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Abstract

The aim of this paper is to present a finite element model based on first order shear the-
ory (zig-zag approach) to compute the damping characteristics of sandwich structures with
multi-layered frequency-dependent viscoelastic cores. The model is validated versus a lay-
erwise finite element model and used to study damping and rigidity of a laminated glass
configuration with a multi-layered visco-elastic core composed of acoustic PVB and PVB. It
is shown that the rigidity index of the structure (defined as the adimensionalized inverse of the
maximal transverse displacement under a static load) evolves linearly with the viscoelastic
layers’ thicknesses and quadratically versus elastic layer’s thickness. The first mode damping
and resonant frequency show a non monotonous behaviour. In particular, the existence of
an optimal faces thickness for damping is shown while a quadratic behaviour of frequency
versus acoustic PVB layer thickness is reported.
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1. Introduction

Viscoelastic sandwich structures are commonly used as damping devices in many domains
such as aeronautics, aerospace, mechanical and civil engineering. They play a key role in vi-
bration control, shocks absorption and noise reduction. They are made of two identical elastic
and stiff layers separated by at least one soft viscoelastic layer. Due to the difference between
in-plane displacements of the elastic layers and to the low viscoelastic core stiffness, the latter
experiences a strong shear which is known to be responsible of the damping properties of
viscoelastic sandwich structures. The study of sandwich structures started in 1959 with the
work of Kerwin [1] that has been further improved by Ungar [2] in 1962. Analytical methods
were first developed to estimate damping properties (loss factor and resonant frequencies)
of sandwich beams and plates with simple boundary conditions. These can be found in the
works of DiTaranto and Blasingame [3], Mead and Markus [4] and Rao [5]. Since then, many
investigations have been devoted to vibration analysis of viscoelastic structures and especially
damping properties computation. In the finite elements framework, several works in the liter-
ature have been devoted to model viscoelastic structures[6],[7],[8],[9],[10],[11],[12]. However,
modelling frequency dependent viscoelastic sandwich structures implies dealing with nonlin-
ear problems because of the frequency dependence of the stiffness matrix. Unfortunately,
legacy finite elements codes such as Abaqus or Ansys are not able to solve these non-linear
problems efficiently. Numerical methods such as the modal strain energy method [13] and
the asymptotic numerical method [14] have been developed in order to solve the resulting
nonlinear problem. An overview of the different methods of resolution can be found in [15].
Recently, the research has focused on multilayer or laminated sandwich structures for their
improved multifunctional properties in terms of mechanical damping, rigidity, acoustics, etc.
Araujo et al. [16] presented a finite element model for damping analysis of anisotropic lam-
inated viscoelastic sandwich structures. Li and Narita [17] studied the optimal design of
symmetrical laminated thin plates comprised of fiber-reinforced layers and viscoelastic layers
by varying the material fibers orientation. Nguyen et al. [18] developed a higher-order zig-zag
theory for viscoelastic laminated composite plates for efficient temporal response computa-
tion. Yang et al. [19] performed vibration analysis of multilayer thick sandwich cylindrical
shells with a viscoelastic core under arbitrary boundary conditions investigating the effect of
fiber orientation angle and thickness. Akoussan et al. [20] presented a finite element model for
multilayer orthotropic viscoelastic sandwich structures along with a resolution method based
on asymptotic numerical method. Bouayed and Hamdi [21] proposed a shell finite element
model for vibroacoustic studies of multilayers car windscreens while providing a good review
of the past finite element models for multilayers structures. However, to the author’s best
knowledge, most of the studies that can be found in the literature on multilayer viscoelastic
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sandwich structures do not consider the possibility of having multi-layered viscoelastic cores
made of different types of viscoelastic materials. For example, windscreens vibro-acoustical
damping properties can be enhanced by using multi-layer viscoelastic layers made of a plastic
layer sandwiched by two PVB layers [22]. Furthermore, the noise damping properties of se-
curity laminated glass can be enhanced by sandwiching a high stiffness polymer layer by two
low stiffness but high damping polymer layers [23]. In the present work, the authors propose
a finite element model based on the zig-zag approach to model a five layered sandwich beam
with a viscoelastic core made of two different layers of viscoelastic materials. The model
is thought as a tool to study different properties of sandwich structures with multi-layered
frequency dependent viscoelastic cores. An application to a five layered laminated glass is
considered and the impact of the relevant parameters studied. In section 2, the model kine-
matics along with the assumptions made are presented. Then, in section 3, the variational
formulation of the problem using the principle of virtual work is derived. In section 4 the
finite element model is detailed along with the resolution technique. In section 5, the finite
element model is validated for frequency dependent and frequency independent viscoelastic
cores. In section 6, the model is used to compare some relevant design characteristics (damp-
ing, frequency and rigidity) of a laminated glass structure with a multi-layered viscoelastic
core.

