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 shown a possible method to unify gravity and quantum mechanics in a simple way that we have called collision space-time. Here, we demonstrate a special version of our theory when we set lp = 1 and c = 1. Mass, energy, what we call Compton momentum, and half the Schwarzschild radius are then all identical, and simply a collision-length that again also has a collision frequency embedded in it that gives quantization of gravity, matter, and energy. As we explain, a frequency below one can be interpreted as a frequency quantum probability. One could easily make the mistake of thinking that this is simply setting G = ~= c = 1 (Planck natural unit system); however, this would be inaccurate as we do not need either G or ~in our system, not even when setting these constants equal to one. Furthermore, we can find the Planck length totally independently of G and ~, for any standardized length unit chosen. Setting c = 1 simply means one links space and time through the speed of light, and setting lp = 1 means one selects the Planck length as the fundamental length unit, and we argue that the Planck length is the diameter of an indivisible particle.

One of the beauties of our theory is that, in the output of many formulas we obtain from our theory, the integer part represents real observations (collisions) and fractions represent quantum probabilities. Therefore, we could say there is also almost a unification between numbers and physics, not only a unification of gravity and quantum mechanics. Our theory has three time-dimensions and three space-dimensions, unlike the four-dimensional framework of standard physics. In this paper, we mainly summarize the mathematical and geometrical results of our theory, with the focus on when setting c = lp = 1.

The Simple Geometry of Collision Space-Time

In our theory there are only indivisible particles and empty space. The indivisible particle has a minimum spatial extension; in other words, it is not a point particle. We assume it is spherical, but only further investigation can rule out whether or not it could have another shape, so for what we describe here a spherical shape will suit well. We find that the diameter of this particle is the Planck length, not by assumption but by calibration of our quantum gravity model to observations, as is demonstrated in this paper, and without knowing G or ~and c that are normally assumed necessary to find the Planck length using dimensional analysis.

The indivisible particle always travels at the speed of light c. This is also not by assumption, but what we find from calibration of our quantum gravity model to gravity observations, even with no knowledge of the speed of light. This particle is massless when not colliding with another indivisible particle. It can simply be represented geometrically; see Figure 1.

Photons are normally considered to have particle-wave duality. This is also the case in our theory. What we call a photon consists of indivisible particles traveling after each other in the same direction. The distance between two indivisible particles is what we can call their wavelength. This is illustrated in Figure 2.

Pure mass in our model is simply a collision between these massless particles, so a photon-photon collision, so to say. In standard theory, it is also theoretically assumed photon-photon collisions can create mass; see Pike et. al [START_REF] Pike | A photon-photon collider in a vacuum hohlraum[END_REF]. That is, a collision itself is defined as mass and explains why even photons can have rest-mass. Although do not have rest-mass when moving at the speed of light, they are the cause of all mass when colliding, as the collision itself is the most fundamental of all particles with mass. Figure 3 illustrates two such particles colliding. When calibrating our gravity model built on this principle, one gets out that such a collision lasts the Planck time. That is, the most fundamental of all masses in our theory that can simply be described as Planck time, which is the duration two indivisible particles, are in collision state before leaving each other again at the speed of light. This is the Planck mass; it is, in our theory, simply Planck time and we call this collision-time. We will soon show how to generalize this concept for any mass. Even this simple particle, that consists of the collision between two indivisible particles, has a wave-particle duality as the wavelength is also here the distance from center to center between such particles. Since the diameter of these particles is the Planck length, then also the wavelength of this particle is the Planck length. This wavelength actually corresponds to the reduced Compton wavelength.

In our model, the Planck mass particle is the building block of all masses. An electron consists (somewhat simplified) of two indivisible particles traveling at the speed of light back and forth over a distance equal to the reduced Compton wavelength of the electron and then colliding. This means an electron is in this collision state the following number of times per second:

fe = c ¯ e ⇡ 7.76 ⇥ 10 20 times per second (1)
where ¯ e is the reduced Compton wavelength of the electron. This is simply the reduced Compton frequency of an electron. The mass of the electron in kilogram is therefore:

me = c ¯ mptp ⇡ 9.11 ⇥ 10 31 kg (2) 
and the mass in collision-time is simply:

