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The hyperserial field of surreal numbers”

Vincent BagayokoA, UMons, LIX

Joris van der HoevenB, CNRS, LIX

For any ordinal a >0, we show how to define a hyperexponential E,« and a hyperlogarithm L.« on
the class No™” of positive infinitely large surreal numbers. Such functions are archetypes of extremely
fast and slowly growing functions at infinity. We also show that the surreal numbers form a so-called
hyperserial field for our definition.

1 Introduction

The ordered field No of surreal numbers was introduced by Conway in [11]. Conway originally
used transfinite recursion to define both the surreal numbers (henceforth called numbers), the
ordering on No, and the ring operations. For any two sets L and R of numbers with L <R (i.e.
x<yforall xeL and y € R), there exists a number {L | R} with

L < {L|R} < R,

and all numbers can be obtained in this way. Given x ={xr, | xg} and y={yr | yr}, we have
x+y = {xp+y,x+yL| xR+ y,x+ YR}

and similar recursive formulas exist for —x, xy and for deciding whether x=y, x<y, and x< y.
It is truly remarkable that No turns out to be a totally ordered real-closed field for such “simple”
definitions [11]. The bracket { | } is called the Conway bracket. Using this bracket, we obtain
a surreal number in any traditional Dedekind cut, which allows us to embed R into No. In
addition, No contains all ordinal numbers

0={1} 1={0|} 2={0,1}, ..., @={0,1,2,...1}, w+1={0,1,2,....0} ...,

so No is actually a proper class.

An interesting question is which other operations from calculus can be extended to the sur-
real numbers. Gonshor has shown how to extend the real exponential function to the surreal
numbers [19] and the resulting exponential field (No, exp) turns out to be elementarily equiva-
lent to (R, exp) [13]. Berarducci and Mantova recently defined a derivation with respect to w on
the surreals [9], again with good model-theoretic properties [2]. In collaboration with Mantova,
the authors constructed a surreal solution to the functional equation

Ey(x+1) = expEyx,

which is a bijection of No™>” :={x € No: x > R} onto itself [6]. We call E,, a hyperexponential
and its functional inverse L, a hyperlogarithm.

A. vincent.bagayoko@umons.ac.be
B. vdhoeven@lix.polytechnique.fr
#. This article has been written using GNU TeXpacs [27]-
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The first goal of this paper is to extend the results from [6] to the construction of hyperexpo-
nentials Eya:No~>” — No~>” of any ordinal force a, together with their functional inverses L e.
If @ =p+1 is a successor ordinal, then E« satisfies the functional equation

Epea(x+1) = E(E, p(2).

Our second goal is to show that these hyperexponentials are “well-behaved” in the sense that
they endow No with the structure of a hyperserial field in the sense of [5].

1.1 Motivation and background

Whereas it is natural to study surreal exponentiation and differentiation, it may seem more
exotic to define and investigate the properties of surreal hyperexponentials and hyperlogarithms.
In fact, the main motivation behind our work is a conjecture by the second author [26, p. 16]
and a research program that was laid out in [1] for proving this conjecture. The ultimate goal is
to expose the deep connections between two types of mathematical infinities: numerical infini-
ties and growth rates at infinity. Let us briefly recall the rationale behind this connection.

Cantor's ordinal numbers provide us with a way to count beyond all natural numbers and
to keep counting beyond the size of any set. However, ordinal arithmetic is rather poor in the
sense that we have no subtraction or division and that addition and multiplication do not satisfy
the usual laws of arithmetic, such as commutativity. We may regard Conway's surreal numbers
as providing a calculus with Cantor's ordinal numbers which does extend the usual calculus
with real numbers. In this sense, Conway managed to construct the ultimate framework for
computations with numerical infinities.

Another source for computations with infinitely large quantities stems from the study of
growth rates of real functions at infinity. The first major results towards a systematic asymptotic
calculus of this kind are due to Hardy in [21, 22], based on earlier ideas by du Bois-Reymond [15,
16, 17]. Hardy defined an L-function to be a function constructed from x and the real num-
bers R using the field operations, exponentiation, and logarithms. He proved that the germs
of L-functions at infinity form a totally ordered field. The framework of L-functions is suit-
able for asymptotic analysis since we have an ordering for comparing the growth at infinity
of any two such functions. This is often rephrased by saying that L-functions have a regular
growth at infinity.

Hardy also observed [21, p. 22] that “The only scales of infinity that are of any practical
importance in analysis are those which may be constructed by means of the logarithmic and
exponential functions.” In other words, Hardy suggested that the framework of L-functions
not only allows for the development of a systematic asymptotic calculus, but that this frame-
work is also sufficient for all “practical” purposes. Alas, there are several “holes”. First of all,
the framework is not closed under various useful operations such as functional inversion and
integration. Secondly, the framework does not contain any functions of extremely fast or slow
growth at infinity, like E,, and L, although such functions naturally appear in the analysis of
certain algorithms. For instance, the best known algorithm for multiplying two polynomials of
degree n in F[x] runs in time O(nlog nalen): see [23].

This raises the question how to construct a truly universal framework for computations with
regular functions at infinity. Our next candidate is the class of transseries. A transseries is
a formal object that is constructed from x (with x — co) and the real numbers, using exponenti-
ation, logarithms, and infinite sums. One example of a transseries is
x/2

x x/3 2
e re e i _gox® 5 log )T+ 42+ x L4 2x 2 6x 3+ 24x 4 be )
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Depending on conditions satisfied by their supports, there are different types of transseries. The
first constructions of fields of transseries are due to Dahn and Géring [12] and Ecalle [18]. More
general constructions were proposed subsequently by the second author and his former student
Schmeling [24, 25, 29]. Clearly, any L-function is a transseries, but the class of transseries is also
closed under integration and functional inversion, contrary to the class of L-functions.

However, the class of transseries still does not contain any hyperexponential or hyperloga-
rithmic elements like E,, x or L, x. In our quest for a truly universal framework for asymptotic
analysis, we are thus lead to look beyond: a hyperseries is a formal object that is constructed
from x and the real numbers using exponentiation, logarithms, infinite sums, as well as hyper-
exponentials E,« and hyperlogarithms L« of any force a. The hyperexponentials E,« and the
hyperlogarithms L« are required to satisfy functional equations

Ema+10T1 = EmaoEmoﬁl (11)
Lwa+10Lm0! = T.]OLmoﬁ—l, (12)

where Tg(u):=u+s. For y= Zle w%n; in Cantor normal form with a1 <--- <ap, we also define

Ly = Ljtho-oL’% (1.3)

w

and we require that

1
Ly = ——. (1.4)
Y
Hﬁ<yLﬁ
It is non-trivial to construct fields of hyperseries in which these and several other technical
properties (see section 4 below) are satisfied. This was first accomplished by Schmeling for
hyperexponentials E,» and hyperlogarithms L of finite force n € N. The general case was
tackled in [14, 5].

The construction of general hyperseries relies on the definition of an abstract notion of hyper-
serial fields. Whereas the hyperseries that we are really after should actually be hyperseries in
an infinitely large variable x, abstract hyperserial fields potentially contain hyperseries that
can not be written as infinite expressions in x. In the present paper, we define hyperexponen-
tials E, e and hyperlogarithms L, on No for all ordinals « and show that this provides No with
the structure of an abstract hyperserial field. Moreover, any hyperseries f in x can naturally
be evaluated at x = w to produce a surreal number f(w). The conjecture from [26, p. 16] states
that, for a sufficiently general notion of “hyperseries in x”, all surreal numbers can actually be
obtained in this way. We plan to prove this and the conjecture in a follow-up paper.

1.2 General overview and summary of our new contributions

Our main goal is to define hyperexponentials E,«: No”™*> — No~>” for any ordinal > 1 and to
show that No is a hyperserial field for these hyperexponentials. Since our construction builds
on quite some previous work, the paper starts with three sections of reminders.

In section 2, we recall basic facts about well-based series and surreal numbers. In particular,
we recall that any surreal number x € No can be regarded as a well-based series

x = Z Xy m
meMo

with real coefficients x,, € R. The corresponding group of monomials Mo consists of those
positive numbers m € No~ that are of the form m ={R~ L | R~ R} for certain subsets L and R
of No with R”L<R~”R.
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Section 3 is devoted to the theory of surreal substructures from [4]. One distinctive feature
of the class of surreal numbers is that it comes with a partial, well-founded order E, which is
called the simplicity relation. The Conway bracket can then be characterized by the fact that, for
any sets L and R of surreal numbers with L <R, there exists a unique E-minimal number {L | R}
with L <{L | R} < R. For many interesting subclasses S of No, it turns out that the restrictions
of < and C to S give rise to a structure (S, <, C) that is isomorphic to (No, <,C). Such classes S
are called surreal substructures of No and they come with their own Conway bracket { | }s.

In section 4, we recall the definition of hyperserial fields from [5] and the main results on
how to construct such fields. One major fact from [5] on which we heavily rely is that the
construction of hyperserial fields can be reduced to the construction of hyperserial skeletons. In
the context of the present paper, this means that it suffices to define the hyperlogarithms L«
only for very special, so called L<«-atomic elements.

In the case when a =0, the L.j-atomic elements are simply the monomials in Mo and the
definition of the general logarithm on No~ indeed reduces to the definition of the logarithm
on Mo: given x €No~, we write x=cm (1 + ¢), where c€ R, m € Mo and ¢ is infinitesimal, and
we take logx:=logm +logc+e—e2/2+¢3/3+ ---. This very special case will be considered in
more detail in section 5.

In the case when a =1, the L. ,-atomic elements of No”*” are those elements a € No~*” such
that Ly, a is a monomial for every n€ N. The construction of L, on No”>” then reduces to the
construction of L, on the class Mo, of L.,-atomic numbers. This particular case was first
dealt with in [6] and this paper can be used as an introduction to the more general results in the
present paper.

For general ordinals a, we say that a € No™” is L<e-atomic if Lga is a monomial for
every ff < a. The advantage of restricting ourselves to such numbers a when defining hyper-
logarithms is that Ly a only needs to verify few requirements with respect to the ordering.
This makes it possible to define L, a using the fairly simple recursive formula

Lya := {RsLD! Cl,"'(L<oc‘1,)_1 | Laa”_(L<06a)_1’L<0!a}’ (1'5)

4

where a’,a”” range over L<g-atomic numbers with a’,a”’Ca and a’ <a<a’’; see also (7.1).

In section 6, we prove that this definition is warranted and that the resulting functions L,
satisfy the axioms of hyperserial skeletons from [5, Section 3]. Our proof proceeds by induction
on « and also relies on the fact that the class Mo, of L.,e-atomic numbers actually forms
a surreal substructure of No. Our main result is the following theorem:

THEOREM 1.1. The definition (1.5) gives No the structure of a confluent hyperserial skeleton
in the sense of [ 5]. Consequently, we may uniquely extend L,y to No™” in a way that gives No
the structure of a confluent hyperserial field. Moreover, for each ordinal i, the extended function
L,»:No”” —No™"” is bijective.