2. Kinematic model

The five layered sandwich structure is assumed to be symmetric as depicted on Figure 1.
The first layer is elastic of thickness hf , the second layer is viscoelastic of thickness hc1 and
the central layer is viscoelastic of thickness hc2 . By symmetry, the fourth layer is viscoelastic
of thickness hc1 and the fifth layer is elastic of thickness hf . Strain and displacement fields
in each layer described by a "zig-zag" model has been adopted: the displacement field in
the elastic layer derives from an Euler-Bernoulli approach whereas a Timoshenko model
characterizes strain and displacement field in the viscoelastic layers. The present analysis is
based on the following assumptions [24, 25]:

• All the materials are assumed linear, homogeneous and isotropic.

• There is no shear in the elastic layers.

• The transverse displacement is assumed to be the same for all plies.

• The Young’s modulus of the viscoelastic layers is complex frequency dependent, but
the Poisson ratio is assumed to be constant.

• No slipping occurs at the interfaces between the different layers.
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• The elastic layers have the same Young’s modulus and mass density.

Figure 1: Five layered sandwich beam structure

In the following, x denotes the longitudinal coordinate, z the vertical coordinate and t the
time. In all the paper, we shall use the following convention ∂g

∂x
= g′ and ∂g

∂t
= ġ, with g a

function of (x, t). Regarding all the above assumptions, the displacement field and associated
deformation in the elastic layer can be expressed as:

Ui(x, z, t) = ui(x, t)− (z − zi)w′, (1)

Wi(x, z, t) = w(x, t), i = 1, 5 (2)

εi(x, z, t) = u′i − (z − zi)w′′. (3)

where ui is in-plane displacement of the ith layer and w the common transverse displacement.
On the other hand, the displacement field and associated deformation in the viscoelastic layer
can be expressed according to Timoshenko theory :

Ui(x, z, t) = ui(x, t) + (z − zi)βi(x, t), (4)

Wi(x, z, t) = w(x, t), i = 2, 3, 4 (5)

εi(x, z, t) = ui(x, t)
′ + zβi(x, t)

′, (6)

ξi(x, z, t) = βi(x, t) + w(x, t)′, (7)

where ξi is the shear strain, βi is the rotation of the mid-plane of a viscoelastic layer i.
The second viscoelastic layer in the structure’s core is taken as the central layer u3 = u.
Furthermore, requiring the continuity of the displacement field at the interfaces between the
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different layers results in the following relationship:

u1 = u2 +
hc1β2 − hfw′

2
,

u2 = u3 +
hc2β3 + hc1β2

2
,

u4 = u3 −
hc2β3 + hc1β4

2
,

u5 = u4 −
hc1β4 + hfw

′

2
.

By setting u3 = u and using the symmetry hypothesis (which gives β2 = β4), the above
displacement field can be rewritten as a function of the displacement of the central layer:

u1 = u+ hc1β2 +
hc2β3 − hfw′

2
, (8)

u2 = u+
hc1β2 + hc2β3

2
, (9)

u4 = u− hc2β3 + hc1β2
2

, (10)

u5 = u− hc1β2 −
hc2β3 − hfw′

2
. (11)

3. Variational formulation

The virtual work principle is applied to establish the equation of motion of the five layered
sandwich beam. The virtual work principle components of a symmetric five layered sandwich
beam can be expressed as the sum of the different virtual works of all the layers:

• In the elastic layers ∫ L

0

(Niδu
′
i +Miδw

′′)dx = −ρfSf
∫ L

0

ẅδwdx. (12)

• In the visco-elastic layers∫ L

0

(Niδu
′
i +Miδβ

′
i + Ti(δβi + δw′))dx = −ρci Sci

∫ L

0

ẅδwdx, (13)

where Ni, Mi are the axial forces and the bending moment of each layer, Ti is the shear
force in a layer i, whose expressions are given in Appendix .2. The quantities ρci and Sci
represent the density and cross sectional area of viscoelastic layers i = (2, 3, 4), respectively.
We denote (δu, δβi, δw) the generalized displacement vector. The total virtual work of the
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sandwich beam can be expressed as :∫ L