me = tp c ¯ ⇡ 4.18 ⇥ 10 23 collision-time per second (3) 
We are using notation m rather than m for describing collision-time mass rather than kilogram mass. This should not be mistaken as vector notation; for vectors we use bold face notation as we soon we come to them. Normally we present the collision time-mass per Planck time rather than per second, and this gives: That is for the mass consisting of two indivisible particles colliding. A Planck mass particle is by definition the very collision between two indivisible particles, so if one in a Planck time observational window does not observe such a collision it cannot be a Planck mass particle, but it can be another type of particle as other elementary particles like the electron is only in the Planck mass state lp ¯ of of the time. This means an elementary particle like an electron has a quantization number much lower than one; it is just:

me = tp c ¯ tp = tp lp ¯ (4)
lp ¯ e ⇡ 4.19 ⇥ 10 23 (5) 
This means naturally that the indivisible particles (photons) inside the electron are most of the time in non-collision state, despite being in this collision state fe = c ¯ ⇡ 7.76 ⇥ 10 20 times per second. This can then also be seen as the frequency probability for being in a collision-state in a Planck time observational time-window. That is, all masses below the Planck mass have a probability smaller than one of being in a Planck mass state during an observational time-window equal to the Planck time.

Energy in our model is mathematically described as collision-length, and given by:

Ē = mc = lp lp ¯ (6) 
This at first can seem to clearly be wrong as we are naturally used to Einstein's [START_REF] Einstein | On the electrodynamics of moving bodies[END_REF]: E = mc 2 . However, our new collision-time mass and collision-length energy is fully consistent with this. There is nothing wrong with multiplying both sides of the Einstein energy rest-mass equation with l 2 p ~c . This leads to going from joule energy, that has units kg • m 2 • s 2 , to simply m and it leads to the kilogram mass going from output unit kg to s. We have just multiplied both sides of E = mc 2 with what we can call a composite constant.

Since m = tp lp ¯ , this means the collision-length energy in our system is given by:

Ē = mc = lp lp ¯ (7) 
For any mass smaller than the Planck mass, this gives a collision length shorter than the Planck length. However, the shortest collision-length is still the Planck length. It is just that the collision state comes in and out of existence at the reduced Compton frequency.

Next, we can see that the partial derivative with respect to time for the collision-time mass must be:

@ m @t = lp ¯ (8) 
Similarly, the partial derivative with respect to length for energy, when focusing along the x-axis first, is:

@ Ē @x = lp ¯ (9) 
Another important aspect is that mass can likely best be described as a vector in space. Looking at Figure 3, one can see this collision has direction in space and therefore can be best described as a vector. That is, mass at the very quantum level can be best described as a vector. The same is true forenergy, as indivisible particles traveling in each direction are likely best described as vectors. This in strong contrast to standard modern physics where energy and mass are considered best modeled as scalars. However, in standard physics, particles can be point particles taking up no space, and their wavelength (de Broglie [START_REF] De | Recherches sur la théorie des quanta[END_REF][START_REF] De | An introduction to the Study of Wave Mechanics[END_REF] wavelength) is assumed to spread out symmetrically in all directions. This is a very di↵erent view than presented here.

Since the collision between two indivisible particles has direction in space and represents a duration, then we can claim collision-time is a vector and has three dimensions. We will claim collision-time and collision-length are two sides of the same coin. The collision-length is simply equal to tc = mc, where both m and t represent the collision-length. In standard theory, a particle can stand still in space while time is moving. We have questioned that this is possible at a quantum level and will claim it is only a model illusion. Assume the ultimate clock is a photon clock. This is particularly true in our model where the building blocks of photons, indivisible particles, also move back and forth inside matter to collide, just as in a photon clock. Even an electron can be seen as a photon clock. For the clock to work, the indivisible particles must move and collide as even inside an electron things cannot stand still for us to have time. Time is change, and change we can only get by subatomic particles moving in space and interacting with each other.

This means in our model we have three space-dimensions as in standard theory, but also three timedimensions. However, at the quantum level, the three collision-time dimensions are almost the same as the three collision-length dimensions. We cannot move only in the y direction of space without also moving only in the y direction in collision-time. So even if our theory is in some sense six-dimensions, three-space and three-time dimensions, it is better to look at it as a three-dimensional space-time theory, because space and time are two sides of the same coin in this model. We are not the first to suggest three time-dimensions in addition to three space-dimensions; see, for example, [START_REF] Cole | Gravitational e↵ects in six-dimensional relativity[END_REF][START_REF] Cole | Comments on the use of three time dimensions in relativity[END_REF][START_REF] Ziino | Three-dimensional time and Thomas precession[END_REF][START_REF] Buchanan | Space-time transformations in six-dimensional special relativity[END_REF][START_REF] Cole | A proposed observational test of six-dimensional relativity[END_REF][START_REF] Boyling | Six-dimensional Dirac equation[END_REF][START_REF] Lanciani | Model of the electron in a 6-dimensional spacetime[END_REF][START_REF] Pilotti | How Minkowski could have discovered six dimensional spacetime[END_REF], but we think we have got to a deeper level of understanding why there should be three time-dimensions.