Our final section 7 is devoted to further identities that illustrate the interplay between the
hyperexponential and hyperlogarithmic functions and the simplicity relation C on No. We also
prove the following more symmetric variant of (1.5):

Lea = {R,Lga’ +(Lega) V| Lga” = (Lega”’) ™ Legal, (1.6)

where a’,a”’ again range over the L.,-atomic numbers with a,a”’Caand a’<a<a”. An
interesting open question is whether there exists an easy argument that would allow us to
use (1.6) instead of (1.5) as a definition of Ly a.
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2 Basic notions

2.1 Ordered fields of well-based series
2.1.1  Well-based series

Let (M, x,1, <) be a (possibly class-sized) linearly ordered abelian group. We write S := R[[M]]
for the class of functions f: M — R whose support

supp f == {m€ M : f(m)+ 0}

is a well-based set, i.e. a set which is well-ordered with respect to the reverse order (M, >).
We see elements f of S as formal well-based series f =) fu m, where f; denotes the coeffi-
cient f(m)€ R of m in f, for each m € M. If supp f # @, then we define dr:= max supp f € M to
be the dominant monomial of f. For me M, we let fiy:=) o fun and we write f5.:= f.1. We
say that a series g €S is a truncation of f and we write g < f if supp (f — g) > g. The relation <
is a well-founded partial order on S with minimum 0.
By [20], the class S is an ordered field under the pointwise sum

(f+g) = Z (fu+ gm)m,

the Cauchy product

fg = Z( y fugn)m,

m uv=m
(where each sum ) fu v has finite support), and where the positive cone S”={f € S: f >0}

is given by

up=m

S7 = {feS:f#0Af,,>0}

The identification of m € M with the formal series ) ,_, 1-n €S induces an ordered group
embedding (M, x, <) — (S~, x, <).

We next define the following asymptotic relations on S:
f<g = R7IfI<[g]
f<g = FIreR7[fI<rlg
f=g = f<g<f.
The relation < extends the ordering on M. For non-zero f, g€ S we actually have f < g (resp.
f<g resp. f=g)ifand only if dp < dg (resp. dp < dg, resp. dp = dg). We finally define
Sy = {feS:suppfCM”}

S< = {feS:suppfcM<} = {feS:f<1}
S>” = {feS:f>R}={feS:f>0nf>1}.

Seriesin S, S<and S™” are respectively called purely large, infinitesimal, and positive infinite.
2.1.2  Well-based families
Let (fi)ie1 be a family in S, We say that (f;);er is well-based if
i. U;ersupp fiis well-based, and
ii. {iel:mesupp fi} is finite for all m € M.
In that case, we may define the sum ), ;fi of (fi)ier by

Y fi= z(z (ﬁ)m)m-

iel m \iel
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If U=R[[M]] is another field of well-based series and ¥: S — U is R-linear, then we say that ¥
is strongly linear if for every well-based family (fi)ies in S, the family (¥(f))ie1 is well-based,
with

%Zﬂ=2wm
iel iel

2.2 Surreal numbers

2.2.1  Surreal numbers and simplicity

We denote by On the class of ordinal numbers. Following [19], we define No to be the class of
sign sequences

a = (alfp<e € {~1.+1}*

of ordinal length @ € On. The terms a[f] € {1, +1} are called the signs of a and we write I, for
the length of a. Given two numbers a, b€ No, we define

atb = <A (V<o alf]="b[p]).

We call C the simplicity relation on No and note that (No, C) is well-founded. See [4, Section 2]
for more details about the interaction between E and the ordered field structure of No.

Recall that the Conway bracket is characterized by the fact that, for any sets L and R of surreal
numbers with L <R, there exists a unique E-minimal number {L | R} with L <{L | R} <R. Con-
versely, given a number a € No, we define

ar, = {xeNo:xCa,x<a}
ag = {xeNo:x3Ja,x>a}.

Then a can canonically be written as
a = {ar| ag}.

2.2.2  Ordinals as surreal numbers

The structure (No, E) contains an isomorphic copy of (On, <) by identifying each ordinal & with
the constant sequence (+1)g<, of length a. We will write v<On to state that v is either an
ordinal or the class of ordinals.

For y € On, we write ! for the ordinal exponentiation of w to the power y and we define

WO = {w¥:yeOn).

If 1€On is a successor ordinal, then we define i to be the unique ordinal with y=pu_ +1. We
also define p_:=p if y is a limit ordinal. Similarly, if @ = *, then we set &/, := ©*~. Recall that
every ordinal y has a unique Cantor normal form

Yy = o"ni+---+0"ny,

where reN, ny,...,n,€ N0 and N1s---,Nr€0On with 51> --- > ;.
2.2.3 Surreal numbers as well-based series

We define Mo to be the class of positive numbers m € No” of the form m ={R~ L | R~ R} for
certain subsets L and R of No with R” L < R~ R. Numbers in Mo are called monomials. It
turns out [11, Theorem 21] that the monomials form a subgroup of (No~, x, <) and that there is
a natural isomorphism between No and the ordered field R[[Mo]]. We will identify those two
fields and thus see No as a field of well-based series. The ordinal w, seen as a surreal number,
is the simplest element, or C-minimum, of the class No™”.
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3 Surreal substructures

3.1 Surreal substructures

In [4], we introduced the notion of surreal substructures. A surreal substructure is a subclass S
of No such that (No, <,CE) and (S, <, C) are isomorphic. The isomorphism No — S is unique and
denoted by =g. Many important subclasses of No that are relevant to the study of hyperserial
properties of No are surreal substructures. In particular, it is known that the following classes

are surreal substructures:
o The classes No”, No~>” and No~ of positive, positive infinite and infinitesimal numbers.
e The classes Mo and Mo~ of monomials and infinite monomials.
e The classes Nos. and Noz of purely infinite and positive purely infinite numbers.
e The class Mo, of log-atomic numbers.

If U, V are surreal substructures, then the class U<V :=ZyV is a surreal substructure
with Ey«y=Eyge Zy.

3.2 Cuts

Given a subclass X of No and a € X, we will write
a)L( ={beX:b<aAbCa} and a% ={beX:b>anbCa},
so that ay := alfo and ag:= al;glo. We also write aX := a)L(U a);% and ac = aN°.
If X is a subclass of No and L, R are subsets of X with L < S, then the class

(LI Rx = {aeX:(VleL,l<aA(VreR,a<r)}

is called a cut in X. If (L | R)x contains a unique simplest element, then we denote this element
by {L | R}x and say that (L, R) is a cut representation (of {L | R}x) in X. These notations naturally
extend to the case when L and R are subclasses of X with L <R.

A surreal substructure S may be characterized as a subclass of No such that for all cut repre-
sentations (L, R) in S, the cut (L | R)s has a unique simplest element [4, Proposition 4.7].

Let S be a surreal substructure. Note that we have a= {a% | a%} for all aeS. Let ae S and
let (L, R) be a cut representation of a in S. Then (L, R) is cofinal with respect to (a%, a%) in

the sense that L has no strict upper bound in aﬁ and R has no strict lower bound in a% (4,
Proposition 4.11(b)].

Given numbers a, b€ No with a< b, the number c:={ay | bg} is the unique C-maximal number
with cC a,b. We have a< c<b. Let S be a surreal substructure. Considering the isomorphism
=s:(No,<,E) — (S, <, E), we see that for all a, be S with a< b, there is a unique E-maximal

element ¢ of S with ¢C a, b, and we have a< ¢ < b. In what follows, we will use this basic fact
several times without further mention.

3.3 Cut equations

Let X CNo be a subclass, let T be a surreal substructure and F: X — T be a function. Let 4, p
be functions defined for cut representations in X and such that A(L, R), p(L, R) are subsets of T
whenever (L, R) is a cut representation in X. We say that (4, p) is a cut equation for F if for all
ae€X, we have

Nal,a¥) < p(af,ay),  F(a) = {AaT,aR) | p(at, apr.

Elements in A(ay, a¥) (resp. p(a)L(, ay)) are called left (resp. right) options of this cut equation
at a.
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We say that the cut equation is uniform if we have
ML,R) < p(L,R), F{L|R}x) = {ML,R) | p(L, R)}t

whenever (L, R) is a cut representation in X. For instance, given r € R, consider the translation
T,:No — No;ar— a+ron No. By [19, Theorem 3.2], we have the following uniform cut equa-
tion for T, on No:

YaeNo, a+r={ar+r,a+ry|a+rg,ap+r} (3.1)

We will need the following result from [4]:

ProposITION 3.1. [4, Proposition 4.36] Let S, T be surreal substructures. Let A be a function
from S to the class of subsets of T such that for x,y€ S with x <y, the set A(y) is cofinal with
respect to A(x). For x €S, let A[x] denote the class of elements u of S such that A(x) and A(u) are
mutually cofinal. Let {1 | p}t be a cut equation on S that is extensive in the sense that

Vx,yeS, (xCy= AP, xR) AL, yR) A p(xP, xR) S p(35. 3R)))-

Let F:S — T be strictly increasing with cut equation

VxeS, F(x)={A(), AL xR) | ot xR}
Then F induces an embedding (A[x],<,C) — (T, <,C) for each element x of S.

3.4 Convex partitions

One natural way to obtain surreal substructures is via convex partitions. If S is a surreal sub-
structure, then a convex partition of S is a partition IT of S whose members are convex subclasses
of S for the order <. We may then consider the class Smpyy of simplest elements (i.e. E-minima)
in each member of II. Those elements are said II-simple. For a €S, we let II[a] denote the
unique member of II containing a. By [4, Proposition 4.16], the class II[a] contains a unique
II-simple element, which we denote by npy(a). The function 7yj is a surjective non-decreasing
function S — Smpyy with 7y 0 7711 = 77171

Given a, b € Smpyy, note that we have a< b if and only if II[a] <II[b]. For X C No, we write
II[X] =, cxI[a]. We have the following criterion to characterize elements of Smpyy.

ProrosITION 3.2. [4, Lemma 6.5] An element a of S is II-simple if and only if there is a cut
representation (L,R) of a in S with II[L] < a<II[R]. Equivalently a€ S is II-simple if and only

if H[a%] <a< H[a%].
We say that I is thin if each member of IT has a cofinal and coinitial subset. We then have:

ProposITION 3.3. [4, Theorem 6.7 and Proposition 6.8] If II is thin, then the class Smpyy is
a surreal substructure and Egmp,, has the following uniform cut equation:

Yz €No, ESmpp 2= {H[ESmpH z1] | H[ESmpH zrl}s.

3.5 Function groups

A special type of thin convex partitions is that of partitions induced by function groups acting
on surreal substructures. A function group & on a surreal substructure S is a set-sized group of
strictly increasing bijections S — S under functional composition. We see elements f,g of & as
actions on S and we sometimes write fg and fa instead of f o g and f(a), where a€S.