0

(Nδu′ +Mβ2δβ
′
2 +Mβ4δβ

′
4 +Mβ3δβ

′
3 + T2δβ2 + T4δβ4 + T3δβ3 +Mwδw

′′ + Tδw′) dx

= −(2ρf Sf + 2ρc2 Sc2 + ρc3 Sc3)

∫ L

0

(ẅδwdx) ,(14)

with:

N =
5∑
i=1

Ni,

Mβ2 = M2 +
hc1
2

(2N1 +N2),

Mβ3 = M3 +
hc2
2

(N1 +N2 −N4 −N5),

Mβ4 = M4 −
hc1
2

(N4 + 2N5),

Mw = M1 +M5 +
hf
2

(N5 −N1),

T = T2 + T3 + T4,

Equation (14) expresses a coupling between the flexural and the membrane effect. It can be
split into two different equations when considering the balance condition:∫ L

0

Nδu′dx = 0 (15)

The symmetry hypothesis gives us β2 = β4, N1 = N5,N2 = N4, T2 = T4, M1 = M5 and
M2 = M4 which yields to Mβ2 + Mβ4 = 2M2, Mβ3 = M3 and Mw = 2M1. The flexural
motion of the five layered symmetric sandwich beam is expressed by the following expression:∫ L

0

(2M2δβ
′
2 +M3δβ

′
3 + 2T2δβ2 + T3δβ3 + 2M1δw

′′ + Tδw′) dx

= −(2ρf Sf + 2ρc2 Sc2 + ρc3 Sc3)

∫ L

0

ẅδwdx . (16)

We remind that equation (16) is a non-linear integro-partial differential equation and since
there is no analytical solution for this equation, numerical discretization based on the finite
elements method appears as an appropriate way to solve the problem .
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4. Finite element formulation

In the case of free vibrations, the solution of equation (16) can be written in the harmonic
form:

w(x, t) = W (x)eiωt,

β2(x, t) = B2(x)eiωt,

β3(x, t) = B3(x)eiωt, (17)

One dimensional two nodes finite elements are used in this work. Each nodes has four degrees
of freedom describing the transversal displacement w, the slope w′ and the rotations β2, β3
related respectively to the second and third layer of the structure.
Thus, for each element bounded by the nodes 1 and 2, the modal displacement vector is
written as follows:

Ue = [W 1 (W 1)′ B1
2 B1

3 W 2 (W 2)′ B2
2 B2

3 ]t (18)

Thanks to the classical polynomial shape functions [26] the displacement field of each element
can be expressed as:

W = [Nw]{Ue}, (19)

B2 = [Nβ2 ]{Ue}, (20)

B3 = [Nβ3 ]{Ue}, (21)

where [Nw], [Nβ2], [Nβ3] denote the shape functions given in the Appendix .1.
Considering equations (17),(18),(21) combined with the flexural motion (16), one obtains the
discretized form of a nonlinear eigenvalue problem expressing free vibrations of a five layered
sandwich structure:

([Ke(ω)]− ω2[Me]){U} = 0, (22)

where [Ke(ω)], and [Me] denote respectively the rigidity and mass matrices given in the
Appendix .1. These matrices are assembled to get the overall complex non-linear eigenvalue
problem

([K(ω)]− ω2[M ]){U} = {0}, (23)

4.1. Rigidity index

The rigidity of the structure can be estimated by determining the maximum transverse
displacement Wmax by solving the standard problem ([K(0)]U = F ) with F a prescribed
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vector force and [K(0)] the static stiffness rigidity matrix. A rigidity index is given by

R =
h

Wmax

, (24)

with h = 2hf + (hc2 + hc3 + hc4) the total beam thickness.