Mathematically, this ultimately means we have:

rt • m = r • Ē (10) 
where m m m = mxi i i + myj j j

+ mzk k k = tp lp ¯ i i i + tp lp ¯ j j j + tp lp ¯ k k k (11) 
where ¯ = | ¯ ¯ ¯ |, and i i i, j j j, k k k are the unit vectors of the Compton wavelength. Further, for energy we have:

Ē Ē Ē = Ēxi i i + Ēyj j j + Ēzk k k = lp lp ¯ i i i + lp lp ¯ j j j + lp lp ¯ k k k ( 12 
)
Equation 10 is our quantum gravity field equation that can be used to model quantum gravity as described in detail [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]. In a weak gravitational field, it mainly gives the same prediction as Newton gravity, but in a strong gravitational field it gives quite di↵erent predictions than general relativity theory. For a strong gravitational field, in this theory one needs to include relativistic energy and relativistic mass. This leads to, for example, no need for dark energy to predict supernova 1a accurately; see [START_REF] Haug | Lorentz relativistic mass makes dark energy superfluous?[END_REF] as well as di↵erent interpretations on so-called black holes; see [START_REF] Haug | Micro black hole candidates and the Planck scale[END_REF][START_REF] Haug | Light can always escape black holes and this is why they are observed to be bright[END_REF].

The focus in this paper is how to simplify this theory further if setting c = 1 and the Planck length lp = 1 which are the only two constants used in this theory in addition to the dimensionless fine structure constant. This leads to an incredibly simple theory that can predict a long series of gravity phenomena, and gives new cosmology and much more.

Setting l p and c equal to one

As we have shown in a series of papers, the Planck length [START_REF] Planck | Natuerliche Masseinheiten[END_REF] can be found independently of any knowledge of G [START_REF] Haug | Can the Planck length be found independent of big G ?[END_REF] and without any knowledge of G and ~ [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Haug | Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring[END_REF] and also without any knowledge of G, c or ~ [START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF]. Similar methods can be used to find lp first and next set lp = 1; this step of finding lp before setting lp = 1 seems to be needed to calibrate the model for any practical use. The only constant we end up with is therefore 1 (lp = c = 1); that is to say, 1 is very special, as it represents an observable event. The only exception is when working with the Coulomb force where we also need the fine structure constant.

If our theory is not studied carefully, one could mistake it as simply setting G = ~= c = 1. While we are indeed setting c = 1 based on logical reasoning (which we return to later), our theory is totally independent of the universal composite constants of G and ~. G and ~contain human inventions linked to an arbitrary clump of matter called the kilogram (kg), that the fundament of the universe does not care about-to incorporate this would mean a unnecessarily complex theory. The main point is not that we get a constant free theory, as we still have two constants, the Planck length, and the speed of light, but that we set them to 1 and get a maximum simplified theory. The focus here is to show how collision space-time theory can make physics looks very simple, and still be as practically useful as the standard theory. Important is also that we are able to unify gravity with quantum mechanics. Our gravity theory contains the number of Planck events per Planck time in every formula related to gravity.

3 Energy, mass and momentum and half the Schwarzschild radius are all identical First, we link length to time through the speed of light, so we can set c = 1; see also [START_REF] Langacker | Can the Laws of Physics Be Unified[END_REF]. However, we do not need to set ~and G to one also, as we do not even need these two constants; see [1? ]. In our theory, we can replace ~, G and c with only lp and c; i.e., our theory needs two universal constants compared to the standard theory that needs three. Well, one can, in addition, naturally discuss the possibility that we need more than that, as both the standard theory and our theory also need the fine structure constant to describe some electromagnetic phenomena.