For such a function group ¥, the collection Il¢ of classes

Gla] = {beS:3f, g€, fa<b<ga}
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with a€S is a thin convex partition of S. We write Smpg :=Smpyy,. We have the uniform cut
equation

Consider sets X, Y of strictly increasing bijections S — S, then we say that Y is pointwise cofinal
with respect to X, and we write X £ Y, if we have Vf € X,VaeS,3ge Y, fa< ga. We also define

(X) = {ﬁ)Oflo---Ofn:nEN,ﬁ),...,anXUX_l}.

It is easy to see that (X) is a function group on S and that we have (X) £ (Y) if X ZY or
X712y~ The relation {X) £ {Y) trivially implies Smp(y)CSmpx}. If X£Y and Y £X,
then we say that X and Y are mutually pointwise cofinal and we write X§ Y. We then have
Smpx)=Smp y).

We write X <Y (resp. X <Y) if we have VaeS,VfeX,VgeY, fa<ga (resp. VaeS,VfeX,
VgeY, fa<ga). We also write f <Y and X < g instead of {f}< Y and X <{g}.

Given a function group ¢ on S, the relation defined by f < g < {f}<{g} is a partial order
on ¥. We will frequently rely on the basic fact that (¢, <) is partially bi-ordered in the sense that

Vf,g.he¥, idg<ge fh<fgh.

3.6 Remarkable function groups

Each of the examples of surreal substructures from Subsection 3.1 can be regarded as the classes
Smp for actions of the following function groups ¢ acting on No, No~ or No™>”. For ce R
and r€ R”, we define

T, == a—a+c  acting on No or No™”.

H. := ar>ra acting on No” or No™"”.
P. = ar—a" acting on No” or No™>”.
Now consider
T = {T;:ceR},
9 = {H,:reR"7},
P = {P:reR>),
€’ = (E,H,L;;neN,reR”), and

&* = {Ep,L,:neN}L
Then we have the following list of correspondences & — Smpe:

o The action of  on No (resp. No™”) yields No (resp. No2), e.g. Smpg =Nos..

o The action of 96 on No” (resp. No””) yields Mo (resp. Mo”).

o The action of  on No™*” yields Mo<Mo = E; Mo”.

e The action of &’ on No~>” yields Mo,,.

o The action of &* on No™” yields K := Mo, ~<Nos (which will coincide with E,,NoZ).
Generalizations of those function groups will allow us to define certain surreal substructures
related to the hyperlogarithms and hyperexponentials on No.

4 Hyperserial fields

In this section, we briefly recall the definition of hyperserial fields from [5] and how to construct
such fields from their hyperserial skeletons.
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4.1 Logarithmic hyperseries

Let x be a formal, infinitely large indeterminate. The field L. of logarithmic hyperseries of [14]
is the smallest field of well-based series that contains all ordinal real power products of the
hyperlogarithms L, x with @ € On. It is naturally equipped with a derivation 0: L — L and
composition law o: L x L.”>” — L.

Definition  Let a be an ordinal. For each y < @, we introduce the formal hyperlogarithm
y:=Lyx and define £, to be the group of formal power products [ =] y< aé[yy with [, € R. This
group comes with a monomial ordering > that is defined by

[>1e1g>0 for f=min{y<a:l,#0}.

We define L ., to be the ordered field of well-based series L« := R[[£<4]]. If @, f are ordinals
with < a, then we define £ ,) to be the subgroup of £, of monomials [ with [, =0 whenever
y<p. Asin [14], we write

Liga) = RI[£pa)]]
¢ = |J Cw
aeOn
L = R[[£]].

We have natural inclusions £ B.a) S £ .4 C €, hence natural inclusions ]L[ﬁ’a) CL.,cL.

Derivation on L« The field L <, is equipped with a derivation 0: L <, — L <4 which satis-
fies the Leibniz rule and which is strongly linear. Write E; =1] lg},&_l € Lcq forall y<a. The
derivative of a logarithmic hypermonomial [ € £« is defined by

al == (Z Iyé;)[.

y<a
1
I_L<)/€l

Composition on L<g Assume that o = w" for a certain ordinal v. Then the field L, is
equipped with a composition o: L4 x .2, — L, that satisfies in particular:

Sodly= for all y<a. For fe L, and ke N, we will sometimes write f(k) = akf.

e For gelLZ,, the map Loy — L.y f+> fog is a strongly linear embedding [14,

Lemma 6.6].

e For felL.yand g,helLZ;, wehave goheLZ and fo(goh)=(fog)o h [14, Propo-
sition 7.14].

¢ For ge L2, and successor ordinals y < v, we have £, o, =/, u—1[14, Lemma 5.6].

The same properties hold for the composition o: L x L”*” — L if « is replaced by On. For y < a,

the map L<qy— L<q; f > f ofy is injective, with image L[ 14, Lemma 5.11]. For ge L

y.a) y.a)

we define g'! to be the unique series in L, with g'V ol =g.

4.2 Hyperserial fields
Let M be an ordered group. A real powering operation on M is a law
RxM— M;(r,m)—m’

of ordered R-vector space on M. Let T = R[[M]] be a field of well-based series with M +# 1, let
v<On, and let o: L x T>*” — T be a function. For p<v, we define M ,« to be the class of series
se T>” with Vy <w¥,fyos€ M”. We say that (T, o) is a hyperserial field if

HF1. L — T; f+ fosis a strongly linear morphism of ordered rings for each s€ T~”.
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HF2. fo(gos)=(fog)osforall felL,gelL””, and s€ T,

(k) o
HE3. fo(t+8)=Y oy lpge o forall feL, e T>>, and §€ T with 5<t.

HF4. ELZO s< ELZO t for all ordinals y, y <", and s,t € T>>” with s<t.

HF5. The map R~ x M”—> M;(r,m) > m":=£jom extends to a real powering operation on M.
HF6. (10(st)=Ff1os+ /1ot forall s,teT>".

HF7. supp/iom>1forallmeM”;
supp £ uoa>(fyo a) I forall 1<pu<wv, y<w! and a € M.

For each y € On, we define the function L u: My — T;a > £ uoa. The skeleton of (T, o) is
defined to be the structure (T, (L), c0n) equipped with the real power operation from HF5.

We say that (T, o) is confluent if for all p € On with < v, we have
VseT>7,3a €My, Iy<wk, lyos=lyoa.
In particular (L, ) is a confluent hyperserial field.

4.3 Hyperserial skeletons

It turns out that each hyperlogarithm L, on a hyperserial field T can uniquely be reconstructed
from its restriction to the subset of L. x-atomic hyperseries (here we say that f € T~ is
L_p-atomic if L, f € M for all y < w"). One of the main ideas behind [14] is to turn this fact
into a way to construct hyperserial fields. This leads to the definition of a hyperserial skeleton
as a field T with partially defined hyperlogarithms L, which satisfy suitable counterparts of
the above axioms HF1 until HF7.

More precisely, let T =R[[M]] be a field of well-based series and fix ve On” U{On}. A hyper-
serial skeleton on T of force v consists of a family of partial functions L, x for u<v, called
(hyper)logarithms, which satisfy a list of axioms that we will describe now.

First of all, the domains M, :=dom L on which the partial functions L are defined should
satisfy the following axioms:

Domains of definition:
DDg. domL;=M";
DD, dom L u= ﬂn <u dom L, if p is a non-zero limit ordinal;

DD,,. domL, u={s€T:L;j-(s)€dom L for all n}, if y1 is a successor ordinal.

It will be convenient to also define the class M v by

Myv = {s€ T:L;)v-(s)€ M- for all n}  if v is a successor ordinal

My = ﬂ M- if v is a non-zero limit ordinal.
p<v

Consider an ordinal y < " written in Cantor normal form y=)_ ir:1 o"n;where n1>n2> - >n,
and ny,...,nr<w. We denote by L the partial function

Ly := Ligio---oLy (4.1)

w?]r.

It follows from the definition that for all p<v, the class M ¢« consists of those series se T>>
for which sedomLy and Lyse M~ for all y <wk. We call such series L_,u-atomic.
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Secondly, the hyperlogarithms L with u < v should satisfy the following axioms:

Axioms for the logarithm
Functional equation:

FEg. Vm,ne My, Li(mn)=Lim+ Ly n.
Asymptotics:

Ag. VreR”,¥Yme My, Lim< m.
Monotonicity:

Mp. Vm,neM,m<n=Lim<Lin.
Regularity:

Ro. Yme My, supp Ly m>1.
Surjective logarithm:

SL. VpeTZ,3me My, p=Lym.

Axioms for the hyperlogarithms (for each € On with 0<y<v and f:= w¥)
Functional equation:
FEy. Va€Mp,LgLp, a=Lga—1if pisa successor ordinal.
Asymptotics:
Ay Yy<p,Vae ‘.D‘Eﬁ,Lﬁa <Lya.
Monotonicity:
M. Va,be Mg, Vy<p.a<b=Lga+(Lya) ' <Lgb—(Lyb)"".
Regularity:

Ry. Yae My, Vy<p,suppLga>(Ly a)~ L,

Finally, for p < v with p€ On, we also need the following axiom

Infinite products:

Py YaeMpVieeZy Y glyLyr1a €Ly M.

Note that SL and Ry together imply Ly M~ = TS, whence P, automatically holds. This will in
particular be the case for No (see Section 5).

In summary, we have:

DEFINITION 4.1. [5, Definition 3.3] Given ve On~ u{On}, we say that (T, (L), <v) is a hyper-
serial skeleton of force v if it satisfies DD, FE,, A, My, and Ry, for all p<wv, as well as P, for
all ordinals u<v.

Assume that T is a hyperserial skeleton of force v. The partial logarithm Li: M — T extends
naturally into a strictly increasing morphism (T, x, <) — (T, +, <), which we call the logarithm
and denote by L; or log [5, Section 4.1]. If T satisfies SL, then this extended logarithm is actu-
ally an isomorphism [29, Proposition 2.3.8]. In that case, for any s€ T~ and r € R, we define
s":=exp(rlogs)e T~.
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4.4 Confluence

DEFINITION 4.2. [5, Definition 3.5] Given a hyperserial skeleton T = R[[M]] of force ve On~
and j < v, we inductively define the notion of y-confluence in conjunction with the definition of
functions b u: T — M 1, as follows.

o The field T is said 0-confluent if M is non-trivial. The function d1 maps every positive
infinite series s€ T >*” onto its dominant monomial ds. For each s€ T, we write
&1ls] = {teT>":t=sh.
Let u<v be such that T is n-confluent for all n< y and let s€ T>>”.

o Ifuis a successor ordinal, then we write & ,u[s] for the class of series t with
(Lo ,1-)°™(s) = (Lyr-o0d,n-)°"(t)
for a certain ne N.
e Ifuisa limit ordinal, then we write & u[s] for the class of series t with
Lyndyn(s) = L,nd,n(t)
for a certain n< pu.
We say that T is p-confluent if each class € u[s] contains a L_ p-atomic element; we then

define b u(s) to be this element.