4.2. Asymptotic Numerical Method

In order to solve equation(23) which is a nonlinear equation, Asymptotic Numerical
Method (ANM) has been used. This method consists of expanding the unknown eigenmodes
and eigenvectors of equation(23) as a power series with respect to the path p:

U = U0 + pU1 + p2U2 + ...pjUj + ... (25)

λ = λ0 + pλ1 + p2λ2 + ...pjλj + ... (26)

where λ = ω2. By introducing the above expansions in equation(23)and equating like power of
p, a serie of linear problem can be obtained. The Diamant approach which will be used in the
numerical resolution of the problem is a combination of ANM and differentiation techniques
which helps to compute higher order derivatives. The reader can refer to [15, 20, 14, 27] for
more details on this method. By applying the ANM to the current problem, a set of two
equations concerning the residues can be obtained:

R(U, λ) = ([K(0)] + E(λ)[Kv]− λ[M ])U (27)

R(U, λ) = S(U, λ) + T (U, λ) (28)

where S(U, λ) = ([K(0)]− λ[M ])U and T (U, λ) = E(λ)[Kv]U with Ev = E(λ)+Ev(0) which
is a non-linear function expressing the frequency dependency of the Young and shear modulus
of the viscoelastic layer.[Kv] is a purely real matrix. The homotopy technique [20, 14] is used
to transform the original problem by introducing the path parameter p in order to derive
the solution from the real eigenvalue problem (S(U, λ) = 0), (a problem which solution
(U0, λ0) can be easily computed). The homotopy technique helps to write the new residue
by introducing a perturbation p ∈ [0, 1] such as:

R(U, λ, p) ≡ S(U, λ) + pT (U, λ) = 0 (29)

By expanding S(U, λ) and T (U, λ) as Taylor series, one can deduce the generic linear problem
to be implemented with Diamant [15]. After a suitable initialization and application of the
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chain rule, the resulting equation leads to:(
A0 U0

tU0 0

)(
Uj

κ

)
=

(
−Sj|Uj=0 − pTj|Uj=0 − Tj−1

0

)
(30)

where
A0 = [K(0)− λ0[M ] + pE(λ0)[Kv] (31)

with κ the Lagrange multiplier.

λj = −
tU0[−Sj|Uj=0 − pTj|Uj=0 − Tj−1]
tU0[S1|U1=0,λ1=1 + pT1|U1=0,λ1=1]

(32)

The solution (U, λ) is then determined using the continuation procedure. In order to introduce
genericity in the computation of Asymptotic Numerical Method and continuaton process, a
toolbox named Diamant based on the described method with automatic differentiation is
used. The resolution of nonlinear equation with the toolbox Diamant is exposed in [15].

5. Model validation

The model is applied to five layered sandwich structures with different cores (homogeneous
and heterogeneous).

5.1. Structures with a single layer core

5.1.1. Constant viscoelastic model
In this case, the viscoelastic properties of the core are modelled by a complex Young

modulus which is assumed to be constant:

E(ω) = E0 (1 + iηc), (33)

E0 is the Young modulus related to the delayed elasticity and ηc is the core’s loss factor.
With this assumptions the eigenvalue problem becomes linear and can be easily solved by
the classical methods (QR, Lanczos, etc.). The geometrical and material properties of the
five layered sandwich beam are summarized in Table (8) whereas the equivalent frequencies
and the associated loss factors are presented in Table (2). In order to compare our results

with those of [27], we set hc1 = hc2 =
hc
3

with hc the thickness of the viscoelastic layer used
in [27]. The linear equivalent frequency and the associated loss factor were computed for
different values of the core’s loss factor as shown in table 2. One can see that our model
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Elastic Faces Young Modulus Ef = 69× 109Pa
Poisson ratio ν = 0.3
Mass density ρf = 2766Kg.m−3

Thickness hf = 1.524mm
Viscoelastic core Young modulus E0 = 1794× 103Pa

Poisson ratio ν = 0.3
Mass density ρc = 968.1Kg.m−3

Thickness hc = 0.127mm
Beam Length L = 177.8mm

Width l = 12.7mm

Table 1: Geometrical and material properties of the clamped-free beam

Five layered beam Three layered beam.
ηc Frequency (Hz) η/ ηc Error Frequency (Hz) η/ ηc Error
0.1 64.1 0.281 4.33×10−4 64.1 0.281 3.28×10−4