At the deepest level, energy, mass, momentum and half the Schwarzschild radius are all the same, and they are all given by:

m = Ē = pt = R h = lp lp ¯ = lp lp ¯ p 1 v 2 (13) 
where =

1 p 1 v 2
, and R h is half the relativistic Schwarzschild radius (R h = 1 2 rs ), and m is the collision time mass, and Ē is the collision length energy, and p is what we call the total Compton momentum, that we have defined before as p = mc rather than standard momentum of p = mv . Interested readers can find out more in my previous papers referred to above. Furthermore, ¯ is the reduced Compton wavelength of the mass in question, and v is the velocity of the mass in question. The maximum velocity of elementary particle is now given by:

vmax = c r 1 l 2 p ¯ 2 = r 1 l 2 p ¯ 2 (14) 
given that we have c = 1, and, in addition, the reduced Compton wavelength cannot contract to shorter than the Planck length, as discussed in great detail in [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF]. The part lp ¯ p 1 v 2 is, for masses smaller than the Planck mass, a quantum frequency probability when the observational time window is the Planck time. For masses larger than the Planck mass, the integer part then represents the number of collisions per Planck time, and the remaining part is a quantum probability for one more collision to be observed in a Planck time.

This means the maximum mass, energy, and Compton momentum for an elementary particle is one, which is a Planck mass or a Planck mass particle; after we have calibrated lp = 1 first.

Table 1 summarizes many fundamental entities; pay attention to the fact that mass, energy, Compton momentum, and half the relativistic Schwarzschild radius are all mathematically identical. Moreover, the standard momentum, also when rewritten to its simpler form, is never needed, as it is a derivative of the Compton momentum that again is the energy, or the mass, of the particle in question. To go from formula 13 to the standard kg mass, we need to multiply by l2 p see [? ]. In standard physics, one is using two di↵erent mass definitions without knowing it; one is using the standard kg mass, that can be expressed through universal constants as:

m = ~ 1 c ( 15 
)
where ¯ is the reduced Compton wavelength [START_REF] Compton | A quantum theory of the scattering of x-rays by light elements[END_REF]. This kg mass formula we obtain from simply solving the Compton wavelength formula with respect to m. However, in all observational gravitational phenomena, we have GM . The gravity constant is actually needed to convert the incomplete kg mass into a more complete mass definition that we call collision-time. To see this, we first need to realize that the gravity constant G is a composite constant [START_REF] Haug | The gravitational constant and the Planck units. A simplification of the quantum realm[END_REF][START_REF] Haug | Progress on composite view of Newtonian gravitational constant and its link to the Planck scale[END_REF] in the form of G =

l 2 p c 3 ~.
This is simply the Planck [START_REF] Planck | Vorlesungen über die Theorie der Wärmestrahlung[END_REF] length formula lp = q Gc 3 , solved with respect to G. In standard physics, one would think this would only lead to a circular problem as it is assumed one needs to know lp to find G. The circular problem was already pointed out in 1987 by Cohen [START_REF] Cohen | Fundamental Physical Constants[END_REF] and has been repeated, for example, as late as in 2016 in an interesting paper by McCulloch [START_REF] Mcculloch | Quantised inertia from relativity and the uncertainty principle[END_REF]. However, in 2017 we [START_REF] Haug | Can the Planck length be found independent of big G ?[END_REF] demonstrated for the first time that one could find the Planck length independently of any knowledge of G. Later, we demonstrated it can be found independently of knowledge of any other constant; see [START_REF] Haug | Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring[END_REF][START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF]. This means we can write:

GM = l 2 p c 3 ~~ 1 c = c 3 lp ¯ 1 c (16) 
where the part lp ¯ 1 c is the collision time mass definition. That is to say, G is needed to get ~out of the kg mass and the Planck length into the mass, which is necessary in order to be able to perform any gravity prediction.

