6j S , verify their symmetries and by the same token derive other interesting results like 3-term recurrence relations.

2 Basic recalls about 6j S symbols 2.1 Standart 6j symbols Representation of a Racah coefficient (called also {6j} symbol) J 1 J 2 J 3 j 1 j 2 j 3 :

the four triangles of any {6j} the three columns pairs p 1 p 2 p 3 p 4 q 1 q 2 q 3 p i is the sum of the values of the three circled spins just above p i in the diagrams. In the same way, q k is the sum of the values of the four circled spins above q j . The variables p,q (perimeters, quadrangles) are not free since they satisfy the identity

3 k=1 q k = 4 i=1 p i . (2.1)
Any spin is thus determined by two p i and one q k according to 2J 1 = p 1 + p 4q 1 , 2J 2 = p 2 + p 4q 2 , 2J 3 = p 3 + p 4q 3 , (2.2)

2j 1 = p 2 + p 3 -q 1 , 2j 2 = p 3 + p 1 -q 2 , 2j 3 = p 1 + p 2 -q 3 . (2.3) 
A standard 6-j symbol may be written as follows [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF]:

J 1 J 2 J 3 j 1 j 2 j 3 = N z (-1) z (z+1)! i=4 i=1 (z-p i )! k=3 k=1 (q k -z)! , with N = k=3 k=1 i=4 i=1 (q k -p i ) i=4 i=1 (p i +1)! 1 2
.

(2.4)

Super 6j S symbols

Similarly to su(2), these coefficients arise when we recouple three representations, but here for osp(1|2). We have obtained the following formulas:

J 1 J 2 J 3 j 1 j 2 j 3 S π = (-1) 4 j k J k √ R S z (-1) z z!Ππ(z) i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z))! , (2.5) 
where R S is a supersymmetric prefactor given by

R S = k=3 k=1 i=4 i=1 [q k -p i ]! i=4 i=1 [p i + 1 2 ]! . (2.6)
The delimiters [• • • ] around an expression stands for the integer part of the expression. For any j, integer or half integer, its integer part is obtained by taking the double, then perform the Euclidean division by 2 and consider the quotient, namely

[j] = {(2j)}/2. (2.7)
There are 3 parities (π) for these Racah coefficients from the four quantum triangle perimeters:

     π = α if ∀i ∈ [1, 4] p i integer (⇒ q k integer (k = 1, 2, 3)), π = β if ∃ only two distinct p i , p j integer (⇒ ∃! q k integer), π = γ if ∀i ∈ [1, 4] p i half-integer (⇒ q k integer (k = 1, 2, 3)).
(2.8)

For a parity β, both integer triangles shall be denoted by p, p ′ , both other half-integer by p, p ′ . The single integer quadrangle is denoted by q, both other half-integer by q, q ′ . In this case eq.(2.1) transforms into

q + q + q ′ = p + p ′ + p + p ′ . (2.9)
Monomials in z, namely Π π (z) of eq.(2.5) have been found to be [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF]:

Π α (z) = 1, (2.10) Π β (z) = -z(q + q ′ -p -p ′ + 1) + q + 1 2 q ′ + 1 2 -pp ′ , (2.11) Π γ (z) = -z + 2 c j ∧ c j ∨ c + ( c (j ∧ c + j ∨ c )) + 1 2 .
(2.12)

Note that the quantity (q + q ′pp ′ ) is related to one of the six spins, let be  * s , which is the single vertex common to both triangles p and p ′ .

 * s = 1 2 (q + q ′ -p -p ′ ) . (2.13)
Just here below for the parity β are shown the 6 positions of the spin  * s (inserted in a small box):

p 3 , p 4 p 2 , p 4 p 1 , p 4 p 2 , p 3 p 1 , p 3 p 1 , p 2 q 3 q 2 q 1 q 1 q 2 q 3 β 1 β 2 β 3 β 4 β 5 β 6 Thus  * s (β 3 ) = J 1 ||  * s (β 2 ) = J 2 ||  * s (β 1 ) = J 3 ||  * s (β 4 ) = j 1 ||  * s (β 5 ) = j 2 ||  * s (β 6 ) = j 3 . (2.
14) The integer quadrangle q is the only one which does not contain the distinguished spin  * s . j ∧ c stands for the three spins of the top row, and j ∨ c for the bottom row of the same column c. It can be checked that the coefficient Π γ (0) is an integer invariant under the tetrahedral symmetries and the five Regge transformations [START_REF] Bréhamet | Regge Symmetry of 6-j or super 6-jS Symbols: a Re-Analysis with Partition Properties[END_REF]. Indeed thanks to the expressions of any spin in terms of two p i and one q k [see eqs.(2.2),(2.3)], and to eq.( 2.1), it can be shown that

4 c j ∧ c j ∨ c = 3 k=1 q 2 k - 4 i=1 p 2 i ≡ 3 k=1 q k (q k + 1) - 4 i=1 p i (p i + 1). * (2.15)

osp(1|2) superalgebra and super Racah coefficients

Taking into account the acquired experience since the historic recoupling problems of Racah, from him until Genest [START_REF] Genest | The Bannai-Ito polynomials as Racah coefficients of the sl -1 (2) algebra[END_REF][START_REF] De Bie | The Bannai-Ito algebra and some applications[END_REF] and much other, if possible we should present a study with 3-terms recurrence, orthogonality, hypergeometric functions, orthogonal polynomials. As reported in a detailed comment by Rao et al. [START_REF] Rao | Racah polynomials and a three term recurrence relation for the Racah coefficients[END_REF] , we know that a close relation exists between the 3-terms recurrence of Racah coefficients and the 3-terms recurrence of the associated orthogonal polynomial. First of all, let us recall that for osp(1, 2) or su(2), orthogonality is simply a particular case of Biedenharn-Elliott identity (BE) [5, p.244]. Let's write the supersymmetric version of this identity: Setting e = a, d = b and especially f = 1 2 leads to 3 terms because here f varies in steps of 1/2.