This inductive definition is sound. Indeed, if p<v+1 and T is p-confluent for all n <y, then
the functions d 7 T~>” — M ,» with n< y are well-defined and non-decreasing. Thus, for n< i,
the collection of & ,1[s] with s€ T~ forms a partition of T~” into convex subclasses.

We say that T is confluent if it is v-confluent. If T has force On, then we say that T is
On-confluent, or confluent, if (T, (L,n)y<y) is p-confluent for all z € On.

4.5 Correspondence between fields and skeletons

ProposITION 4.3. [5, Theorem 1.1] If (T, (L,#)ucon) is a confluent hyperserial skeleton, then
there is a unique function o: L x T>>” — T with

YpeOn,Yae M u, C poa=Lua

such that (T, o) is a confluent hyperserial field.

Assume now that T is only a hyperserial skeleton of force v € On” U{On} and that y is an
ordinal with 0 < 1 < v such that (T, (L,n)y<) is p-confluent. Let f:= w¥. By [5, Definition 4.11
and Lemma 4.12], the partial function Lg naturally extends into a function T~>*> — T>*> that

we still denote by Lg. This extended function is strictly increasing, by* [5, Corollary 4.17]. If
is a successor ordinal, then it satisfies the functional equation

VseT>7, LﬁLﬁ/wSZLﬁs—l, (4.2)

by [5, Proposition 4.13]. For y < f, we have a strictly increasing function Ly: T>”> — T>>
obtained as a composition of functions L,» with <y, as in (4.1). By [5, Proposition 4.7], we have

Epls] = {teT>”:3y<f,Lyt=Lys}.

4.6 Hyperexponentiation

In a traditional transseries field T, the transmonomials are characterized by the fact that, for
any f € T~, we have

feM < supplogf>1. (4.3)
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In particular, the logarithm log: T~ — T is surjective as soon as exp ¢ is defined for all p € T
with supp ¢ > 1. In hyperserial fields, similar properties hold for L_ r-atomic elements with
respect to the hyperexponential E 1, as we will recall now.

Given v € On” u{On}, let T be a confluent hyperserial skeleton T of force v. By [5, The-
orem 4.1], we have a composition o: L. ,vx T>> — T. Given n< v, the extended function
L,n: T>> — T>” is strictly increasing and hence injective. Consequently, L, has a partially
defined functional inverse that we denote by E n.

The characterization (4.3) generalizes as follows:

DEFINITION 4.4. [5, Definition 7.10] We say that ¢ € T>>” is 1-truncated if

supp¢ > 1.
Given 0 < n< v, we say that a series p € T~” is o"-truncated if
Vmesuppp, m<1l=(Vy<o', (p<fl’,§o m~1).

For any = 0" < ", we write T p for the class of p-truncated series in T..

PROPOSITION 4.5. [5, Corollary 7.21] For f € T~ and f= 0" < ", we have

feMp & LpfeT,

In general, we have T Bt RZC T, 2 Whenever 7 is a successor ordinal, we even have
T>,ﬁ + R = T>,ﬁ (44)

Let ¢ be a series such that Eg¢ is defined. By [5, Lemma 7.14], the series ¢ is f-truncated if and
only if

Vy<p, suppo>(LyEg o)L
For y1< v, the axiom Ry, is therefore equivalent to the inclusion LM 4 C Ty ,u. For se€ T>7,

there is a unique <-maximal truncation #4(s) of s which is f-truncated. By [5, Propositions 6.16
and 6.17], the classes

#pls] = {tes+T=:t=s,or E|y<,5,(t<fgyo s—t[71)} (4.5)

with s€ T>> form a partition of T~*” into convex subclasses. Moreover, the series #5(s) is both
the unique f-truncated element and the <-minimum of $g[s]. If Egs is defined, then we have
the following simplified definition [5, Proposition 7.19] of the class $g[s]:

1
Bpls] = {te T>’>:Ely<ﬁ,t—s<LyEﬂs}. (4.6)

The following shows that the existence of Eg on T>” is essentially equivalent to its existence

on T, g.

ProposITION 4.6. [5, Corollary 7.24] Let u<v and assume that for n< p, the function En is
defined on T ,n. Then each hyperlogarithm L for n< p is bijective.

If Proposition 4.6 holds, then we say that T is a (confluent) hyperserial field of force (v, p).
Since every function Ly, y < »* is then a strictly increasing bijection T>>” — T>>”, we obtain

Eils] = {teT>":3y<A,3In, r1€R>,Ey(r0L},s)<t<E),(r1L),s)}, (4.7)
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for each ordinal A= ' with (1< p. By [5, Corollary 7.23], for all s€ T>>”, we have
Eg(#p(s)) = dp(Eps). (4.8)

5 The transseries field No

Recall that No is identified with the ordered field of well-based series R [[Mo]]. In this section,
we describe, in the first level v=1 of our hierarchy, the properties of No equipped with the
Kruskal-Gonshor logarithm.

5.1 Surreal exponentiation

In [19, Chapter 10], Gonshor defines the exponential function exp:No — No~, relying on partial
Taylor sums of the real exponential function. For ae No and ne N, write

ak
[a]n = Z I

k<n

We then have the recursive definition

exp ag expay, }

vaeNo, expas=fexpar) [a-aulnv. explan) [a-arlan 41 | ok o, =SB IL_

We will sometimes write e instead of exp a. The function exp: (No, +, <) — (No”, x, <) is a
bijective morphism [19, Corollary 10.1, Corollary 10.3], which satisfies:

e exp coincides with the natural exponential on R CNo [19, Theorem 10.2].
o eN°=Mo [19, Theorems 10.7, 10.8 and 10.9].

We define log:No” — No to be the functional inverse of exp, and we set L1 :=log1Mo”. Given
an ordinal «, we understand that w® still stands for the a-th ordinal power of w from sec-
tion 2.2.2 and warn the reader that w* does not necessarily coincide with e®loge,

Together, the above facts imply that L; satisfies the axioms FEq, Ag, Mo, Ro and SL. There-
fore, (No, L1) is a hyperserial skeleton of force 1. The extension of L; to No~ from section 4.5
coincides with log. It was shown in [13] that (No, +, x, <, exp) is an elementary extension

of (R, +,x,<,exp). See [28, 7, 8] for more details on exp and log.

5.2 No as a transseries field

Berarducci and Mantova identified the class Mo, of log-atomic numbers as Mo, = Smpg [9,
Corollary 5.17] and showed that (No, L1) is 1-confluent [9, Corollary 5.11]. Thus (No, L;) is a
confluent hyperserial skeleton of force (1,1). Thanks to [5, Theorem 1.1], it is therefore equipped
with a composition law L., xNo~>” — No. See [29, 10] for further details on extensions of
this composition law to exponential extensions of L «,.

Berarducci and Mantova also proved [9, Theorem 8.10] that No is a field of transseries in the
sense of [24, 29], i.e. that (No, L) satisfies the axiom T4 of [29, Definition 2.2.1]. We plan to
prove in subsequent work that (No, (L), c0n) satisfies a generalized version of T4.

6 Hyperserial structure on No

We have seen in section 5 that (No, L1) is a confluent hyperserial skeleton of force (v, v)
for v=1. The aim of this section is to extend this result to any ordinal v. More precisely, we
will define a sequence (L) con of partial functions on No such that for each ordinal v, the
structure (No, (L), <y) is a confluent hyperserial skeleton of force (v, v), and Ly coincides with
Gonshor's logarithm.
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6.1 Remarkable group actions on No

Vincent Bagayoko, Joris van der Hoeven

Assume for the moment that we can define L, and E, as bijective strictly increasing functions
on No™” for all ordinals y. This is the case already for y < w. Let us introduce several useful

groups that act on No, as well as several remarkable subclasses of No.
Given an ordinal v, we write « = w" and we consider the function groups

€y = (E,Priy<anreR”).

where Ey, Hy, Ps and Ly act on No~:”. We also define

Bg =
Ba

Lo €4Ey
La %6*( Ea.

We write Loy :={Ly:y <A} and E.}:={E}: y <A} for each A< a. In the case when a =1, note that

= 9%
=P
=7
= 9.

By Proposition 3.3 and the fact the set-sized function groups €, €5, B4, and $;; induce thin

partitions of No™>”, we may define the following surreal substructures

Mo, :
Mo}, :
Tr,

Tr) :

Smpg,
Smpg;
Smp ¢,

Smp .

Here we note that Mo corresponds to the class Mo~ = Mo of infinite monomials in No and ﬂg’gl

maps positive infinite numbers to their dominant monomial. Similarly, Tr; coincides with No<
and 747 maps a€No™*” to a,. In sections 6 and 7, we will prove the following identities.

Mo,

Tg!

Tr,

ﬂg&

Tr},

Tr),

VreR, ENoy o Ir
VreR,Zmo, Ir
Mo},

Mo}

Moy,

das

Nos o= LyMog,
B,

Tr, if vis alimit ordinal,

NoZ if vis a successor ordinal,
TrENo,, if visasuccessor ordinal,
EyTyLy EMo, if vis a successor ordinal,

Mo, ~<Nos if vis a successor ordinal,

E,Trs.

[Proposition 6.18
[Proposition 6.18
[Proposition 7.6
[Proposition 7.6
[Lemma 6.11
[Lemma 7.8
[Lemma 7.7
[Proposition 7.10
[Proposition 7.12

—_— e e d e d d e ed

[Proposition 7.13

The first and third identities imply in particular that the classes Mo, and Nos. , from section 4

are in fact surreal substructures, when regarding No as a hyperserial field.

6.2 Inductive setting

For the definition of the partial hyperlogarithm L, we will proceed by induction on p. Let p
be an ordinal. Until the end of this section we make the following induction hypotheses:
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Induction hypotheses

Iy,u. For n<yp, the partial hyperlogarithm L, is defined; we have L; =log1 Mo~
and (No, (L,,n)y<y) is a confluent hyperserial skeleton of force (u, ).

I ;. For r,s€ R with 1<sand for y, p < 0¥ with y <p, we have

VaeNo™”, Ey(rLya)<Ey(sL,a).

I3 . For n<yp, the class Moy, is that of L_,r-atomic surreal numbers, i.e. Mo/,1=Mo,,n.

These induction hypotheses require a few additional explanations. Assuming that I, holds,
the partial functions L » with <y extend into strictly increasing bijections L, 1 No™>” —
No~:”, by the results from section 4. Using (1.3), this allows us to define a strictly increasing
bijection Ly:No”” — No~*” for any y <y and we denote by Ey its functional inverse. In par-
ticular, this ensures that the hypotheses I ;, and I3 ;, make sense.