c 6 = 1, l p 6 = 1 c = 1, l p = 1 Rest mass energy Ē = l p lp ¯ Ē = 1 ¯ Total energy Ē = l p lp ¯ q 1 v 2 c 2 Ē = 1 ¯ M = 1 ¯ p 1 v 2 Kinetic energy Ēk = l p lp ¯ q 1 v 2 c 2 l p lp ¯ Ēk = 1 ¯ M p 1 v 2 1 ¯ Kinetic energy when v << c Ēk ⇡ 1 2 m v 2 c = 1 2 lp c lp ¯ v 2 c Ēk ⇡ 1 2 v 2 ¯ Rest mass m = lp c lp ¯ m = 1 ¯ Relativistic mass m = lp c lp ¯ q 1 v 2 c 2 m = 1 ¯ = 1 ¯ p 1 v 2 Kinetic mass mk = lp c lp ¯ q 1 v 2 c 2 lp c lp ¯ mk = 1 ¯ p 1 v 2 1 ¯ Kinetic mass when v << c mk ⇡ 1 2 m v 2 c 2 = 1 2 lp c lp ¯ v 2 c 2 mk ⇡ 1 2 1 ¯ v 2 Rest Compton momentum pt = mc = l p lp ¯ pt = 1 ¯ Compton momentum (total) pt = mc = l p lp ¯ = l p lp ¯ p 1 v 2 pt = m = 1 ¯ = 1 ¯ p 1 v 2 Kinetic Compton momentum pk = l p lp ¯ q 1 v 2 c 2 l p lp ¯ pk = 1 ¯ M p 1 v 2 1 ¯ Kinetic Compton momentum when v << c pk ⇡ 1 2 m v 2 c = 1 2 lp c lp ¯ v 2 c pk ⇡ 1 2 1 ¯ v 2 Rest Haug radius r h = GM c 2 = Mc = l p lp ¯ r h = 1 2 r s = 1 ¯ Relativistic Haug radius r h,r = 1 2 r s = rs = m = 1 ¯ = 1 ¯ p 1 v 2 r h = 1 ¯ p 1 v 2 Kinetic Haug radius rh,k = l p lp ¯ q 1 v 2 c 2 l p lp ¯ r h,k == 1 ¯ M p 1 v 2 1 ¯ Kinetic Schwarzschild radius when v << c rk ⇡ 1 2 lp c lp ¯ v 2 c 2 1/2r k = rk ⇡ 1 2 v 2 ¯
Energy Schwarzschild radius (half) Ē = rs,r

Rest mass collision frequency probability

P = lp ¯  1 P = 1 ¯  1 Relativistic frequency probability P = lp ¯ = lp ¯ q 1 v 2 c 2  1 P = 1 ¯ = 1 ¯ p 1 v 2  1 Kinetic probability P k = 1 ¯ M p 1 v 2 1 ¯
Rest mass non-collision frequency probability 

P n = 1 lp ¯ P n = 1 1 ¯ Velocity limit 0  v  c q 1 l 2 p ¯ 2 0  v  q 1 1 ¯ 2 "Lorentz" factor = 1 q 1 v 2 c 2 = 1 p 1 v 2 "Max" Lorentz factor max = 1 r 1 v 2 max c 2 = 1 max = 1 p 1 v 2 max = 1 
Ē = 1 2 r s,r Ē = 1 2 r s,r Relativistic energy Schwarzschild relation Ē = 1 2 r s,r + 1 2 r s Ē = 1 2 r s,r + 1 2 r s Uncertainty relation pt x > l 2 p pt x > 1 Uncertainty relation 1 ¯  1 ¯ p 1 v  1 Relativistic quantum gravitational field equation r • Ē Ē Ē = r t • m m m r • Ē Ē Ē = r t • m m m Space-time geometry dx 2 + dy 2 + dz 2 = dt 2 x + dt 2 y + dt 2 z Same Never needed: de Broglie Momentum p = mv q 1 v 2 c 2 p = v ¯ b p 1 v 2 Momentum when v << c p ⇡ mv p ⇡ v ¯ b de Broglie wavelength ¯ b = l 2 p mv ¯ b = p 1 v 2 mv de Broglie wavelength from kg mss ¯ b = mv ¯ b = ~p1 v 2 mv
Relativistic energy momentum relation

E 2 = p 2 c 2 + m 2 c 4 Ē2 = p 2 + m2
Table 1: The table shows formulas for energy, mass, momentum, and the Schwarzschild radius. These are all the same, as they can only be seen from this deepest level of physics. It is not possible to make a deeper theory than this. This is the very bottom of the rabbit hole. ¯ is the reduced Compton wavelength, and can be found for any mass; see [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Compton | A quantum theory of the scattering of x-rays by light elements[END_REF][START_REF] Haug | Derivation of a relativistic Compton wave[END_REF].

Gravity and Calibration of Our Model

We cannot simply set lp = 1. We must first choose a di↵erent length unit that we can observe, then find out how long the Planck length is relative to this unit. Next, we can convert the length unit we started with to the number of Planck lengths and then set lp = 1. We cannot see that this has previously been discussed in the physics literature. If someone claims one can simply set lp = 1 without finding lp relative to a chosen observable length unit first and still use the theory for practical predictions, then we would be happy to see this demonstrated, but we think it is perhaps impossible. The same formulas that we have found can be obtained without using this step (calibration method), but then the formulas cannot be used to predict anything, as one would not know the number of Planck length units in such variables as R, the Compton wavelength, etc. We will rely on Newton's [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF] original gravitational force formula (that he only stated in words); it is equivalent to:

F = M m R 2 (17) 
and not the [START_REF] Cornu | Détermination nouvelle de la constante de l'attraction et de la densité moyenne de la terre[END_REF] 1873 version of the formula F = G Mm R 2 , that came into being about the same time as the kg definition of mass became widespread in Europe; see also [START_REF] Boys | The Newtonian constant of gravitation[END_REF] .