3-term recurrence relation in steps of

a b c d e f S a b c p q r S = (-1) [a+b+c] × z (-1) [e+q+z]+[f +r+z]+[d+p+z]+2z e q z r f a S f r z p d b S d p z q e c S . (3 
a b c b a 1 2 S a b c p q r S = -(-1) [a+b+c]+[a+q+r-1 2 ]+[b+p+r-1 2 ] a q r -1 2 r 1 2 a S 1 2 r r -1 2 p b b S a b c p q r -1 2 S + (-1) [a+b+c]+[a+q+r]+[b+p+r] a q r r 1 2 a S 1 2 r r p b b S a b c p q r S + (-1) [a+b+c]+[a+q+r+ 1 2 ]+[b+p+r+ 1 2 ] a q r + 1 2 r 1 2 a S 1 2 r r + 1 2 p b b S a b c p q r + 1 2 S . (3.2) 
• Definitions and recalls for 6-j S with one spin 1/2: Directly inherited from Table II found in [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF], they are replaced by a product of two factors : a first one with phase and a second that we call reduced (with a * as lower index) .

a b c 1 2 c b S = (-1) [a+b+c+ 1 2 ]+2a (2b(2b+1)2c(2c+1)) 1 2 a b c 1 2 c b S * , (3.3) 
a b c 1 2 c b S = (-1) [a+b+c]+2b+2c (2b(2b+1)2c(2c+1)) 1 2 a b c 1 2 c b S * , [variant of eq.(3.3)] (3.4) a b -1 2 c 1 2 c b S = (-1) [a+b+c-1 2 ]+2b-1 ((2b)2c(2c+1)) 1 2 c b S * , (3.5) 
a b c 

S * = (-a+b+c+4bc) if a + b + c integer (a+b+c+ 1 2 +4bc) if a + b + c half-integer , (3.7) 
a b -1 2 c 1 2 c b S * = {(-a+b+c)(a+b-c)} 1 2 if a + b + c integer {(a-b+c+ 1 2 )(a+b+c+ 1 2 )} 1 2 if a + b + c half-integer . (3.8) a b c 1 2 c b + 1 2 S * = {(a-b+c)(a+b+c+1)} 1 2 if a + b + c integer {(-a+b+c+ 1 2 )(a+b-c+ 1 2 )} 1 2 if a + b + c half-integer . (3.9)
By using the integer parts identity [j] + [j + 1 2 ] = 2j we obtain the following reductions:

q r -1 2 a 1 2 a r S p r -1 2 b 1 2 b r S = (-1) [a+q+r]+[b+p+r]+2(a+b+p+q) × 1 2r 1 2a(2a+1)2b(2b+1) 1 2    q r -1 2 a 1 2 a r    S *    p r -1 2 b 1 2 b r    S * . (3.10) q r a 1 2 a r S p r b 1 2 b r S = (-1) [a+q+r]+[b+p+r]+2(a+b) × 1 2r(2r+1) 1 2a(2a+1)2b(2b+1) 1 2    q r a 1 2 a r    S *    p r p 1 2 b r    S * . (3.11) q r a 1 2 a r + 1 2 S p r b 1 2 b r + 1 2 S = (-1) [q+r+a]+[p+r+b] × 1 (2r+1) 1 2a(2a+1)2b(2b+1) 1 2 q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * . (3.12)
For avoiding square roots, we will work with the integer quantities like w S J 1 J 2 J 3 j 1 j 2 j 3 and supertriangles △ S (abc) defined in [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF].

J 1 J 2 J 3 j 1 j 2 j 3 S = (-1) 4 j ∧ c j ∨ c c △ S (J 1 j 2 j 3 )△ S (j 1 J 2 j 3 )△ S (j 1 j 2 J 3 )△ S (J 1 J 2 J 3 ) w S J 1 J 2 J 3 j 1 j 2 j 3 . (3.13) 
After some rearrangements we have

2r(2r+1) c a b 1 2 b a S * - q r a 1 2 a r S * p r b 1 2 b r S * w S a b c p q r = -(-1) 2(a+b+c) (2r+1) q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S * w S a b c p q r -1 2 △ S (a q r-1 2 ) △ S (a q r) • △ S (p b r-1 2 ) △ S (p b r) + (-1) 2(p+q+c) (2r) q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * w S a b c p q r + 1 2 △ S (a q r+ 1 2 ) △ S (a q r) • △ S (p b r+ 1 2 ) △ S (p b r)
. (3.14) From eq.(3.8) we derive

△ S (a q r -1 2 ) △ S (a q r) = {(a-q+r)(-a+q+r)} -1 2 if a + q + r integer {(a+q-r+ 1 2 )(a+q+r+ 1 2 )} 1 2 if a + q + r half-integer , (3.15) q r -1 2 a 1 2 a r S * = {(-q+a+r)(q-a+r)} 1 2 if a + q + r integer {(a+q-r+ 1 2 )(a+q+r+ 1 2 )} 1 2 if a + q + r half-integer , (3.16) 
and are able to write the following products only with integer parts:

△ S (a q r -1 2 ) △ S (a q r) × q r -1 2 a 1 2 a r S * = 1 if a + q + r integer (a+q-r+ 1 2 )(a+q+r+ 1 2 ) if a + q + r half-integer . (3.17) △ S (a q r -1 2 ) △ S (b p r -1 2 ) △ S (a q r) △ S (b p r) × q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S * = 1 if a + q + r integer (a+q-r+ 1 2 )(a+q+r+ 1 2 ) if a + q + r half-integer × 1 if b + p + r integer (b+p-r+ 1 2 )(b+p+r+ 1 2 ) if b + p + r half-integer . (3.18)
In the same way

△ S (a q r + 1 2 ) △ S (b p r + 1 2 ) △ S (a q r) △ S (b p r) × q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * = 1 if a + q + r integer (a-q+r+ 1 2 )(-a+q+r+ 1 2 ) if a + q + r half-integer × 1 if b + p + r integer (b-p+r+ 1 2 )(-b+p+r+ 1 2 ) if b + p + r half-integer . (3.19)
Equations (3.18), ( 3.19) can be compacted by the notational trick

[m + 1 2 ]! [m]! = 1 if m integer (m+ 1 2 ) if m half-integer . (3.20)
Thus the 3-term recurrence becomes an equation with all coefficients of the w S integer:

2r(2r+1) c a b 1 2 b a S * w S    a b c p q r    = -(-1) 2(a+b+c) (2r+1) [a+q-r+ 1 2 ]! [a+q-r]! [a+q+r+ 1 2 ]! [a+q+r]! [b+p-r+ 1 2 ]! [b+p-r]! [b+p+r+ 1 2 ]! [b+p+r]! w S a b c p q r -1 2 + q r a 1 2 a r S * p r b 1 2 b r S * w S    a b c p q r    + (-1) 2(p+q+c) (2r) [a-q+r+ 1 2 ]! [a-q+r]! [-a+q+r+ 1 2 ]! [-a+q+r]! [b-p+r+ 1 2 ]! [b-p+r]! [-b+p+r+ 1 2 ]! [-b+p+r]! w S a b c p q r + 1 2 . (3.21) • Definitions: Let us introduce three coefficients h n 1 n 2 ,n 3 , X r , Y r h n 1 n 2 ,n 3 =    n 3 n 1 n 2 1 2 n 2 n 1    S * = [n 3 -n 1 +n 2 + 1 2 ][n 3 +n 1 -n 2 + 1 2 ]+[n 3 +n 1 +n 2 +1][-n 3 +n 1 +n 2 + 1 2 ], (3.22) 
X r = [a+q-r+ 1 2 ]! [a+q-r]! [a+q+r+ 1 2 ]! [a+q+r]! [b+p-r+ 1 2 ]! [b+p-r]! [b+p+r+ 1 2 ]! [b+p+r]! , (3.23) Y r = [a-q+r+ 1 2 ]! [a-q+r]! [-a+q+r+ 1 2 ]! [-a+q+r]! [b-p+r+ 1 2 ]! [b-p+r]! [-b+p+r+ 1 2 ]! [-b+p+r]! . (3.24)
Accordingly the 3-term recurrence in steps of 1 2 reads ultimately