296.69 0.242 1.65 ×10−3 296.7 0.242 1.21×10−3

744.48 0.154 2.16×10−3 744.5 0.154 1.58×10−3

1395.7 0.089 2.26×10−3 1395.7 0.089 1.64×10−3

2264.5 0.057 2.31×10−3 2264.5 0.057 1.68×10−3

3349.8 0.039 2.32×10−3 3349.8 0.039 1.69×10−3

0.6 65.54 0.246 4.33×10−4 65.5 0.246 3.28×10−4

299.2 0.232 1.65 ×10−3 299.2 0.232 1.21×10−3

746.3 0.153 2.16×10−3 746.3 0.153 1.58×10−3

1396.6 0.089 2.26×10−3 1396.6 0.089 1.64×10−3

2265.2 0.057 2.31×10−3 2265.2 0.057 1.68×10−3

3350.2 0.023 2.32×10−3 3350.2 0.023 2.32×10−3

Table 2: Linear frequencies and associated loss factors of the clamped-free sandwich beam.
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perfectly matches the results of [27] in terms of eigenfrequency and damping ratio.

5.1.2. Frequency dependent viscoelastic models
A comparison to the three layered beam model of [27] was performed in the case of

frequency dependent materials. Polyvinyl-Butyral (PVB) and 3MISD112 were used for the
viscoelastic core of the structure.

Core in PVB. We consider elastic faces made in glass separated by three viscoelastic layers in
PVB. The frequency dependent of the Young’s modulus of the viscoelastic layers is expressed
by a power-law:

E(ω) = E∞ + (E0 − E∞)[1 + (iωτ)1−α]−β. (34)

where E0 = 0.479 × 106Pa is the delayed elasticity of the shear modulus, E∞ = 2.35 ×
108Pa, τ = 0.3979, α = 0.46 and β = 0.1946. The geometrical and material properties of the
sandwich beam glass/PVB/glass are resumed in table 3. The free vibration frequencies and

Elastic Faces Young Modulus Ef = 64.5× 109Pa
Poisson ratio ν = 0.22
Mass density ρf = 2737Kg.m−3

Thickness hf = 5mm
Viscoelastic core Poisson ratio ν = 0.4

Mass density ρc = 999Kg.m−3

Thickness hc1 = hc2 = 0.253 mm
Beam Length L=1m

Width l=0.1m

Table 3: Geometrical and material properties of a clamped-clamped sandwich structure.

the associated loss factor have been computed and the results are compared with that of [27]
for validation in table(4). The results of the model match perfectly those of [27].

Five layered beam Three layered beam
Modes Frequency (Hz) Loss factor Error Frequency (Hz) Loss factor Error

1 53.74 9.11×10−3 4.6×10−5 53.74 9.11×10−3 1.38×10−3

2 145.26 1.37×10−2 2.6×10−5 145.26 1.37×10−2 1.57×10−3

3 278.39 1.80×10−2 2.08×10−5 278.39 1.80×10−2 2.77×10−3

4 448.59 2.21×10−2 2.98×10−5 448.59 2.21×10−2 2.08×10−3

5 651.94 2.58×10−2 2.17×10−5 651.94 2.58×10−2 8.52×10−4

6 884.80 2.9×10−2 2.42×10−5 884.80 2.9×10−2 8.43×10−4

Table 4: Equivalent frequencies and associated loss factors of a clamped-clamped five layered sandwich
structure
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Core in ISD112. A clamped-free beam with elastic faces in aluminium and core in 3M ISD112
is considered. A Generalized Maxwell model is used to model the frequency dependent shear
modulus of the 3M ISD112 at the temperature of 27◦as follows:

E(ω) = E0

(
1 +

3∑
j=1

∆jω

ω − iΩj

)
(35)

E0 is the delayed elasticity of the shear modulus, (∆j,Ωj) are curve fitted-parameters. The
different values of the fitted-parameters are resumed in table(5). The geometrical and ma-

27◦
j E0(Pa) ∆j Ωj(rad.s−1)
1 0.5× 106 0.746 468.7
2 3.265 4742.4
3 43.284 71532.5

Table 5: Fit parameters for 3M ISD112 model

terial properties of the structure are presented in table 6: The free frequencies and the

Elastic faces Young modulus Ef = 69× 109Pa
Poisson ratio ν = 0.3
Mass density ρf = 2766Kg.m−3

Thickness hf = 1.524mm
Viscoelastic core Poisson ratio ν = 0.5

Mass density ρc = 1600Kg.m−3

Thickness hc1 = hc2 = 0.0423mm
Beam Length L=177.8mm

Width l=12.7mm

Table 6: Geometrical and material properties of a clamped-free five layered sandwich beam.

associated loss factor has been calculated and the results are presented in the table(7) The
results of our model match perfectly those of [27].