But how do we calibrate our model? We must first decide upon a length measure. We could take a piece of wood and say that was our length unit, or we could say the distance from the Earth to the moon was our length unit. What is important is that the length unit is large enough that we can observe it directly. This is only initially to ensure a starting point in our calibration. The gravitational deflection is given by [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF]:

= 4 R l 2 p ¯ M (18) 
. We will use this to find the Planck length relative to our initially chosen length unit. Assume we decide to initially use the meter as length unit. We now need R and ¯ and to find lp.

Assume we have been able to find the distance to the sun by parallax or alternatively by the method first suggested by Halley [START_REF] Gribbin | Out of the Shadow of a Giant, How Newton Stood on The Shoulders of Hooke and Halley[END_REF], and that Newton possibly used. The distance to the sun is given as 696,340,000 meters. So, we have decided upon using meters here initially. We also need the reduced Compton wavelength of the sun. We start out by finding the Compton wavelength of the electron; it is given by (see [START_REF] Compton | A quantum theory of the scattering of x-rays by light elements[END_REF][START_REF] Haug | Derivation of a relativistic Compton wave[END_REF]):

e = 2 1 1 cos ✓ ( 19 
)
where ✓ is the scattering angle, and 1 and 2 are the ingoing and outgoing photon wavelengths. Furthermore, the cyclotron frequency is given by:

f = v r = qB 2⇡m (20) 
Protons and electrons have the same charge, so the cyclotron ratio is equal to the mass ratio, that again is equal to the Compton wavelength ratio.

fP fe = ¯ e ¯ P ⇡ 1836.15 (21) 
So we now know the proton wavelength, which is given by ¯ P ⇡ ¯ e 1836. [START_REF] Pilotti | How Minkowski could have discovered six dimensional spacetime[END_REF] . Next, we can count the number of protons in the sun (and assume for simplicity that neutrons have the same mass as the proton), then we would know the Compton wavelength of the sun. This is not practically possible, but we have, for example, the following relation:

M1 M2 = ¯ 2 ¯ 1 = R 3 1 T 2 2 R 3 2 T 2 1 ( 22 
)
Assume we find the orbital time of the small sphere around the large sphere in a Cavendish apparatus; it is given by:

T1 = q L4⇡ 2 ✓R 1 T 2⇡R1 (23) 
We would need to count the number of protons and neutrons in the large mass in the Cavendish apparatus. If not also adjusting for nuclear binding energy, we would get an error in the Compton wavelength of less than 1%, or we could adjust for the binding energy using the semi-empirical formula; see, for example, D'Auria [START_REF] Auria | Introduction to Nuclear and Particle Physics[END_REF]. Pay attention to the fact that we do not need to know G, ~. From this, we find the Compton wavelength of the sun: it is approximately ¯ = 1.77 ⇥ 10 73 m. Now we have all that we need to find the Planck length from formula 18, and we get:

lp = r R ¯ M 4 ⇡ 1.61 ⇥ 10 35 m ( 2 4 ) 
Next we can find how many Planck lengths there are in one meter, namely 1 1.61⇥10 35 ⇡ 6.18 ⇥ 10 34 , next we set lp = 1 and we can now use all the formulas in tables 1, 2, 3, 4 and 5, even in practice.

c 6 = 1, lp 6 = 1 c = 1, lp = 1 Rest Mass M = lp c lp ¯ M M = 1 ¯ M Rest Mass Energy Ē = lp lp ¯ M Ē = 1 ¯ M Gravity force (from mass) weak field F = c 3 M m R 2 F = M m R 2
Gravity force (from mass) strong field

F = c 3 M m R 2 F = M m R 2
Gravity force (from energy) weak field

F = c Ē Ē R 2 F = Ē Ē R 2
Gravity force (from energy) strong field

F = c Ē Ē R 2 F = Ē Ē R 2
Gravity force (from half Schwarzschild)