2r(2r+1) h a b,c w S    a b c p q r    = -(-1) 2(a+b+c) (2r+1)X r w S a b c p q r -1 2 + h r a,q h r b,p w S    a b c p q r    + (-1) 2(p+q+c) (2r)Y r w S    a b c p q r + 1 2    . (3.25)
Stricto sensu we really have to do with 3 terms, but the drawback of this equation in steps of 1 2 lies in its dependence in the parities (π) of their related w S (π) . At each iteration the parity of certain w S is changed. Actually this relation shows the non-independence of the parities α, β and γ. Each Racah coefficient with parity α, β, γ has a different recurrence relation. Nevertheless it is possible to find a standard 3-term recurrence in steps of 1, which does not change the parity of the w S π by again using the supersymmetric BE identity (3.1) . Equation above was successfully checked on computer by using only integers.

3-term recurrence in steps of 1

Here we restart from eq.(3.14) rewritten with coefficients h n 1 n 2 ,n 3 , and r → r - 1 2 , what yields

(2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p × w S a b c p q r -1 2 = -(-1) 2(a+b+c) (2r) q r -1 a 1 2 a r -1 2 S * p r -1 b 1 2 b r -1 2 S *
w S a b c p q r -1

△ S (a q r-1) △ S (a q r-1 2 )

• △ S (p b r-1) △ S (p b r-1 2 ) + (-1) 2(p+q+c) (2r-1) q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S *
w S a b c p q r △ S (a q r) △ S (a q r-1 2 )

• △ S (p b r) △ S (p b r- 1 2 ) 
. (3.26) and a similar equation for r → r + 1 2 .

First we multiply eq.(3.26) by

△ S (a q r-1 2 ) △ S (a q r) • △ S (p b r-1 2 ) △ S (p b r) • q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S *
and then we use the following identity with integer parts:

q r -1 a 1 2 a r -1 2 S * q r -1 2 a 1 2 a r S * △ S (a q r -1) △ S (a q r) = [q -r + a + 1][q + r + a + 1 2 ]. (3.27)
It results a 3-term expression in r -1 2 , r -1, r:

(2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p × q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S * △ S (a q r-1 2 ) △ S (a q r) △ S (p b r-1 2 ) △ S (p b r) w S a b c p q r -1 2 = -(-1) 2(a+b+c) (2r)[q-r+a+1][q+r+a+ 1 2 ][p-r+b+1][p+r+b+ 1 2 ] w S a b c p q r -1 + (-1) 2(p+q+c) (2r-1) q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S * 2 × w S a b c p q r . (3.28)
We follow a similar process for r → r + 1 2 , this time by operating with multipliers such as

△ S (a q r+ 1 2 ) △ S (a q r) • △ S (p b r+ 1 2 ) △ S (p b r) q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S *
. After simplification we find

(2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p × q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * △ S (a q r+ 1 2 ) △ S (a q r) • △ S (p b r+ 1 2 ) △ S (p b r) w S a b c p q r + 1 2 = -(2r+2)(-1) 2(a+b+c) q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * 2 w S a b c p q r + (2r+1)(-1) 2(p+q+c) q r a 1 2 a r + 1 2 S * q r + 1 2 a 1 2 a r + 1 S * △ S (a q r+1) △ S (a q r) • × p r b 1 2 b r + 1 2 S * p r + 1 2 b 1 2 b r + 1 S * △ S (p b r+1) △ S (p b r) w S a b c p q r + 1 . (3.29)
By using the identity (3.27 ) for integer parts we can write

q r a 1 2 a r + 1 2 S * q r + 1 2 a 1 2 a r + 1 S * = [q -r + a][q + r + a + 3 2 ] △ S (a q r+1) △ S (a q r) , (3.30) 
and a similar equation with {p r b} instead of {q r a}. Then in eq.(3.29) the coefficient of w S a b c p q r + 1 is equal to

(2r+1)[q-r+a][q+r+a+ 3 2 ] [p-r+b][p+r+b+ 3 2 ] △ S (a q r+1) △ S (a q r) • △ S (b p r+1) △ S (b p r) 2 .
(3.31)

Moreover as we have the result

△ S (a q r+1) △ S (a q r) 2 = [-a + q + r + 1][a -q + r + 1] [a + q + r + 3 2 ][a + q -r] , (3.32) the coefficient of w S a b c p q r + 1 becomes finally (2r+1)[-a+q+r+1][a-q+r+1][-b+p+r+1][b-p+r+1].
Equation (3.29) can be rewritten as:

(2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p × q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * △ S (a q r+ 1 2 ) △ S (a q r) • △ S (p b r+ 1 2 ) △ S (p b r) w S a b c p q r + 1 2 = -(2r+2)(-1) 2(a+b+c) q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * 2 w S a b c p q r + (2r+1)(-1) 2(p+q+c) [-a+q+r+1][a-q+r+1][-b+p+r+1][b-p+r+1]w S a b c p q r + 1 . (3.33) Multiplying eq.(3.14) by (2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p (2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p leads to (2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p (2r)(2r+1) h a b,c -h r a,q h r b,p (2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p × w S a b c p q r = -(-1) 2(a+b+c) (2r+1) (2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p △ S (a q r-1 2 ) △ S (a q r) • △ S (p b r-1 2 ) △ S (p b r) × (2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p q r -1 2 a 1 2 a r S * p r -1 2 b 1 2 b r S * w S a b c p q r -1 2 + (-1) 2(p+q+c) (2r) (2r-1)(2r) h a b,c -h r-1 2 a,q h r-1 2 b,p △ S (a q r+ 1 2 ) △ S (a q r) • △ S (p b r+ 1 2 ) △ S (p b r) × (2r+1)(2r+2) h a b,c -h r+ 1 2 a,q h r+ 1 2 b,p q r a 1 2 a r + 1 2 S * p r b 1 2 b r + 1 2 S * w S a b c p q r + 1 2 . (3.34)
We are now able to replace eqs.(3.28) and (3.33) in eq.(3.34) for dropping out the w S having r ± 1 2 . We need again to define three new coefficients η f , N r and k n 1 n 2 ,n 3 . • Definitions:

η f = 2f (2f +1)h a b,c -h f a,q h f b,p , N r = f =r+ 1 2 f =r-1 2 η f , k n 1 n 2 ,n 3 =    n 3 n 1 -1 2 n 2 1 2 n 2 n 1    S * . (3.35)
Finally here is the final 3-term recurrence in steps of 1 obtained with only integer quantities:

N r • w S a b c p q r = η r+ 1 2 (2r)(2r+1) [q-r+a+1][q+r+a+ 1 2 ][p-r+b+1][p+r+b+ 1 2 ]w S a b c p q r -1 -(-1) 2(a+b+p+q) × η r+ 1 2 (2r-1)(2r+1) k r a,q k r b,p 2 + η r-1 2 (2r) (2r+2) k r+ 1 2 a,q k r+ 1 2 b,p 2 w S a b c p q r + η r-1 2 (2r) (2r+1)[-a+q+r+1][a-q+r+1][-b+p+r+1][b-p+r+1]w S    a b c p q r + 1    . (3.36)
While realizing that writing a synthetic formula that use integer parts hides subdivisions of cases with different mathematical expressions, we note the advantage of not depending formally on parities α, β, γ. As for the 3-terms recurrence relation in steps of 1/2 successful tests were performed with integer numbers, but in a field more reduced because huge numbers in the coefficient N r occur and are out the range of small computers.

Pseudo-orhogonality relation

There are analogous properties, indeed the supersymmetric Racah coefficients {6j} S π have also a pseudo-orthogonality relation [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF][START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] that we can rewrite here as:

x (-1) [a+e+x]+[d+b+x]+2x a b c d e x S a b c ′ d e x S = (-1) [a+b+c]+[d+e+c]+2c δ c,c ′ , (3.37)
with the increment on x done by steps of 1/2. For recall let us write the orthogonality for su(2):

x a b x d e f S a b x d e f ′ S = δ f,f ′ , (3.38) 
with an increment in steps of 1. However, nothing really exploitable can be obtained because of parities mixing between α, β i∈1,6 and γ.

4 Expansion on hypergeometric 4 F 3 functions

Rao's calculations as model

From a series like eq.(2.4) which define a standard 6-j, use of function Γ and Pochhammer symbol (x) n leads to an hypergeometric formulation. For example by making the change z → q 1n in eq.( 2.4) we have to handle expressions like

N (-1) q 1 n (-1) n (q 1 +1-n)! i=4 i=1 (q 1 -p i -n)! k=3 k=1 (n+q k -q 1 )! . (4.1) (-1) (n+q 1 ) (q 1 +1-n)! =(-1) q 1 [(-q1-1) n ] -1 Γ(q 1 +2), (4.2) 1 
(q 1 -p 1 -n)! =(-1) n (p 1 -q 1 ) n [Γ(1+q 1 -p 1 )] -1 , 1 (q 1 -p 2 -n)! =(-1) n (p 2 -q 1 ) n [Γ(1+q 1 -p 2 )] -1 , (4.3) 1 
(q 1 -p 3 -n)! =(-1) n (p 3 -q 1 ) n [Γ(1+q 1 -p 3 )] -1 , 1 (q 1 -p 4 -n)! =(-1) n (p 4 -q 1 ) n [Γ(1+q 1 -p 4 )] -1 , (4.4) 1 
(n+q 2 -q 1 )! = 1 (q 2 -q 1 +1) n [Γ(q 2 -q 1 +1)] -1 , 1 (n+q 3 -q 1 )! = 1 (q 3 -q 1 +1) n [Γ(q 3 -q 1 +1)] -1 . (4.5)
Then, a {6j} symbol is written as a generalized hypergeometric function 4 F 3 of argument1. That yields a generalized hypergeometric function 4 F 3 of argument1 [START_REF] Rao | Group theoretical methods in Physics, Representation of the Racah coefficients as a generalized hypergeometric function[END_REF][START_REF] Rao | Special topics in the quantum theory of angular momentum[END_REF]:

J 1 J 2 J 3 j 1 j 2 j 3 = (-1) q k N Γ(q k +2)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)] -1 × 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k -1),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 . (4.6) with (k, k 2 , k 3 ) cyclic = (1, 2, 3) and k ∈ [1, 3]. Let us remind that r F s a 1 , a 2 , • • • b 1 , b 2 , • • • ; x is said Saalschützian [14] if b k = a i + 1. (4.7)
Thereafter we compute the "parametric excess" of balance condition of Slater [14, p.49], that we will denote in this paper by τ s :

τ s = b k - a i . (4.8) 
As τ s = 1 in the present case, we recover the set I of the three Saalschützian 4 F 3 functions of Rao [START_REF] Rao | Special topics in the quantum theory of angular momentum[END_REF]. The total number of permutations for p iq k and (q

k 2 -q k + 1) is 3 × 4! × 2 = 144.
A second change of summation variable is given by z → n + p 1 yields

N (-1) p 1 n (-1) n (n+p 1 +1)! i=4 i=1 (n+p 1 -p i )! k=3 k=1 (q k -n-p 1 )! . (4.9) Hence (-1) (n+p 1 ) (n+p 1 +1)!=(-1) n+p 1 (p 1 +2) n Γ(p 1 +2), (4.10) 1 (q 1 -p 1 -n)! =(-1) n (p 1 -q 1 ) n [Γ(1+q 1 -p 1 )] -1 , 1 (q 2 -p 1 -n)! =(-1) n (p 1 -q 2 ) n [Γ(1+q 2 -p 1 )] -1 , (4.11) 1 (q 3 -p 1 -n)! =(-1) n (p 1 -q 3 ) n [Γ(1+q 3 -p 1 )] -1 , 1 (n+p 1 -p 2 )! = 1 (p 1 -p 2 +1) n [Γ(p 1 -p 2 +1)] -1 , (4.12) 1 (n+p 1 -p 3 )! = 1 (p 1 -p 3 +1) n [Γ(p 1 -p 3 +1)] -1 , 1 (n+p 1 -p 4 )! = 1 (p 1 -p 4 +1) n [Γ(p 1 -p 4 +1)] -1 . (4.13)
Then the set II of the four 4 F 3 Saalschützian [thanks to eq.(2.1)] functions of Rao [START_REF] Rao | Special topics in the quantum theory of angular momentum[END_REF] is obtained.

J 1 J 2 J 3 j 1 j 2 j 3 = (-1) p i N Γ(p i +2)[ k=3 k=1 Γ(1+q k -p i ) j =i Γ(p i -p j +1)] -1 × 4 F 3 (p i +2),(p i -q 1 ),(p i -q 2 ),(p i -q 3 ) (p i -p i 2 +1),(p i -p i 3 +1),(p i -p i 4 +1) ; 1 , (4.14) 
with (i, i 2 , i 3 , i 4 ) cyclic = (1, 2, 3, 4) and i

∈ [1, ]. Number of permutations = 4 × 3! × 3! = 144.
Thus the 144 symmetries of a Racah coefficient, including the Regge symmetries [START_REF] Regge | Symmetries of Racah coefficients[END_REF]. Set I and set II are equivalent. Hereafter we will follow this method and generalize it to the supersymmetric case.