5.2. Structures with multilayered core

5.2.1. Constant viscoelastic model
We consider a clamped-free structure whose viscoelastic core is composed of two differ-

ent materials. The core is assumed to be made of two polymers with different loss factors
{0.1; 0.5} and same static Young modulus. The elastic faces are made in aluminium. The
geometrical and material properties of the structure are presented in table8. The free fre-
quencies and associated loss factors have been compared to those obtained by the method of
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Five layered beam Three layered beam
Modes Frequency (Hz) s Loss factor Error Frequency (Hz) Loss factor Error

1 65.23 1.71×10−1 7.7×10−4 65.23 1.71×10−1 5.67×10−4

2 323.30 3.04×10−1 1.36×10−3 323.30 3.04×10−1 1.36×10−3

3 846.82 3.32×10−1 2.29×10−3 846.82 3.32×10−1 1.61×10−3

4 1555.3 3.15×10−1 2.29×10−3 1555.3 3.15×10−1 1.66×10−3

5 2490.3 3.03×10−1 2.34×10−3 2490.3 3.03×10−1 1.69×10−3

6 3671.2 2.88×10−1 2.35×10−3 3671.2 2.88×10−1 1.70×10−3

Table 7: Equivalent frequencies and associated loss factors of a clamped-free five layered sandwich structure
Aluminium/ 3MISD112 /Aluminium.

Elastic faces Young Modulus Ef = 69× 109Pa
Poisson ratio ν = 0.3
Mass density ρf = 2766Kg.m−3

Thickness hf = 1.524mm
Viscoelastic core Young modulus E0 = 1794× 103Pa

Poisson ratio ν = 0.3
Mass density ρc = 968.1Kg.m−3

Thickness hc1 = hc2 = 4.23× 10−4

Beam Length L=177.8mm
width l=12.7mm

Table 8: Geometrical and material properties of a five layered structure with heterogeneous core alu-
minium/polymères/aluminium.
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Xu et al. [28]. The results are presented in table 9.The model’s results matches with those
presented in [28], which validates our model for multi-layered viscoelastic cores.

Present model Layerwise
Modes Frequency (Hz) Loss factor Error Frequency (Hz) Loss factor

1 64.57 5.9×10−2 4.33×10−4 64.77 5.9×10−2

2 298.09 5.24×10−2 1.36×10−3 298.94 5.2×10−2

3 746.47 3.38×10−2 2.29×10−3 748.26 3.35×10−2

4 1397.7 1.96×10−2 2.29×10−3 1400.5 1.94×10−2

Table 9: Present model versus layerwise model of [28] for a clamped-free five layered sandwich structure with
heterogeneous core (aluminium-polymers-aluminium) and validation

6. Results

The developed finite elements model is used to analyse a laminated glass structure similar
to that described in [23]. The structure is made of two glass layers sandwiching a viscoelas-
tic core made of acoustic PVB and PVB. The association of these two viscoelastic materials
allows to have improved damping capabilities along with reasonable mechanical rigidity char-
acteristics. The geometrical and material characteristics of the beam are recalled in Table
10. The Young’s modulus of acoustic PVB is supposed to be complex constant. It is given

Elastic Faces Young Modulus Ef = 64.5 GPa
Poisson ratio ν = 0.22
Mass density ρf = 2737Kg.m−3

Thickness hc1 = 1.4mm
PVB acoustic Shear modulus G0 = 0.7 MPa

Loss ratio ηc2 = 0.9
Poisson ratio νc2 = 0.49
Mass density ρc2 = 1000Kg.m−3

Thickness hc1 = 0.4mm
PVB Shear modulus G0 = 0.479 MPa

Poisson ratio νc3 = 0.4
Mass density ρc3 = 999Kg.m−3

Thickness hc2 = 1.4mm
Beam Length L = 1m

Width l = 0.1m
Ref. Length href = 5mm

Table 10: Geometrical and material properties of the clamped-clamped beam

by the constitutive law :
E2(ω) = 2 (1 + νc2)G0 (1 + iηc2), (36)
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The Young’s modulus of PVB is frequency and temperature dependent. At 20 degrees Celsius,
it is given by the constitutive law :