Remark 6.1. In addition to the above induction hypotheses, we will implicitly assume that
our hyperlogarithms L » for n<p are always defined by (6.1) below. In particular, our construc-
tion of L is not relative to any potential construction of the preceding hyperlogarithms L, »
with <y that would satify the induction hypotheses Iy ,, I2 ;, and I3 ;. Instead, we define one
specific family of functions (L,,n),con that satisfy our requirements, as well as the additional
identities listed in subsection 6.1.

ProPosITION 6.2. The axioms I 1, I21 and I3 1 hold for (No, Ly).

PROOF. Section 5 shows that Iy 1 holds. Consider r,s€ R~ with s>1. On No™”, we have
Tiogr < Hs, hence H, = E; Togrl1 <E1HgLy. It follows that we have E,, H,L, < Epy1 HsLpi1
on No~” for all n€ N. This implies that I ; holds. Finally, I3 1 is valid because of the rela-
tion Mo, =Smpg. m|

PROPOSITION 6.3. Let v be a limit ordinal and assume that 1, I, and 13, hold for all p<v.
Then 1y y, I, and 13, hold.

Proor. The statement Iy , follows immediately by induction. Towards I3 ,, note that we have
Mog =, <, Mo,n= ﬂ,7<VMo£0n by I1,; (and thus DDy) and I3 ; for all n<v. By [4, Proposi-
tion 6.28], we have Moy = ﬂU<VM0;)r7 =Moy. So I3, holds.

By I, for all n<v, we need only justify that (No,(L),<y) is v-confluent to deduce that I ,
holds. For aeNo™”, by Iy, there are a a € Moy =Mog and a ff:= w" < a with Eg(1/,Lga)<a<
Ep(2 Lga). We deduce that Lga= Lga, thus a € €g[a]. This concludes the proof. |

From now on, we assume that I, Iz, and I3, are satisfied for > 1 and we define

vi=p+1
a = '
B = ot

The remainder of the section is dedicated to the definition of Lg and the proof of the inductive
hypotheses I ,, Iy, and I3, for v. In combination with Propositions 6.2 and 6.3, this will
complete our induction and the proof of Theorem 1.1.

6.3 Defining the hyperlogarithm

Recall that we have Mol'g =Mog by I3 . In particular Mog is a surreal substructure. Consider
n<v. The skeleton (No,(L.),<y) is a confluent hyperserial skeleton of force (5, 1) by I ;. So for
a€No™”, (4.7) and Iy , yield &, 1[a] = €/ n[a].
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In view of A, and M, the simplest way to define Ly is via the cut equation:
YaeMog, Lga:={R,L ! o | LgaMor- 11
aEMog, Lga:= ﬁa + ﬁa’ ca’ eaL BAR _L</;a’ <par- (6.1)

Note the asymmetry between left and right options Lga’ + (L<ﬁ a’)™! and Lga”' - (L<p a)~!

44

(instead of Lga (L</; a’)71) for generic o’ € a} Mog and o” € aR %. In Corollary 7.4 below,

we will derive a more symmetric but equivalent cut equation for Lg, as promised in the intro-

duction. For now, we prove that (6.1) is warranted and that Ay My, and R, hold.

PROPOSITION 6.4. Thefunction Lg is well-defined on Mog and, for a € Mog, we have

. Mo 1 Mo 1
H,: (Va ear ﬂL/;a +T— <Lﬁa——ﬁ) and(‘v’a €ag ﬁLﬁa+—<Lﬁa _L<,ga”)'

Proor. We prove this by induction on (MOﬁ, E). Letae MOﬁ such that Hy holds for all b €
Mop Let o’ € aM® and a” € a}1%. We have o’ €(a” W% or o’ € (a”)§1%, so H,» or H,» yields

144

1
’
Lga +L<ﬁa’ < Lga

L<ﬁa/l
F have ¢ Lty and— -1 _ 1 wh
or y < f, we have y+1<3lyan I ’>Lya”’Lya’W ence
1 2 1 1 1

+
L}/+1a’ ” L}/a’ L)/a/ L}/a/’ Lya’
for all y <f. Hence,

144

_L<ﬁa.

1
4
L/;a +W < Lﬁa

We clearly have Lg a’ - rl,ga =Lg a’’>R. Finally,

L/;a,+ = Lﬁa’ < L<ﬁa',

L<ﬁa

SO Lﬁ Ot I 7 <L.pa. This shows that Lga is defined and

Lﬁa’+L 1(1/ < Lga < Lﬁa”—
<p

L<ﬁ a ’
Since a’ <a<a”’, it follows that
’ 1 1 1%
Lﬂa +L<ﬁa’ < LﬁaiL ; < Lﬁa _L<ﬁa'
By induction, this proves H, for all a € Mog. |

PROPOSITION 6.5. The axiom M, holds.

ProoF. Let a,b e MOﬁ with a < b. Since MOﬂ is a surreal substructure, thereisa ¢ € MOﬂ with
¢Ca,band a<c<b. If a <c, then we have Lga +(L<ﬁa)_1 <Lgc— (L<ﬁc)_1 by H,. If ¢ <b, then
we have Lgc +(Leg ) l< Lgb—(L<p 6)~! by Hy. We cannot have both a =¢ and ¢ = b, so this
proves that Lga +(L<g a) 1< Lgb—(L<p 6)~!. Therefore M, holds. |

PROPOSITION 6.6. The axiom Ay holds.

Proor. The rightmost options in (6.1) directly yield A,,. ]
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PROPOSITION 6.7. The axiom R, holds.

ProoF. Let a € Mog and write ¢:=Lga. Let m € supp ¢ with m <1. We have ¢ <L.ga and

@>m= @ SO P>, <L.ga. Moreover ¢ is positive infinite. The number ¢y, is strictly simpler
than ¢, so ¢ does not lie in the cut which defines Lga in (6.1). Therefore, there is an a’e a%’loﬁ
or an a’’ € a}% and an ordinal y < f with @5 < Lga’ + (Lya") Lor gom> Lga”" = (Ly a)~L
Consider the first case. We have Lg a’ + (L<p a) 1< @< Pom+ @nm+ 6 for a certain § < m. So
O >0 and

L<ﬁa’ Lya/ qpm .
For p < with y < p, we have (L, a)7 1> (Ly a")"1so (Lp a)y71- (Ly o)1= (Ly a’)~1. We deduce
that (L, a”)~1< m for all such p. It follows that (Lp a)~1x m for all p < f. In the second case,
we directly get m > (Ly )L, This proves that we always have m > (L<p ). In other words
supp ¢ > (L<p a)~!, whence R holds. i

PROPOSITION 6.8. If i is a successor ordinal, then the cut equation (6.1) is uniform.

Proor. Let (£,, R,) be a cut representation in Mog and write a ={Lq | ERa}Moﬂ. For[e £,, we
have Lgl <Lga<Lcga so Lgl <L.ga. For t € Ry, we have Lgl + (L<ﬁ[)_1 <Lgt by M. Since
[<a, it follows that Lg[ +(L<g N~l< Lgr—(L<p a)"1. We may thus define the number

1 1
Q = {R,Lﬂ[-*—rﬁ[[ega Lﬂma—rﬁa,ll<ﬁa}.

In order to show that (6.1) is uniform, we need to prove that Lga = ¢, for any choice of the cut
representation (£,, R,). We will do so by proving that LgaC ¢ and ¢ C Lga.

Recall that (£, R,) is cofinal with respect to (a%/loﬂ | a%loﬁ) and that Lg is strictly increasing.
Consequently, we have

¢ < Lﬂagloﬁ—(nga)_l.
Given a’ € aM%  there is an [ € €, with a’ <. By My, we have Lg a’ + (Lya')_1 SLgl+ (L),[)_1
for all y<f,so p>{Lg a + (L<p ) lid'e a%/loﬂ}. This proves that ¢ lies in the cut defining Lga

as per (6.1), whence Lga € ¢.
Conversely, in order to prove that ¢ C Ly a, it suffices to show that Lga lies in the cut

1
Lﬁfﬁa - L<ﬁa)'

Let[e £, andlet b EMOﬁ be C-maximal with bC [, a. We have [ <b < a, whence Lgb<Lga, by M.

If b |, then b e [}, so H; yields Lgl +(Leg)"! <Lgb and Lgl + (L<pl)"' < Lga. Otherwise

[=bea}', so H, yields Lgl +(L.gl)"' < Lga. This proves that {Lgl +(L<pl)~1:[€ €.} < Lga.
Let t € R, and let ¢ EMOﬁ be C-maximal with ¢C t,a. As above, if cCa, then ¢ € a%[oﬁ so H,

1
—_— 2
(L/;[+L<ﬂ[.[e£a

yields Lga <Lgc—(L<p )", whence Lga<Lgr—(Leg a)~L. Otherwise a=ce rILVIOﬁ so H, yields
Lgt>Lga+(Leg ). Hence Lga<LgRq—(L<p a)~! and we conclude by induction. a

6.4 Functional equation

In this subsection we derive FE;, under the assumption that y is a successor ordinal. We start
with the following inequality.
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LEMMA 6.9. If u> 1, then we have E.p, <Ep, HyLg onNo™”
PRrOOF. For y < f§, there are n<p_ and n< o with y <@”n. We have
Ey < Egiy = E 1 TyLpe1 < E p1HaL pet
on No™” by (4.2). Note that n+1<p_ <y, so Iy, yields
E re1HaL ne1 < Ep, Halg

whence Ey < Eﬁ/ng Lﬁ/w' O

Letae MOﬁ. Since MOﬁ is a surreal substructure, we may consider the L. p-atomic number

b= {Lg, ol Ly, aX'%, alMoy

We claim that b = Lﬁ/w a. Assume that =1 and write a = Epmo,a. We have

loga = Emo,(a—1) (by [2, Proposition 2.5])
= EMo,faL-1lar-1,4d (by (3.1))
= {EMo,(aL—1) | Emo,(ar— 1), EMo,, 9Mo,,
= {logEmo, ar | log EMo,, ar, EMo,, aMo,, (by [2, Proposition 2.5])
= {logaM®* | log a¥°°, a}mo,
= b.

Assume now that p> 1. The function Lg, is strictly increasing with Lg,  <idno>>. Therefore
Lﬁ/w a € (Lﬂ/ ClL ﬁ | Lﬁ/ O'R a)MOﬁa
so bC Lg, a. Since a € Moy, the cut equation (6.1) for p yields
Lg,a = {R,Lg, o' +(Lp a')"L:a’ e aMopo | Ly, aMos., (L<p a)_l,L<ﬁ/w a}. (6.2)
Given a’ € aM%, we have dg(a ayeaM%andd’ € %ﬂ[bﬂ(a )]. We deduce that
Lg,, ol € Lg,, %ﬁ[bﬁ(a')] = gﬁ[Lﬂ/w bﬁ(a')].