Remark for simply obtaining Regge symmetries

Here is our way of managing Regge symmetries by simple permutations: suppose we represent a {6j} as a function of its p i and q k by (p 1 , p 2 , p 3 , p 4 ; q 1 , q 2 , q 3 ). Then the 5 Regge transformations may be written as R 1 (p 1 , p 2 , p 3 , p 4 ; q 1 , q 2 , q 3 ) = (p 1 , p 3 , p 2 , p 4 ; q 1 , q 2 , q 3 ), (4.15) p 2 ↔ p 3 R 2 (p 1 , p 2 , p 3 , p 4 ; q 1 , q 2 , q 3 ) = (p 3 , p 2 , p 1 , p 4 ; q 1 , q 2 , q 3 ), (4.16)

p 1 ↔ p 3 R 3 (p 1 , p 2 ,
p 3 , p 4 ; q 1 , q 2 , q 3 ) = (p 2 , p 1 , p 3 , p 4 ; q 1 , q 2 , q 3 ), (4.17)

p 1 ↔ p 2 R 4 (p 1 , p 2 ,
p 3 , p 4 ; q 1 , q 2 , q 3 ) = (p 3 , p 1 , p 2 , p 4 ; q 2 , q 3 , q 1 ), (4.18) (p 1 , p 2 , p 3 ) → (p 3 , p 1 , p 2 ) and (q 1 , q 2 , q 3 ) → (q 2 , q 3 , q 1 ) R 5 (p 1 , p 2 , p 3 , p 4 ; q 1 , q 2 , q 3 ) = (p 2 , p 3 , p 1 , p 4 ; q 3 , q 1 , q 2 ). (4.19) (p 1 , p 2 , p 3 ) → (p 2 , p 3 , p 1 ) and (q 1 , q 2 , q 3 ) → (q 3 , q 1 , q 2 ) Now just use the expressions calculating the spins, eqs.(2.2),(2.3), after replacing the p i or q k given by the equations just above (4.15)-(4.19) to recover the well-known Regge formulas.

Expansion of super Racah coefficients

The triplet of equations (2.10)-(2.11)-(2.12) is the key for displaying the coefficients under a hypergeometric form 4 F 3 . The numerator factors (-1) z z!Π π (z) containing the monomials Π π (z), can be used for splitting each supersymmetric symbols into two 3 F 4 at most:

N α (z) = (-1) z (z)!, (5.1) N β (z) = (-1) z+1 (p + p ′ -q + 1)(z + 1)! + (-1) z [(p + p ′ -q + 1) + (q + 1 2 ) q ′ + 1 2 -pp ′ ](z)!, (5.2) N γ (z) = (-1) z+1 (z + 1)! + (-1) z 1 2 k q k (q k + 1) - i p 2 i + 3 2 (z)!. (5.3)
For the parity γ one may also note p i as p i since they are all half-integer. Then eqs.(2.5,2.6) compared to eq.( 2.4) allows us to quickly guess how to obtain hypergeometric 4 F 3 functions for the supersymmetric {6j} S π symbols from the standard formulas eqs.(4.6),(4.14): Under the sum over z, then inside the 4 F 3 , do the change p i → [p i + 1 2 ] and q k → [q k + 1 2 ].Also for the change of variable which need to be integer, we have to make changes as z → [q k + 1 2 ]n and z → [p i + 1 2 ] + n. As the identity between perimeters and quadrangles (2.1) is fundamental for checking if the new hypergeometric 4 F 3 functions are Saalschützian or not (by means of the indicator τ s ), it is useful to pre-calculate some sums of integer parts like 4 i=1 [p i + 1 2 ] and 3 k=1 [q k + 1 2 ]:

4 i=1 [p i + 1 2 ] = p 1 + p 2 + p 3 + p 4 , 3 k=1 [q k + 1 2 ] = q 1 + q 2 + q 3 . parity α (5.4) 4 i=1 [p i + 1 2 ] = p + p ′ + p + p ′ + 1, 3 k=1 [q k + 1 2 ] = q + q + q ′ + 1. parity β (5.5) 4 i=1 [p i + 1 2 ] = p 1 + p 2 + p 3 + p 4 + 2, 3 k=1 [q k + 1 2 ] = q 1 + q 2 + q 3 . parity γ (5.6)
The supersymmetric form of identity (2.1) remains unchanged for the parities α and β but differs for the third case γ. This can be visualized as follows:

3 k=1 [q k + 1 2 ] = 4 i=1 [p i + 1 2 ] for (α, β) and 3 k=1 [q k + 1 2 ] = 4 i=1 [p i + 1 2 ] -2 for (γ).
(5.7)

For the frontal phase as function of the parities π = α, β, γ, it can be checked that (-1)

4 jιJι =      (-1) φα = 1 if π = α, (-1) φ β = (-1) p+p ′ -q if π = β, (-1) φγ = (-1) 1+ k q k if π = γ.
(5.8)

It just remains to apply the Rao-process given as example above for the classic {6j} symbols.

5.1 One hypergeometric function 4 F 3 for parity α

J 1 J 2 J 3 j 1 j 2 j 3 S α = √ R S z (-1) z z! i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z)!
.

(5.9)

The calculation is simple because we handle only one sum over z. Since all the p i and q k are integers, then we can replace [p i + 1 2 ] and [q k + 1 2 ] by p i and q k respectively. If necessary, use will be made of the usual notation [14, p. 41

]: Γ(a 1 )Γ(a 2 )Γ(a 3 ) • • • Γ(a A ) Γ(b 1 )Γ(b 2 )Γ(b 3 ) • • • Γ(b B ) = Γ a 1 a 2 a 3 • • • a A b 1 b 2 b 3 • • • b B . (5.10)
After rearranging some products of Γ as

Γ([q k + 1 2 ]+1)[ i=4 i=1 Γ(1+[q k + 1 2 ]-[p i + 1 2 ]) l =k Γ([q l + 1 2 ]-[q k + 1 2 ]+1)] -1
we are led to a first result. Set I (α) for the {6j} S α :

J 1 J 2 J 3 j 1 j 2 j 3 S α = √ R S (-1) q k Γ(q k +1)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)] -1 × 4 F 3 -(q k -p 1 ),-(q k -p 2 ),-(q k -p 3 ),-(q k -p 4 ) -(q k ),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 , (5.11) 
with (k, k 2 , k 3 ) cyclic = (1, 2, 3). Indicator τ s = 2. In the same way we derive the second set.