F = c R h r h R 2 F = Rh rh R 2 Gravity acceleration g = c 3 M R 2 = c 2 R 2 l 2 p ¯ M g = 1 R 2 1 ¯ M Orbital velocity vo = q c 3 M R = clp q 1 R ¯ M vo = q 1 R ¯ M Orbital time T = 2⇡R q c 3 M R T = 2⇡ p ¯ R 3 Velocity ball Newton cradle vout = q 2c 3 MH R 2 vout = 1 R q H ¯ Periodicity Pendulum (clock) T = 2⇡R q L c 3 M T = 2⇡R p L ¯ Frequency Newton spring f = 1 2⇡R q c 3 M x f = 1 2⇡R q 1 ¯ x Gravitational red-shift z ⇡ r 1 2 Ē R 1 + Ē R 2 1 r 1 2 Ē R 2 + Ē2 R 2 2 1 z ⇡ r 1 2 R 1 ¯ M + 1 R 2 1 ¯ 2 M r 1 2 R 2 ¯ M + 1 R 2 2 ¯ 2 M 1 Gravitational red-shift R >> R h z ⇡ Mc R = Ē R z ⇡ 1 R 1 ¯ M Time dilation T R ⇡ T f r 1 2c 3 M R + c 4 M 2 R 2 2 T R ⇡ T f q 1 1 R ¯ M + 1 R 2 2 ¯ 2 M Gravitational deflection = 4 Mc R = 4 Ē R = 4l 2 p ¯ M R = 4 R ¯ M Advance of perihelion = 6⇡ Ē a(1 e 2 ) = 6⇡l 2 p a(1 e 2 ) ¯ M = 6⇡ a(1 e 2 ) 1 ¯ M Microlensing ✓ E = 2 q Ē d S d L d S d L ✓ E = 2 q d S d L ¯ M (d S d L )
Escape velocity weak field ve ⇡

q 2c 3 M R ve ⇡ q 2 R ¯ M Escape velocity strong field ve = q 2c 3 M R c 4 M 2 R 2 ve = q 2 R ¯ M 1 ¯ 2 M R 2 Escape velocity strong field ve = c r 2r h R 2r 2 h 4R 2 ve = r 2r h R r 2 h 4R 2 
Lorentz relativistic escape radius

r h = GM c 2 = Mc = lp lp ¯ M r h = 1 ¯ M Schwarzschild radius (no need) rs = 2GM c 2 = 2 Mc = 2lp lp ¯ M rs = 2 ¯ M r h reduced Compton relation r h ¯ = l 2 p r h ¯ M = 1 rs reduced Compton relation rs ¯ = 2l 2 p rs ¯ M = 2 Planck length lp = p r h ¯ l p = p r h ¯ = 1 Planck length lp = q 1 2 rs ¯ = 1 lp = q 1 2 rs ¯ = 1 Gravitational parameter µ = c 3 M = c 2 l 2 p ¯ µ = 1 ¯ M Two body problem µ = c 3 M1 + c 3 M2 = c 2 l 2 p ¯ 1 + c 2 l 2 p ¯ 2 µ = 1 ¯ 1 + 1 ¯ 2 Table 2:
The table shows a gravity theory free for the Newtonian gravitational constant G as well as from for ~.

The Newtonian theory does not work to predict supernova data. For this we need relativistic modifications, and we get the formulas in Table 3; see [START_REF] Haug | Lorentz relativistic mass makes dark energy superfluous?[END_REF] for how we can also use the 1873 formula to predict supernovas without dark energy.

In strong gravitational fields, the Lorentz relativistic mass plays an important role in our theory, as can be seen in some of our gravity force formulas where we have the Lorentz factor next to the mass in the gravity force formula. Relativistic mass was already suggested by Lorentz [START_REF] Lorentz | Simplified theory of electrical and optical phenomena in moving systems[END_REF] in 1899 as simply m . Einstein [START_REF] Einstein | On the electrodynamics of moving bodies[END_REF], likely unaware of Lorentz's paper, also made attempts to derive relativistic mass in the end of his famous special relativity paper published in 1905, but as m 2 and m 3 , which no one uses today. With the invention of Minkowski [START_REF] Minkowski | Space and time. A Translation of an Address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, 21[END_REF] space-time, Einstein abandoned relativistic mass altogether, and in general relativity there is no relativistic mass incorporated. A series of researchers have been negative towards relativistic mass without first properly investigating what including it leads to in terms of predictions; see, for example, Adler [START_REF] Adler | Dose mass really depends on velocity dad?[END_REF], Teylor and