E3(ω) = 2 (1 + νc3) (G∞ + (G0 −G∞)(1 + (iωτ)1−α)−b), (37)

with G∞ = 2.35 108 Pa, τ = 0.3979 s, α = 0.46 and b = 0.1946 [29]. A clamped-clamped
boundary condition is adopted and 200 elements are used to discretize the beam. Two
test configurations are considered. The first one, denoted by UC1, is characterized by a
viscoelastic core made of a PVB layer interleaved between two acoustic PVB layers. The
second one, denoted by UC2 is characterized by a viscoelastic core made of an acoustic PVB
layer sandwiched between two PVB layers. The adimensional thicknesses X1 =

hf
href

(elastic

faces), X2 =
hc1
href

(acoustic PVB layer) and X3 =
hc2
href

(PVB layer) are varied between 0.04
and 0.4. The quantities of interest are the damping of the first mode, the first resonant
frequency and the rigidity index of the beam. We would like to see how these evolve versus
X1, X2 and X3.

6.1. First case UC1

The core is made up viscoelastic of an acoustic PVB layer (called Visco 2) sandwiched
by two PVB layers (called Visco 1). In Figure 2, we fix X1 = 0.28 (which corresponds to an
elastic layer of 1.4 mm) and we plot the previous quantities in function of X2 (adimensional
thickness of PVB layer) and X3 (adimensional thickness of acoustic PVB). One can notice
from Figure 2, that both viscoelastic layers thicknesses contribute to the damping. A closer
look shows that the increase in damping is more influenced by the acoustic PVB layer than the
PVB one which is quite normal given that the acoustic PVB has higher damping capacities
than PVB. Moreover the rigidity index seems to be a linear function of each viscoelastic layer
thickness which is quite logical since an increase in thickness increases the overall sandwich
rigidity. The frequency exhibits a quadratic behaviour versus the acoustic PVB layer and a
linear behaviour versus the PVB layer. In Figure 3, we fix X3 = 0.28 (which corresponds to
a central viscoelastic layer of 1.4 mm) and we plot the previous quantities in function of X1

(adimensional thickness of elastic layer) and X2 (adimensional thickness of PVB layer). It is
obvious that the thickness of the faces has a stronger impact than the thickness of the PVB
layer on the damping. Moreover, one can see easily that there is an optimal face thickness
for which the damping is maximized. Moreover, it is worth noting that for the frequency and
rigidity if the viscoelastic thickness contribute in a linear fashion, the elastic face thickness
seems to contribute quadratically. In Figure 4, we fix X2 = 0.08 (which corresponds to an
elastic layer of 0.4 mm) and we plot the previous quantities in function of X1 and X3, the
adimensional viscoelastic layers thicknesses. In this last figure, one can see that the faces
thickness and acoustic PVB layer thickness contribute equally to the damping. The existence
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Figure 2: Evolution of loss ratio, resonant frequency and rigidity index versus X2, X3 for X1 = 0.28

Figure 3: Evolution of loss ratio, resonant frequency and rigidity index versus X1, X2 for X3 = 0.28
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of an optimal face thickness that maximizes the damping is also observed as in Figure 3. The
frequency shows the same quadratic behaviour versus the acoustic PVB layer as noted on
Figure 2 and linear behaviour versus the face thickness as observed on Figure 3. A quick
comparison of Figures 2, 3 and 4 shows that face thickness, PVB layer thickness and acoustic
PVB layer thickness contribute in decreasing order to the rigidity index which quite logical
given their respective Young’s moduli.

Figure 4: Evolution of loss ratio, resonant frequency and rigidity index versus X1, X3 for X2 = 0.08