Set II (α) for the {6j} S α :

J 1 J 2 J 3 j 1 j 2 j 3 S α = √ R S (-1) p i Γ(p i +1)[ 3 k=1 Γ(1+q k -p i ) m =i Γ(p i -pm+1)] -1 × 4 F 3 (p i +1),(p i -q 1 ),(p i -q 2 ),(p i -q 3 ) (p i -p i 2 +1),(p i -p i 3 +1),(p i -p i 4 +1) ; 1 , (5.12) 
with (i, i 2 , i 3 , i 4 ) cyclic = (1, 2, 3, 4). Indicator τ s = 2. Set I (α) and set II (α) are not Saalschützian. Note that the 4 F 3 obtained above have not the feature of an eventual physical parameter, like a standard symbol {6j} for example. Especially the Saalschützian property is not satisfied. By looking at each of the two 4 F 3 related to the sets I (α) and II (α) , and by taking up Rao's argumentation [START_REF] Rao | Special topics in the quantum theory of angular momentum[END_REF], we can see that the 144 symmetries of a standard {6j} symbol are well recovered. Both Set I (α) and Set II (α) are equivalent.

5.2 A sum of two hypergeometric functions 4 F 3 for parity β

J 1 J 2 J 3 j 1 j 2 j 3 S β = (-1) p+p ′ -q √ R S ×       (p+p ′ -q+1) z (-1) z+1 (z+1)! i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z)! + [(p+p ′ -q+1)+((q+ 1 2 )(q ′ + 1 2 )-pp ′ )] z (-1) z (z)! i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z)!       , (5.13) 
with p i ∈ [p, p ′ , p, p ′ ] and q k ∈ [q, q ′ , q]. With the change z → qn, a first set is obtained.

Note that here q is integer, if not we have to do 2 other changes like z

→ [q + 1 2 ]-n or z → [q ′ + 1 2 ]-n. Set I (β) for the {6j} S β : J 1 J 2 J 3 j 1 j 2 j 3 S β = (-1) p+p ′ √ R S ×Γ(q+1)[ i=4 i=1 Γ(1+q-[p i + 1 2 ])Γ(q+ 1 2 -q+1),(q ′ + 1 2 -q+1)] -1 ×           -(p+p ′ -q+1)([q k + 1 2 ]+1) × 4 F 3 ([p 1 + 1 2 ]-[q k + 1 2 ]),([p 2 + 1 2 ]-[q k + 1 2 ]),([p 3 + 1 2 ]-[q k + 1 2 ]),([p 4 + 1 2 ]-[q k + 1 2 ]) (-[q k + 1 2 ]-1),([q k 2 + 1 2 ]-[q k + 1 2 ]+1),([q k 3 + 1 2 ]-[q k + 1 2 ]+1) ; 1 + [(p+p ′ -q+1)+((q+ 1 2 )(q ′ + 1 2 )-pp ′ )] × 4 F 3 ([p 1 + 1 2 ]-[q k + 1 2 ]),([p 2 + 1 2 ]-[q k + 1 2 ]),([p 3 + 1 2 ]-[q k + 1 2 ]),([p 4 + 1 2 ]-[q k + 1 2 ]) (-[q k + 1 2 ]),([q k 2 + 1 2 ]-[q k + 1 2 ]+1),([q k 3 + 1 2 ]-[q k + 1 2 ]+1) ; 1           , (5.14) 
with (k, k 2 , k 3 ) cyclic = (1, 2, 3). Indicator τ s = 1 for the first hypergeometric 4 F 3 and τ s = 2 for the second. The whole cannot to be said Saalschützian.

Similarly with the change z → n + p , z → n + p ′ or z → n + [p + 1 2 ] and z → n + [p ′ + ] we obtain the second set. Set II (β) for the {6j} S β :

J 1 J 2 J 3 j 1 j 2 j 3 S β = (-1) [p i + 1 2 ]+p+p ′ -q √ R S ×Γ([p i + 1 2 ]+1)[ 3 k=1 Γ(1+[q k + 1 2 ]-[p i + 1 2 ]) m =i Γ([p i + 1 2 ]-[pm+ 1 2 ]+1)] -1 ×           -(p+p ′ -q+1)([p i + 1 2 ]+1) × 4 F 3 ([p i + 1 2 ]+2),([p i + 1 2 ]-[q 1 + 1 2 ]),([p i + 1 2 ]-[q 2 + 1 2 ]),([p i + 1 2 ]-[q 3 + 1 2 ]) ([p i + 1 2 ]-[p i 2 + 1 2 ]+1),([p i + 1 2 ]-[p i 3 + 1 2 ]+1),([p i + 1 2 ]-[p i 4 + 1 2 ]+1) ; 1 + [(p+p ′ -q+1)+((q+ 1 2 )(q ′ + 1 2 )-pp ′ )] × 4 F 3 ([p i + 1 2 ]+1),([p i + 1 2 ]-[q 1 + 1 2 ]),([p i + 1 2 ]-[q 2 + 1 2 ]),([p i + 1 2 ]-[q 3 + 1 2 ]) ([p i + 1 2 ]-[p i 2 + 1 2 ]+1),([p i + 1 2 ]-[p i 3 + 1 2 ]+1),([p i + 1 2 ]-[p i 4 + 1 2 ]+1) ; 1           , (5.15) 
with (i, i 2 , i 3 , i 4 ) cyclic = (1, 2, 3, 4). Indicator τ s = 1 for the first hypergeometric 4 F and τ s = 2 for the second. The whole is not Saalschützian.

We have seen that the first hypergeometric 4 F 3 function in Set I (β) was Saalschützian as well as the first one of Set II (β) . It may happen that non-physical spins may appear with values like 1 4 from the division of a half-integer by two. Then it is clear that the total number of symmetries for the case β is reduced from 144 to 48 since, here, only one Regge symmetry yields valid spins, integer or half-integer.

5.3 A sum of two hypergeometric functions 4 F 3 for parity γ .16) Similarly to previous sections, we can write right now the results. Set I (γ) for the {6j} S γ :

J 1 J 2 J 3 j 1 j 2 j 3 S γ = (-1) 1+ k q k √ R S ×       z (-1) z+1 (z+1)! i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z)! + 1 2 ( k q k (q k +1)-i p i 2 )+ 3 2 z (-1) z (z)! i=4 i=1 (z-[pi+ 1 2 ])! k=3 k=1 ([qk+ 1 2 ]-z)!       . ( 5 
J 1 J 2 J 3 j 1 j 2 j 3 S γ = (-1) q k +1+ l q l √ R S Γ(q k +1)[ i=4 i=1 Γ(1+q k -(p i + 1 2 )) l =k Γ(q l -q k +1)] -1 ×            -(q k +1) × 4 F 3 (p 1 + 1 2 -q k ),(p 2 + 1 2 -q k ),(p 3 + 1 2 -q k ),(p 4 + 1 2 -q k ) (-q k -1),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 + 1 2 ( k q k (q k +1)-i p i 2 )+ 3 2 × 4 F 3 (p 1 + 1 2 -q k ),(p 2 + 1 2 -q k ),(p 3 + 1 2 -q k ),(p 4 + 1 2 -q k ) (-q k ),(q k 2 -q k +1),(q k 3 -q k +1) ; 1            , (5.17) 
with (k, k 2 , k 3 ) cyclic = (1, 2, 3). Indicator (first 4 F 3 ) τ s = -1, second function τ s = 0. Set I (γ) is non-Saalschützian.