Moreover, by definition, we have

b > EplLg,dp(a")] = EplLg,dp(a’)],

sob>Lg a’. Symmetric arguments yield b<Lg, aMOs0. Lemma 6.9 implies that Lep,,aSEp[al,
whence dp(L<p,, a) ={a}. We get b<Epgdp(L<p, a), whence b <L g a. Thus b lies in the cut
defining Lg, a in (6.2), so Lg, a Eb. This proves our claim that

Va€Mog, Lg, a={Lg,, oMo #| Lg,, aR G}Moﬁ (6.3)

We now derive FE,.

PROPOSITION 6.10. For a € MOﬁ, we have LﬁLﬁ/w a=Lga—1.

Proor. We prove this by induction on (Mog, C). Let a € Moy be such that the result holds
on aM9. By (6.3), we have

Lo = {Lg, oMoy | Lg,, aMog. a}Moy-
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Let a’ and a”’ range in aMosand o}l respectively. Proposition 6.8 and our induction hypothesis
yield:

LgLg o = {R,LﬁLﬁ/wa + LgLg,,a _—L<ﬁLﬂ/wa’Lﬁa_—L<ﬁa’L<ﬂLﬂ/wa}

1
L</3Lﬁ/w a’

, 1
= {R,Lﬁa —1+L<ﬂa,

144 1 1
L/;a —l—rﬁa,Lﬁa—rﬁa,L<ﬁa}.
On the other hand, we have

’

Lﬂa' —

>—1

Lﬂa—l = {R—I,Lﬂa’+

= {R,Lﬁa'+ -—1

144 ]-
L<ﬁa Lﬁa — L<ﬁa — l,L/;a,L</;a}.

In order to conclude that LgLg a=Lga -1, it remains to show that Lga —1<Lga - (L<p a)~!

and that LgLg a <Lga. The first inequality holds because (L<p a)~1 is a set of infinitesimal

numbers. An easy induction shows that L a<a for all a€ No~>”. The second inequality
follows, because Lg is strictly increasing on Mog. This completes our inductive proof. |

Combining our results so far, we have proved that (No, (L,),<y) is a hyperserial skeleton of
force v.

6.5 Confluence
We next prove that (No, (L,7)y<y) is v-confluent.

LEMMA 6.11. If u is a non-zero limit ordinal, then the function groups '8/’; and %E are mutually
pointwise cofinal. In particular, we have Mog = Mo["} and Trg= Tr["}.

Proor. For y€(0,f) and r€ R”, we have EyHyLy<Ey since Hy <E,. We have
{Lp.Ey:pe(0.9)} 5 €.
whereas I, , yields
{EpHrLy:p€(0.)} 5 €.
Therefore €3£ €. For p<f, there is n< p with p < ". By (4.2), we have
Ep < Ew'l = Ew77+1 Tl Lw77+1 < Ew77+1H2 Lwry+1,

which proves the inequality €5 £ €. O

LEMMA 6.12. For each a€ No™"”, any C-minimal element of €,[a] is L<,-atomic.

Proor. Let 2 denote the class of numbers a € No”*” that are C-minimal in &4[a]. Any such
C-minimal number a is also C-minimal in %fg[a] =&pla] C&qfa], hence L g-atomic. Thus Ly is
defined on 2I. It is enough to prove that 2 is closed under Lg in order to obtain that 2 C Mo,

Consider a € Y, and recall that we have

Lﬂa = {R,Lﬁa’+$:a’€ag{0ﬂ LﬂaRMOﬂ_%ﬁa’L<ﬁa}' (64)

Assume for contradiction that Lga is not C-minimal in €4[Lga]. So there is a b€ &,[Lga]
with bC Lga. This implies that b lies outside the cut defining Lga, so b is larger than a right
option of (6.4) or smaller than a left option of (6.4).
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Assume first that b <Lga. So there is an a’ € aM% with b < Lg a’. We have dy(a) = dg(b) so
there is an n€ N with

(Lgodp)°™(b) = (Lgodp) ™ (Lga).
Thus
(Lﬂo bﬁ)°("+l)(a/) = (Lﬁo bﬁ)o(n+1)(a).

This contradicts the C-minimality of a.

Now consider the other case when b > Lga. In particular, b must be larger than a right option

of (6.4). Symmetric arguments imply that we cannot have b > Lg a’’ for some o’ € a%[oﬂ. So

there must exist a y < with b > Ly a. If pis a limit ordinal, then y < so Lemma 6.11 yields
dg(Lya)=a, whence dg(b) > a. If pis a successor ordinal, then there is a k€ N with y <)k, so

dp(b) = dp(L(p,)ka) = L(g,)ka

and Proposition 6.10 yields Lg bﬁ(b) 7 Lga— k> Lga. In both cases, we thus have Lg bﬁ(b) 7 Lga.
For any integer n> 1, we deduce that

(Lodp)™(b) > (Lgodp)°™(a) > (Lgode) " a) = (Lgodp) ™(Lga).

This contradicts the fact that b lies in €4[Lga].
We have shown that the cases b <Lga and b> Lga both lead to a contradiction. Consequently,
Lga is C-minimal in €4[Lga] and we conclude that Lgl C 2, as claimed. a

CoRrOLLARY 6.13. (No, (L,n)y<y) is v-confluent.

Proor. We already know that (No,(L,,1),<y) is p-confluent by I ;. Recall that (No,C) is well-
founded, so each class ,[a] for i€ No”™>” contains a C-minimal element. Lemma 6.12 therefore
implies that No is v-confluent. |

The corollary implies that (No, (L,1);<v) is a confluent hyperserial skeleton of force v. More-
over, the class No, B is that of <-minima and thus C-minima in the convex classes

$plal = {be a+No<:b:av(3y<ﬁ,a<égyoIa—bl_l)},

for ae No™”. In other words, we have No.. p=Smpg 5 In order to conclude that No, g is

a surreal substructure, we still need to prove that the convex partition £ is thin. This will be
done at the end of section 6.6 below.

PROPOSITION 6.14. The cut equation (6.1) is uniform.

PRrOOF. Let (£4, R,) be a cut representation in Mog and write a:= {€a 1 ERa}Moﬁ. We have
$ﬁ[Lﬁ €. < fgﬁ[Lﬁ a] < fgﬁ[Lﬁ Ral.
By (4.6), this shows that

1
Lﬁa S (R,Lﬂ[-l‘rﬁ[i[ega

1
Lﬁma —W,L<ﬁ Cl).

In particular, the number

1 1
Q = {R,Lﬁ[+rﬂ[.[62a Lﬁma—rﬁa,L<ﬁa}
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is well-defined, with ¢ € Lga. As in the proof of Proposition 6.8, we have Lga C ¢, whence
¢=Lga. We conclude that the cut equation (6.1) is uniform. O

6.6 Hyperexponentials

We have shown that (No, (L,),<y) is a hyperserial skeleton of force (v, y). In order to prove
that (No, (L,,7)y<v) has force (v, v), it remains to prove that every f-truncated number ¢ has
a hyperexponential Egg. This is the purpose of this subsection.

ProrosITION 6.15. We have LgMog=No,. g, and Eg has the following cut equation on No,. g

1
Vo eNo, g, Eﬁ§0={E<ﬁ§0’ E<ﬂ(' No, g
PR

)’ EhEpoL O

%éEﬁ¢I§O>’ﬁ}- (6.5)

Proor. We prove the result by induction on (No,. 4,C). Let ¢ €No,. g such that Ez is defined
on X with the given equation. We will first show that the number

1 ’ ’
Q= {E<ﬂ€”aE<ﬁ(_N—)a EpEpoL " %ﬁEﬁﬁ")'ﬂ} (6.6)

oR>F -0

is well-defined. We will then prove that Lga = ¢.
Let ¢’ € oN%F and ¢ € pXO~5. If ¢’ € (¢”")N°~# then Ego"" > €pEge’ by the definition

of Eﬂgo”. So %ﬁEﬂq}' < %ngﬂgo”. Otherwise, we have ¢"" € (go’)RNO%ﬂ, whence %ngﬁgo” > Eﬂgo' by
definition of Eﬂgo', SO %éEﬁq}' < %ﬁEﬁq)”. So we always have

%ﬁEﬂq0§°>’ﬁ < %f;Eﬂgo}1§°>’ﬁ.
We also have E_g e < Ep ¢, so Ecpp< %ﬁEﬂ ¢"’. This proves that Ecpp< %éEﬂ ¢1§°>*ﬁ. It
remains to show that

1 ’ No
E < &3E >P).
i) < ER

Note that pR°>#> % [¢], so by the definition of £g[¢], we have
R L], so by sl

T< 1
Ly ﬁ(m) < ¢ < RO (6.7)

Hence E. ﬂ((¢}1§°>,ﬁ —p) H< Eg ¢1§°>’ﬁ, which completes the proof that a is well-defined.
Let us now prove that Lga = ¢. Note that a € Mog by Proposition 3.2. First assume that y is
a limit ordinal. Lemma 6.11 yields (E. ) £ €5, so we may write

1 No No }
a = 105(0). 0p| —wo— ) Eper F | Eper Fp -
{ ple) ﬁ(‘PR0>”B_ fP) poL POR Moy

By (4.6), for b€ No™” the classes that £ plLgb] and Lgb + (L<p b)~! are mutually cofinal and
coinitial. Moreover, we have LgEgy = ¢ for all ¢ € oN°~5 by our hypothesis on ¢. Hence,
Proposition 6.14 and (4.6) imply

1 No No 1
Lga = {R, B4[Lsda(0)], Bl Lgd B >, ~p— .
g { plLgdp(0)] ﬁ[ B ﬂ(_N—(pRo>,[;_(p)] slor 7] ’ PR L<ﬁa}

Note that Lga € ((pLN°>’ﬁ | <PII§0>’ﬁ)No>’ﬁ, so pC Lga. Now Lgdg(g) € £p[Lgp] < ¢. We also have

1 , 1
Lgd e Lg% ,
P ﬁ(m“"”w) P ﬁ[m””‘*—qo]
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where
J 1 I O
Lp gﬁ[m] = Lp¥%p [m] (by Lemma 6.11)
/ LT</3( 1 )
7T R
< @. (by (6.7))

So Lg b/;((p}g%ﬁ— @)~ < ¢. Since ¢ €Noy 4, the inequality $ﬁ[(pLN°>»ﬂ] < ¢ follows from Propo-
sition 3.2. Finally, we have by definition that a > E</;(((p11§°>’ﬁ— @)D, so (p11§°>’ﬁ— (L<p ) 1> .
This proves that Lga € ¢, so Lga = ¢.

Assume now that y is a successor ordinal. For all b€ No~”, the sets E.go, E<pdp(9), and
Ep,,,N dp(¢) are mutually cofinal. So we can rewrite (6.6) as

1 , ’
a = {Eﬁ/wN bﬂ(q)), Eﬁ/wN bﬂ(—N—(pR o5 (P)’ gﬂEﬁ§0§°>’ﬁ %ﬂEﬁ¢l§0>,ﬁ}

1
R e S E T

Moy

As in the limit case, Proposition 6.14 yields

1 1
Lﬁa = {R, $ﬁ[L/§<ﬁ bﬁ((ﬂ)], $ﬁ[L;<ﬁ bﬁ(m)], $ﬁ[¢§0>’ﬁ] ‘ (Pllg())'ﬂ_ L<ﬁa}.