Conclusion

We have proposed a theory that unifies gravity and quantum mechanics, one which has two constants: the speed of light and the Planck length. In this paper, our focus is on the idea that, when we set these two universal constants to c = lp = 1, we get an even simpler theory. Also in this case, there is no need for G and ~. One of the main conclusions is that mass, energy, Compton momentum, and (half) the Schwarzschild radius are all ultimately the same. The reason we use all these entities is rooted in the idea that we have linked several parts of modern physics to human constructs, such as an arbitrary clump of matter that we call a kilo, and that we have not before recently understood that the standard momentum is a derivative of the Compton momentum, etc. The laws of the universe do not care about human inventions, and to try to enforce human inventions on a model describing reality only makes the theory unnecessarily complex. The standard theory is unnecessarily complex and at the same time incomplete. We hope our new theory of collision space-time will raise interest in the belief that many physics phenomena can likely be modeled very simply.

Figure 1 :

 1 Figure 1:The figure shows an indivisible particle that is sphere shaped. It has radius equal to the Planck length, and moves at the speed of light when not colliding with another such sphere. This particle is massless and the building block of both photons and matter.

Figure 2 :

 2 Figure 2: The figure shows two indivisible spheres traveling after each other. The distance from center to center between the indivisible particles corresponds to what we call the wavelength. This means there is also, in this simple model, a type of wave-particle duality for photons.

Figure 3 :

 3 Figure 3: The figure illustrates two indivisible particles colliding. The duration of this collision is the Planck time, something that is found from calibration to standard observable gravity phenomena.

2 Ē = m p 1 v 2

 22 Relativistic energy Compton momentum relation Ē = pt Ē = pt Relativistic energy Compton momentum relation Ē = pk + pr Ē = pk + pr Relativistic energy Schwarzschild relation

Table 3: The table shows a constant free relativistic gravity when observing the large mass M moving relative to us, the observer. This model fits supernova data well with no need for the dark energy hypothesis. [? ].

Wheeler [START_REF] Taylor | Spacetime Physics, Introduction To Special Relativity[END_REF], Okun [START_REF] Okun | The concept of mass[END_REF], and Hecht [START_REF] Hecht | Einstein never approved the relativistic mass formula[END_REF]. Other prominent physicists like Tolmann [START_REF] Tolman | The mass of a moving body[END_REF], Rindler [START_REF] Rindler | Putting to rest mass misconseptions[END_REF][START_REF] Rindler | Relativity, Special, General and Cosmology[END_REF] have also been positive towards relativistic mass. Jammer [START_REF] Jammer | Concepts of Mass in Contemporary Physics and Philosophy[END_REF] gives a great overview of the debate about relativistic mass and he basically concludes the debate is not over. Some physicists that are also good at promoting physics to the masses have, however, given a very unbiased view of relativistic mass and are possibly part of the reason for the large negativity towards it. We will claim one should always investigate an idea carefully in terms of what predictions it leads to before it is excluded, in particular when the idea came from such a prominent physicist as Lorentz.

Table 4 shows charge and the Coulomb force in our system, as described in more detail in [START_REF] Haug | Coulomb force, charge, and electric properties under collision space-time[END_REF]. 

Cosmology

When it comes to cosmology, our model of the universe that can be derived from Newton theory, taking into account Lorentz relativistic mass, see [START_REF] Haug | A new full relativistic escape velocity and a new Hubble related equation for the universe[END_REF], or from our deeper quantum gravity theory, see [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF], gives di↵erent predictions than general relativity and the Friedmann [START_REF] Friedmann | Über die krüng des raumes[END_REF] model. One of the main di↵erences is that we are using Lorentz relativistic mass in our derivations. This leads to our model predicting twice the mass density of the universe than the Friedmann model. The kilogram mass of the observable universe is Mu = c 3 GH 0 in our model versus the critical mass in the Friedmann model o↵ Mc = c 3 2GH 0 . We are naturally talking about mass equivalence here, as we do not, in our cosmological model, distinguish between energy and mass, which is consistent with m = E/c 2 . Further, there is no need for G in our model, but we can use G if we want as it is a composite constant of the form G =

Table 5 shows a summary of important aspects of cosmology when having c and lp di↵erent from one, and when setting c = lp = 1. Even the reduced Compton wavelength of the mass-energy equivalent mass in the observable universe can easily be found with no knowledge of G or ~from observable gravitational redshift; see [START_REF] Haug | Extraction of the Planck length from cosmological redshift without knowledge o↵ G or ~[END_REF]. 
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