Set II (γ) for the {6j} S γ :

J 1 J 2 J 3 j 1 j 2 j 3 S γ = (-1) p i + 1 2 +1+ k q k √ R S Γ(p i + 1 2 +1)[ 3 k=1 Γ(1+q k -(p i + 1 2 )) m =i Γ(p i -pm+1)] -1 ×            -(p i + 1 2 +1) × 4 F 3 (p i + 1 2 +2),(p i + 1 2 -q 1 ),(p i + 1 2 -q 2 ),(p i + 1 2 -q 3 ) (p i -p i 2 +1),(p i -p i 3 +1),(p i -p i 4 +1) ; 1 + 1 2 ( k q k (q k +1)-i p i 2 )+ 3 2 × 4 F 3 (p i + 1 2 +1),(p i + 1 2 -q 1 ),(p i + 1 2 -q 2 ),(p i + 1 2 -q 3 ) (p i -p i 2 +1),(p i -p i 3 +1),(p i -p i 4 +1) ; 1            , (5.18) 
with (i, i 2 , i 3 , i 4 ) cyclic = (1, 2, 3, 4). Indicator (first 4 F 3 ) τ s = -1, second function τ s = 0. Set II (γ) is non-Saalschützian. As for the symbols of parity α the 144 symmetries are recovered.

Super Racah coefficients and P Wilson polynomials

Recall that Wilson orthogonal polynomials of degree n [START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF] are given by:

P n (t 2 ; a ′ , b ′ , c ′ , d ′ ) =(a ′ +b ′ )n)(a ′ +c ′ )n)(a ′ +d ′ )n) 4 F 3 -n,(a ′ +b ′ +c ′ +d ′ +n-1),(a ′ +t),(a ′ -t) a ′ +b ′ ,a ′ +c ′ ,a ′ +d ′ ; 1 . (6.1) 
As found in a comment by Rao et. al. [START_REF] Rao | Racah polynomials and a three term recurrence relation for the Racah coefficients[END_REF] the relation between a standard 6-j coefficient and the polynomial P can be written as:

a b c d e f = (-1) a+e+f △(b, d, f )△(a, e, f )△(a, b, c)△(d, e, c)Γ(a + e + f + 2) ×[Γ(1 + b + d -f, 1 + a + e -f, 1 + d + e -c, 1 + c + d -e, 1 + b + c -a, 1 + a + b -c)] -1 P b+d-f (c+ 1 2 ) 2 ;-d-e-1 2 ,-a-b-1 2 ,a-b+ 1 2 ,-d+e+ 1 2 , (6.2) 
Now we turn back to the original formulas which led us to expand super Racah coefficients as a single summation over an integer z [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF].

According to our method of calculation, see [5, pp. 261-266], it is clear that the three super Racah coefficients can be written as the linear combination of two standard 6-j coefficients. Indeed if we let N S = △ S (J 1 j 2 j 3 ) △ S (j 1 J 2 j 3 ) △ S (j 1 j 2 J 3 ) △ S (J 1 J 2 J 3 ), we are able to write the following formulas below.

6.1 The three doublets of 6-j symbols used for the super Racah coefficients

• Parity α : J 1 J 2 J 3 j 1 j 2 j 3 S α = (-1) φα   xα N S N α 1    J 1 J 2 J 3 j 1 -1 2 j 2 -1 2 j 3 -1 2    +yα N S N α 2    J 1 J 2 J 3 j 1 j 2 j 3      , (6.3) 
We will denote d o n for the degrees of the Wilson polynomials used for the calculation.

d o 1 = j 1 + J 2 -j 3 , d o 2 = j 1 + J 2 -j 3 , (6.4 
)

x α = (J 1 + J 2 + J 3 + 1) -1 = (p 4 + 1) -1 , y α = (J 1 + J 2 + J 3 + 1) -1 = (p 4 + 1) -1 , (6.5) 
(-1) φα = (-1) 4 jιJι = 1 for the case α . (6.6) with, in this example the normalization coefficients N 1 and N 2 are given by

N α 1 = △(J 1 j 2 -1 2 j 3 -1 2 ) △ (j 1 -1 2 J 2 j 3 -1 2 ) △ (j 1 -1 2 j 2 -1 2 J 3 ) △ (J 1 J 2 J 3 ), (6.7) 
N α 2 = △(J 1 j 2 j 3 ) △ (j 1 J 2 j 3 ) △ (j 1 j 2 J 3 ) △ (J 1 J 2 J 3 ). (6.8)

• Parity β : (1/6 possible cases [p 3 and p 4 integer])

J 1 J 2 J 3 j 1 j 2 j 3 S β = (-1) φ β   x β N S N β 1    J 1 J 2 J 3 j 1 -1 2 j 2 -1 2 j 3    +y β N S N β 2    J 1 J 2 J 3 j 1 j 2 j 3 -1 2      , (6.9) 
where

d o 1 = j 1 + J 2 -j 3 - 1 2 , d o 2 = j 1 + J 2 -j 3 + 1 2 , (6.10 
)

x β = (J 1 + J 2 + J 3 + 1) -1 (J 1 + j 2 + j 3 + 1 2 )(-j 1 + J 2 + j 3 + 1 2 ), (6.11 
)

y β = (J 1 + J 2 + J 3 + 1) -1 (J 1 + j 2 -j 3 + 1 2 )(j 1 + J 2 -j 3 + 1 2 ), (6.12) 
and

N β 1 = △(J 1 j 2 -1 2 j 3 ) △ (j 1 -1 2 J 2 j 3 ) △ (j 1 -1 2 j 2 -1 2 J 3 ) △ (J 1 J 2 J 3 ), (6.13) 
N β 1 = △(J 1 j 2 j 3 -1 2 ) △ (j 1 J 2 -1 2 j 3 ) △ (j 1 j 2 J 3 ) △ (J 1 J 2 J 3 ). ( 6.14) 
• Parity γ :