Let y <p. There is an n€ N with y <f,n. Since Lgp < ¢ —(n+1), we have
1 hjw(n+1) Ty

In particular ¢ > $ﬂ[L;Y d4(¢)]. We saw in (6.7) that L;y bﬂ(((pg"%ﬂ— ¢)~1) < ¢, whence
£ ﬁ[L/Tgy bﬁ(((p11§°>»ﬁ— ©)"1)] < ¢. We also obtain the inequalities

Bl < ¢ < RO~ (Lepa)”!

in a similar way as in the limit case.
We conclude that ¢ = Lga holds in general. It follows by induction that the formula for Eg is
valid. In particular Lg:Mog— No,. g is surjective. |

With Proposition 6.15, we have completed the proof of I . By (4.7), we have €g,,[a] =€ éw[a]

for all a€ No™”. Given a€ No, g, we also deduce from (4.6) that the set a + (L<gEp a)lis
cofinal and coinitial in $g[a]. The convex partition defined by % is thus thin. By Proposi-
tion 3.3, the class No,. 3 is a surreal substructure with uniform cut equation

VaeNo, ENo, za={R, B4[ENo, sar] | Lg[ENo, zarl} (6.8)

For a€ No, we have $ﬁ[EN0>’ﬁ al < ENo, 4R, S0 ENo, ;a4 <ENo, 4aR~ (L<ﬂEﬁ ENo, 4 a)~l. We
deduce that the following equivalent is equivalent to (6.8):

1 , 1
= a =R, = d+——  :dea;|E aR— ———————+. 6.9
No. 4 { No. 4 L<ﬂEﬂ EN0>’ﬁ a L | =No, 4R L<ﬁEﬂ ENo, 5 a} (6.9)

6.7 End of the inductive proof

We now prove I ,, I3 , and Theorem 1.1.



The hyperserial field of surreal numbers 25

LEMMA 6.16. If ju is a limit ordinal, then we have EgTi Lg>E_p on No™”.
ProOOF. Let a€ No™>”. We have #p(Lga+1)> tp(Lga), so (4.8) yields

bﬁ(Eﬁ(Lﬁa+ 1)) = Eﬁ(ﬁﬁ(Lﬁa+ 1)) > Eﬁ(ﬁﬁ(Lﬁa)) = bﬁ(a).
We deduce that Eg(Lga+1)>&gaso Eg(Lga+1)>E.pgaby Lemma 6.11. a

PROPOSITION 6.17. Forr,s€ R with s>1 and y < p <a, we have E,H,L, <E,HsL, on No™”,
i.e. I,y holds.

Proor. Throughout this proof, we consider inequalities and equalities of functions on No~”.
Write y=fm+1and p=fn+ 0 where m,n<w and 1,0 <. We have

EpHer = EﬁnEeHngLﬁn.

If m=n,then 1<0,so0ly , yields E,H,L,< EgH;sLg, whence EyHyLy < E,H;L,. Assume that m<n.
If p_ is a successor ordinal, then there is p < with 1< f;,p. By Iz, we have EgHLg > Hs > Tp.
So Eg(EgHsLg) Lg> EgTyLg=Ep, p We conclude by noting that Eg,p>E>E HyL,. If p_is
a limit ordinal, then EgH;Lg> Ty so Eg (EgHsLg) Lg>E,>E,HyL, by Lemma 6.16. It follows that
for k€ N~, we have Ep(k+1)EoHs Lo Lg(k+1) > Ep E.Hy L Lgk. An easy induction on k yields
the result. O

PROPOSITION 6.18. Moy, is the class of L<4-atomic numbers, i.e. I3, holds.

Proor. Let aeNo~"”. By Corollary 6.13, the simplest element of &,[a] is L<g-atomic. Since
&ala) = €4[a], we deduce that Mo, C Moy,

Conversely, given a € Moy, we have b := ﬂg&(a) €Moy CMo,. Now b € E,[a], so by Iy, there
are r,s€ R” and y <a with Ey(rLya)<b<E(sLya). Hence, L,b=<Lya,Lyb=Lyaand b=a. We
conclude that a € Moy,. ]

In particular, the class Moy, is a surreal substructure. We have proved I; 4,12 ,, and I3, so
we obtain the following by induction:

THEOREM 6.19. The field (No,(L,1)yc0n) is a confluent hyperserial skeleton of force (On, On).

Combining this with Propositions 4.3 and 4.6, we obtain Theorem 1.1. Let us finally show
that (No, o) contains only one L<on-atomic element.

PROPOSITION 6.20. The number w is the only L<on-atomic element in No. For all a€ No™”,
there is y € On with Lya= Lyw.

Proor. The number w lies in Mo for all p€ On, so it is L«op-atomic. For v On, the number
Eyvw={E<y,vw | @} is an ordinal. As a sign sequence, the number L,v0={D | L<yr@}No>> IS @
followed by a string containing only minuses [2, Lemma 2.6]. Since the sequences (E,v®)yecOn
and (L,vw)yecon are strictly increasing and strictly decreasing respectively, the classes {E,,vw:
veOn} and {L,vw: vE On} are respectively cofinal and coinitial in No”>” ={a€No: »wC a}. Thus
for aeNo~”, there is ve On with E,vw> a> L,vo, whence L,v+1w=L,v+1a. |

7 Remarkable identities

In this section, we give various identities regarding the function groups introduced in Sec-
tion 6.1. In what follows, v is a non-zero ordinal and a:= w".
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7.1 Simplified cut equations for L, and E,

Given ¢ € No™”, let Eqq:= {E(a),)n@:n € N}if vis a successor ordinal and Eqq ¢ :={¢} if vis
a limit ordinal. In this subsection, we will derive the following simplified cut equations for Ly
on Moy, and Ey on Noy 4:

Va EMOa, Laa = {La al[Y[Oa | Laa%/loa,L<aa}N0>a (71)
1 Mo 1 Moq
{R Lya’ +L P ca’€ar® Laa”—m,qua:a”eaLo}, (7.2)
Nos.« Nos.«
Vo ENOs o, Ex¢ = {Eqaada(9), Exop 0> | Exgpg 0>, }Moa (7.3)
Nos> .« No>,«
= {E<q . EaEapp % | €aEapr "} (7.4)

For all aeNo””, the set Eq d4(a) contains only L<g-atomic numbers, so (7.3) is indeed a cut
equation of the form {p | A}mo,-

Remark 7.1. The changes with respect to (6.1) and (6.5) lie in the occurrence of a”” instead of a

in (7.2) and the (related) absence of the left option E<a((q)11§°>’“ - q))_l) in (7.4). So (7.2) and (7.4)
give lighter sets of conditions than those in (6.1) and (6.5) to define L, and E,. This seemingly
meager simplification will be crucial in further work. Indeed, combined with Proposition 3.1,
this allows one to determine large classes of numbers a, b with aC b= E,aC E,b.

First note that the cut equations (7.1) and (7.3) if they hold are uniform (see [6, Remark 1]).
Moreover, we claim that (7.1,7.2) are equivalent and that (7.3,7.4) are equivalent. Indeed, recall
that for a thin convex partition IT of a surreal substructure S and any cut representation (L, R)
in Smpyy, one has

{L | Rismpy, = {[L]|II[R]}s.

For a’ € a%/lo"‘ and o’ € a%[o"‘ the classes Lya’ + (L<ga’) ™! and B4[Lya’] are mutually cofinal
by (4.6). Similarly, Lya”" = (L<ga’) ™! and $4[Lya”’] are mutually coinitial. By Lemma 6.11, the
classes E<4 ¢ and & 4[ Eqq do(@)] are mutually cofinal. So it is enough to prove that (7.1) and (7.3)
are valid cut equations for L, and E, respectively.

LEMMA 7.2. If v is a successor ordinal, then the identities (7.1) and (7.3) hold.

Proor. Let a € Moy and set

Mo Mo,
@ = {Lgay | Lgap a,L<aa}No>a

1 1
{R Lya’ +L 0 eaILVIO“|Laa”—L—a,,,L<aa:a”€a%[°“}.
<ax <x

We have B,[Ly aL %< p<Lcga so in view of (6.1), it is enough to prove that ¢ <Ly aMo"‘

144

(L<ga)~! to conclude that g =Lya. Let a”’ € ag Moz 1f 47 e &4[a], then the inequality ¢ < Lya
entails ¢ < Bo[Lya’’] whence g <Lya”’ —(Lega’) ' and ¢ <Lya” = (L<ga)™l. Otherwise,
we have a <Lcga”’,s0 Lya<Lga” =2, and Lya”' = (L<ga)™t>Lya + 1. It is enough to prove
that Ly a +1 > ¢. Recall that

1 1
Lya+1 = {Laa,Laa’+—,+1:a’eaM°“|LaaM°“ +1,L<aa}
L<(Za L<aa
1

— o SO
L<aa L< aMOa

by (3.1). We see that Lya’ +L1 <Lga+1foralla EaMoa We have 1 - ——

Lya M°a_L_+1>(p Thus ¢ <Ly a + 1. So (7.1) holds.
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Now let ¥ € Nos 4 and set
b = {EayN dal¥). Ea VD O | Ec VR * oy
By uniformity of (7.1), we have
Lo = {LaFa), N a() 97 O | YR " Leablo, -

whence Ly b3 {1//F°>’“ | ¢1§0>’Q}N0>,a = 1. Conversely, b > Ey, N do(¥) and b>E<q ¥/, s0

Y <L<gb. We have LyEy N Do) = L do() + N. Since Ly de(¥) < Loy, da(¥) < ¢, this
yields Ly Ey, N () < . This proves that  lies in the cut defining L, b. We conclude that
Y = Ly b, hence (7.3) holds. a

We now assume that v is a limit ordinal. For z € No, define

F(Z) = {ba(EN0>,az)7F(ZL) | F(ZR)}MOM and
2z = {R,E2" + (LeoF(z) i7" €21 | Ezp— (L<oF(2))~ 1}

LEMMA 7.3. For all z€ No, we have

F(z) is defined (7.5)
=z is defined (7.6)
2z = ENo, 42 (7.7)

F(z) = E4Ez (7.8)

Proor. We prove the result by induction on (No,C). Let z € No be such that (7.5), (7.6), (7.7)
and (7.8) hold for all yeNo with yC z.

For z’’ € zg and 2z’ € z, we have da(ENo, o 2) < ba(EN0>’az”) <F(z"). We have F(z')<F(z")
by definition of F(z"")if 2z’ €(z"")r and by definition of F(z’)if z”” € (z")g. This proves that F(z)
is defined.