J 1 J 2 J 3 j 1 j 2 j 3 S γ = (-1) φγ   xγ N S N γ 1    J 1 -1 2 J 2 -1 2 J 3 -1 2 j 1 -1 2 j 2 -1 2 j 3 -1 2    +yγ N S N γ 2    J 1 -1 2 J 2 -1 2 J 3 -1 2 j 1 j 2 j 3      , (6.15) 
where

d o 1 = j 1 + J 2 -j 3 - 1 2 , d o 2 = j 1 + J 2 -j 3 - 1 2 , (6.16 
)

x γ = (J 1 + j 2 + j 3 + 1 2 )(j 1 + J 2 + j 3 + 1 2 )(j 1 + j 2 + J 3 + 1 2 ), (6.17) 
y γ = (-J 1 + j 2 + j 3 + 1 2 )(j 1 -J 2 + j 3 + 1 2 )(j 1 + j 2 -J 3 -1 2 ), (6.18) 
and

N γ 1 = △(J 1 -1 2 j 2 -1 2 j 3 -1 2 ) △ (j 1 -1 2 J 2 -1 2 j 3 -1 2 ) △ (j 1 -1 2 j 2 -1 2 J 3 -1 2 ) △ (J 1 -1 2 J 2 -1 2 J 3 -1 2 ), (6.19) 
N γ 2 = △(J 1 -1 2 j 2 j 3 ) △ (j 1 J 2 -1 2 j 3 ) △ (j 1 j 2 J 3 -1 2 ) △ (J 1 -1 2 J 2 -1 2 J 3 -1 2
). (6.20)

An example of equating two different series

Recalls:

1 N α 2 J 1 J 2 J 3 j 1 j 2 j 3 = (-1) q k Γ(q k +2)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)]

-1

× 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k -1),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 .

(6.21)

For the first 6-j symbol we change all q k → q k -1 and p 1 → p 1 -1, p 2 → p 2 -1 and p 3 → p 3 -1:

1 N α 1 J 1 J 2 J 3 j 1 -1 2 j 2 -1 2 j 3 -1 2
= (-1) q k -1 Γ(q k +1) Γ(q k -p 4 ) (Γ(1+q k -p 4 ) × i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)

-1 × 4 F 3
(p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k +1)

(-q k ),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 , (6.22) or more

1 N α 1 J 1 J 2 J 3 j 1 -1 2 j 2 -1 2 j 3 -1 2
= -(-1) q k Γ(q k +1) Γ(q k -p 4 ) (Γ(1+q k -p 4 ) × i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)

-1

× 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k +1)

(-q k ),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 .

(6.23)

We have Γ(q k -p 4 ) Γ(1+q k -p 4 ) -1

= Γ(1+q k -p 4 ) Γ(q k -p 4 ) = (q k -p 4 )! (q k -p 4 -1)! = (q kp 4 ). Then we can write

1 N α 1 J 1 J 2 J 3 j 1 -1 2 j 2 -1 2 j 3 -1 2
= -(q k -p 4 )(-1) q k Γ(q k +1)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)]

-1

× 4 F 3
(p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k +1)

(-q k ),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 , (6.24)

We have N S = √ R S from equation (2.6) and after use of Γ(q k + 2) = Γ(q k + 1) × (q k + 1)we can perform the sum of the equation (6.3):

J 1 J 2 J 3 j 1 j 2 j 3 S α = √ R S (-1) q k Γ(q k +1)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)] -1 1 (p 4 +1)
× -(q k -p 4 ) 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k +1) (-q k ),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 +(q k +1) 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k -1),(q k 2 -q k +1),(q k 3 -q k +1) ;

(6.25) J 1 J 2 J 3 j 1 j 2 j 3 S α = √ R S (-1) q k Γ(q k +1)[ i=4 i=1 Γ(1+q k -p i ) l =k Γ(q l -q k +1)]

-1

× 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k ),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 .

(6.26)

That yields

(p 4 +1) × 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k ),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 ≡ -(q k -p 4 ) 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k +1) (-q k ),(q k 2 -q k +1),(q k 3 -q k +1) ; 1 +(q k +1) 4 F 3 (p 1 -q k ),(p 2 -q k ),(p 3 -q k ),(p 4 -q k ) (-q k -1),(q k 2 -q k +1),(q k 3 -q k +1)

; 1 (6.27)

Indeed the right hand side can be transformed into n (p 4 -q k +n)

(p 1 -q k )n(p 2 -q k )n(p 3 -q k )n(p 4 -q k )n (-q k )(q k 2 -q k +1)(q k 3 -q k +1)

+(q k +1-n)

(p 1 -q k )n(p 2 -q k )n(p 3 -q k )n(p 4 -q k )n (-q k )(q k 2 -q k +1)(q k 3 -q k +1)

.

Equation (6.27) is indeed an identity (rather trivial), like those we coud derive from the other Set II (α) , Set I-II (β) and Set I-II (γ) . However this shows that the following examples with non Saalschützian (τ s = 1) series 4 F 3 can be gathered into both Saalschützian series (τ s = 1).Symbolically: Set I-II (α) : τ s = 2 for Set I (α) , τ s = 2 for Set II (α) (τ s = 1) + (τ s = 1), Set I-II (β) : (τ s = 1 and τ s = 2) for Set I (β) , (τ s = 1 and τ s = 2) for Set II (β) (τ s = 1) + (τ s = 1), Set I-II (γ) : (τ s = -1 and τ s = 0) for Set I (γ) ,(τ s = -1 and τ s = 0) for Set II (γ) (τ s = 1)+(τ s = 1). This property could be useful in particular cases.

1 2

 2 

  .1) * Useful relation, because if a is integer, then a(a + 1) is even.

† Retired from CEA, France, e-mail:brehamet.l@orange.fr

Conclusion and prospective

Each of the three super Racah coefficients (6j S symbols) with parities α, β, γ is a linear combination of two standard 6-j coefficients, i.e.

, thus nothing more than a linear combination of two Wilson (W) polynomials differing by their first argument a ′ -1 and a ′ . For parities α, γ both polynomials have the same degree. For parity β the degrees are n and n + 1.

Let us recall [4, p. 401] that the Bannai-Ito (B-I) polynomials were found to be the Racah coefficients of osp(1|2). This is an approach which differs of our own because of the use of other generators and representation bases. Precisely because of this we should be able to formulate a correlation between the 6j S symbols and the super Racah coefficients expressed in terms of (B-I)'s, as well another possible link between (B-I)'s and (W)'s. While knowing that a generalization has been already proposed [4, p. 402] for the superalgebra osp(1|2) q with q-deformed polynomials (B-I) q 's, we think that the results with 6j S symbols should be able to generalize to some deformed 6j S q symbols and algebras Uq(osp(1|2)) [START_REF] Pawelkiewicz | The universal Racah-Wigner symbol for Uq(osp(1|2))[END_REF].