Let z' € z; and 2”7 € zg. If 2’ €(2”')L, then we have Ez” >E2z" + (L<F(z’))™! by defini-
tion of Zz’’. Since F(z’) < F(z) and F(z), F(z") € Mog, we have L},F(z’) < LyF(z) for all y<
a. We deduce that 2z — (L<qF(2)) ' > 22" + (Lo F(z')) "L If 2" €(2)1, then 22" <Ez"" -
(L<qF(z'))™! by definition of Zz’. Since F(z’) < F(z), we obtain £z"" — (Lo F(2)) ' >E2" +
(L<F(z))™1. This proves that Zz is defined.

Since (7.7) and (7.8) hold on z-, we have

Ez = {R,ENo, .2’ +(L<aEzENos .2 ) 12 €21 | ENoy o 2R — (L<aEa ENoy ,2) 1}

By (6.9), this yields Zz=ENo, ,2, so (7.7) holds for z.
From (7.7), we get da(ENo, ,2) = da(E2). By Proposition 6.14 and our assumption that (7.8)
holds on zc, we have

LaF(Z) = {R, fga[La ba(EZ)L fga[LaF(zL)] | LaF(ZR) - (L<aF(Z))_1aL<aF(Z)}
= {R, BolLade(E2)], BalEz1) | Ezr— (L F(2)) 1, Lo F(2)}.

Recall that 2z ={R, B4[E21] | E2r — (L<qF(2))~!}. Therefore it suffices to show that Zz lies in
the cut (B4[Ly 2o(E2)] | L« F(2)) to conclude that L, F(z) = Zz and thus that F(z) = E;=Zz. Now
Lado(Ez)<EG[Ez] s0 Ly b(E2) <Ez and By[Ly do(E2)] <Ez. We have F(z) > by(Ez), where
F(z) € Moy, Since v is a limit ordinal, Lemma 6.11 implies that F(z) > E<, =z, s0 £z < L<oF(z).
This completes the proof that F(z)=E,=Zz. i

CoRrOLLARY 7.4. The identities (7.1), (7.2), (7.3), and (7.4) all hold.
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Proor. It is enough to prove (7.1) and (7.3). The identity (7.3) follows from (7.7) and (7.8). In

order to obtain (7.1), we consider a € Moy, set ¥/ :={L, a%/lo”‘ | Ly a%[o“,L<a a}No, o> and we show

that a = E5 /. Since (7.3) is uniform, we have

Ea¢ = {ba(¢)aEaLa a%/loa | Eq Ly al}zlloa,EaL<a a}Moa
o M o
= {da(¥), 01 | 4% ExL < a}Mo

We have do(1/) < a because i < L<ya, and EgL<ga > a because E; > E< on No™”. Since a =
{al'o | a%“’“}Moa, we deduce that E, 1/ =a. °

Remark 7.5. The simplified cut equations for Ey, L, can be viewed as alternative definitions
for those functions, since they hold inductively on their domain of definition. It is unclear how
to develop our theory directly upon these alternative definitions. In particular, does there exists
a direct way to see that the cut equation (7.2) is warranted, and that the corresponding function
satisfies R, and M,?

7.2 ldentities involving Tr, and Tr;,.

PROPOSITION 7.6. Defining Try:=Smp </, as in Section 6.1, we have Try =Nos 4.

Proor. Let ¢ € Nos . We have E, Bu[¢] = EalEx @] by [5, Proposition 7.22]. Recall that
Ealal = Eola] for all ae No™>”. Now &y o0 Ey = Ey o By by definition of B, so Ey Bole] =
Ey Bo[@] and B, @] = Ba[@]. By definition of Tr,, we conclude that Tr, = Smpy =Nos o O

Assume that v is a successor ordinal. Then we have Nos ,=Nos ,+ R by (4.4), so the func-
tions T ENo, , and ENo, , Tr are both strictly increasing bijections from No onto Nos 4.

LEMMA 7.7. Assume that v is a successor ordinal. Then for r€ R, we have T, ENo, ,=ZNo. , Ir
on No.

ProOF. Let us abbreviate = := ENo, ,. We prove the lemma by induction on (No,C) x (R, C).
Let (z,r)eNox R with

Ey+s = E(y+5s)

whenever (y, s) € No x R is strictly simpler than (z,r). We let z’,z”,r’,r"’ denote generic ele-
ments of zy, zg, 11, rr and we note that ', 7"’ e R. By (6.8), we have

1
+—
LegEgB(z" + 1)
144 1 p— 17 1
LeoEq=(z+ r”)’ (Z r) LcgEq E(Z” + ”)}N0>'>

1

— V4
Ez+r )t ———r
(z+7r) L<aEaB(z+ 1)

E(z+r) = {E(z'+ r)

1 1
T +——— T/ Bzt
{’ S N o =Pl A O -

T, :z——l T:z”——1 }
T LeqEe T, EZ " LegEg TyEZ" INo>>
Recall that v is a successor ordinal. Since (4.2) holds for all a€ No™”, the sets Lc4Ey 7 a and
L<gEga are mutually cofinal and coinitial. Moreover Ty(z + b)= Tsz + b for all s€ R and b No,
S0
1 _ 1
-_— NEz4+—F——
L<aEaEz’)’ T ( z L<D,Ea:z)‘

— 1 —__ /7 1
Tr”(“z - L<aEaEz)’ Tr(“z - L<aEaEz”>}No>,>'

E(z+r) = {Tr(Ez’+
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By (3.1), we have

__ _ _ 1 __’7 1
B8z = {L{E2 vy ) 82| T8 1z L<aEaEz”)}No>,>'

The numbers T, =z, T,y Ez and T, Ez are a-truncated so T, Ez lies in the cut

1
SR S PV S | R
(E,J r L<aEa\_Z U L<aEaZZ No>>

We deduce that T, £z =ZT,z. The result follows by induction. O

LemMMA 7.8. If vis a successor ordinal, then we have I § £ onNo™”. Consequently, Trjy=No3.

ProoF. The set E<, is pointwise cofinal in €. So LyE<yE, is pointwise cofinal in %;. For
y <a, there is n€ N such that y <ay,n. We have

LoEyEq < LaEa/wnEa = (LaEa/wEa)on = (LeEe )" = Tlon =Ty e T

We deduce that & § %4 on No™”, whence Trjy = Smp 4 = NoZ. O

7.3 ldentities involving Mo, and Mo,,.
LEMMA 7.9. If v is a successor ordinal, then for z€ No we have
EMoa(z_ 1) = La/wEMan.

Proor. This can be seen as a converse to the proof of the identity (6.3). We proceed by
induction on (No,C). Let z be such that the relation holds on z-. By (6.3), we have

La/w EMo,Zz = {La/w (EMoa Z)Iz/loa | La/w (EMoa 2)11\2/[00(’ EMo, Z}Moa
= {La/w EMog 2L | La/a, =Moy, ZR» EMoy Z}Moa
= {EMo,(z2.— 1) | EMo,(zr — 1), EMo, Z}Mo, (by the inductive hypothesis)
= EMo,fzL—112r—-1,2}
~ Mo z-1) by (3.1)

We conclude by induction. |
Noting that Eq,,=EqTi Ly on N 0”7, the previous relation further generalizes as follows.
ProrosITION 7.10. Assume that v is a successor ordinal and let r€ R. Then

EMo, Ir = Eq Ty Ly EMo, (7.9)
Proor. We proceed by induction. Let (z,7) €No x R be such that

EMoa T y = EyTsL, EMoa y

for all strictly simpler (y,s) € Nox R with respect to the product order E xC. For se€ R, let ¢
be the function b+ E; TsLyb on No™” and let a := Epo, 2. By (3.1) and (3.2), we have

EMoa(z +r) = {R, &y EMO(),(ZL +1), 8y :Moa(z +r) | Ea EMo,;((zR +7),€q EMoa(z + rR)}
= (R, Badr(a] ). Badr(a) | Eadr(aR ), Eadrya)}.
By (7.1), Lemma 7.7 and (3.1), we have:

TrLa a = {TrLa alMoa, TrL La a | TrRLa a, TrLa al}\{[oa, L<a a}Tra.
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We deduce that
Pr(a)

<alrblg @, ©qPrlar » CaPrila aPre\Q), CaPrlaR , OqLgl<gQ
{E<aTrLaa, Badr(a) *), Ear(a) | Eupra(a), Bapr(al ), EaFal<q a}
= {E<aLa qa, r?goz(,/)r((«"ILVI(M), %a¢rL(a) | %a¢rR(a)a r?goz(,/)r(a%\{[oo{),E(JzL<¢:t a}-

It is enough to prove that E<4 Ly a <EMo,(z +7) < EgL<qa to conclude that ¢,(a) =ZEme,(z + 7).
Towards this, fix an n€ N with —n<r<n. Lemma 7.9 yields

< EMo,(z+n)
2 EMoa(z_n) = La/wna > E<aLaa.

Egna < EqLcga

We conclude by induction that (7.9) holds. O

Remark 7.11. For r,se R, we have ¢ys=¢ro ¢, and ¢y =Eq,, Therefore we can see (¢y),eR
as a system of fractional and real iterates of the hyperexponential function E,,, on No™”. The
previous proposition shows that the action of those iterates on L«g-atomic numbers reduces to
translations, modulo the parametrization Zpe,. In particular, one can compute the functional
square root of exp on Moy, in terms of sign sequences using the material from [3].

PROPOSITION 7.12. If v is a successor ordinal, then Moj = Moy ~<Nos..

Proor. For 6 eNos, we have 0 + N <0< 0gp— N. By Lemma 7.9, it follows that Ea/wN EMo, 0L <
EMo, 0 < La/wN EMo, Or- This implies that €5 Emo, 0L < EMo, 0 < €& EMo, IR, 50 EMo, 0 is €4-
simple.

Conversely, consider § € No™” such that Epe, 0 is €5-simple. We have Emo, 01 C (EMo, 0)L
and Emo, Or € (EMo, 0)r, Wwhence Eq,,N EMo, 0L < EMo, 0 < Ly ,N EMo, Or. We obtain 6r + N <
0 < g — N, which proves that § € Nos. O

PROPOSITION 7.13. We have E, Trj, = Mog,.

Proor. Let ¢ € Trj. So ¢ € Tr,. By Proposition 3.1, the number E, ¢ is simplest in
El(€alp] NTry) = €a[Eqp] nMog.

Since Mog C Moy, we have E, ¢ C €5[Eq @] N Moj; so Eq ¢ C d5(Ey @). We deduce that Ey ¢ =
da(Eq @), so Eq is €;-simple. Conversely, let a € Mog. By Proposition 3.1 the number Ly a is
simplest in Ly(€5[a] "Moy) = Bi[Lga] "Nos 4. Since Trj CNos o, we have Lya T Bi[Lya]l N
Try so Lya C#5(Ly a). We deduce that Ly a C #5(Ly a) is $5-simple. O

COROLLARY 7.14. If v is a successor ordinal, then Mo, = E,No<.
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