6.2. Second case UC2

The core is made up viscoelastic of a PVB layer sandwiched by two acoustic PVB layers.
In Figure 5, we fix X1 = 0.28 (which corresponds to an elastic layer of 1.4 mm) and we
plot the previous quantities in function of X2 (acoustic PVB layer) and X3 (PVB layer),
the adimensional viscoelastic layers thicknesses. One can notice that both viscoelastic layers
thicknesses contribute to the damping, the acoustic PVB layer thickness having more influ-
ence than the PVB layer one as observed previously on Figure 2. As observed on Figure
2, the frequency seems to be quadratic versus the acoustic PVB layer thickness while being
linear versus the PVB layer thickness. The rigidity index evolves in a linear fashion versus
the two viscoelastic layers’ thicknesses. In Figure 6, we fix X3 = 0.28 (which corresponds
to a central viscoelastic layer of 1.4 mm) and we plot the previous quantities in function of
X1 and X2, the adimensional viscoelastic layers thicknesses. One can notice that there is an
optimal thickness of the faces that maximizes the damping while it increases in function of
the thickness of the acoustic PVB layer. The linearity of the frequency versus the thickness
of the elastic faces and its quadratic behaviour versus the acoustic PVB layer thickness is
recovered as observed before in Figure 3. The rigidity index seems to be quadratic in function
of the elastic faces thickness and linear versus the acoustic PVB layer thickness. In Figure
7, we fix X2 = 0.08 (which corresponds to a central viscoelastic layer of 0.4 mm) and we
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Figure 5: Evolution of loss ratio, resonant frequency and rigidity index versus X2, X3 for X1 = 0.28

Figure 6: Evolution of loss ratio, resonant frequency and rigidity index versus X1, X2 for X3 = 0.28
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plot the previous quantities in function of X1 and X3, the adimensional viscoelastic layers
thicknesses. One can notice that the PVB layer thickness does not affect much the damping.
The frequency and rigidity index seem to be linear in function this quantity.

Figure 7: Evolution of loss ratio, resonant frequency and rigidity index versus X1, X3 for X2 = 0.08

Conclusion

In the present article, a computational model of a five layered sandwich beam with a
multi-layered viscoelastic core is presented and validated for frequency dependent viscoelastic
materials. The model is then used to perform a parametric study of a laminated glass beam
with PVB acoustic and PVB as damping viscoelastic materials. Some relevant quantities
such as the damping, the resonant frequency and the rigidity of the beam are investigated
in function of the thicknesses. It is shown in particular that if the rigidity is quadratic
in function of the elastic thickness and linear in function of the viscoelastic thicknesses,
the damping and resonant frequency show non monotonous variations. In particular, the
existence of an optimal faces thickness for damping is shown while a quadratic behaviour
of frequency versus acoustic PVB layer thickness is reported. In perspectives, it can be
interesting to extend the present study to higher order modes, especially in the presence
of interacting modes. Moreover, multi-criteria optimization can be used to determine the
compromises between the design parameters to achieve the highest performances in damping
and rigidity for low mass sandwich structures.
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Appendix .1. Shape functions and element matrices

Denoting by Le the element length and setting ξ = 2x
Le − 1 for x ∈ [0, Le] and ξ = [−1, 1],

the classical polynomial shape functions are written as follows:

n1(ξ) =
(1− ξ)2(2 + ξ)

4
,

n2(ξ) =
Le(1− ξ)2(1 + ξ)

8
,

n3(ξ) =
(1 + ξ)2(2− ξ)

4
,

n4(ξ) =
Le(1 + ξ)2(1− ξ)

8
,

n5(ξ) =
1− ξ

2
,

n6(ξ) =
1− ξ

2
,

n7(ξ) =
1 + ξ

2
,

n8(ξ) =
1 + ξ

2
.

The resulting shape functions matrices listed in section 3 can then be written as:

[Nw] = [n1(ξ) n2(ξ) 0 0 n3(ξ) n4(ξ) 0 0];

[Nβ2 ] = [0 0 n5(ξ) 0 0 0 n6(ξ) 0];

[Nβ3 ] = [0 0 0 n7(ξ) 0 0 0 n8(ξ)].

As for the element mass [Me] and the element stiffness [Ke] mentioned in section 3, they can
be expressed as:

[Me] = (2ρf Sf + 3ρci Sci)

∫ 1

−1
J t[Nw][Nw]dξ.
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Kev2 =
Sc2

(1 + νc2)
[ke7] + (2Ic2 +

1

2
h2c1Sc2)[k

e
1]

+
1

2
Sc2hc1hc2 [k

e
2] +

1

2
h2c2Sc2 [k

e
4]

Kev3 = Ic3 [k
e
4] +

Sc3
2(1 + νc3)

[ke8]

Ke0 = Ef Sf hc1(2hc1 [ke1] + hc2 [ke2]− hf [ke3])

+
1

2
Ef Sf hc2(hc2 [ke4]− hf [ke5])

+Ef (2 If +
1

2
Sf h

2
f )[k

e
6]

+
E2(0)

2(1 + νc2)
Kev2 +

E3(0)

2(1 + νc3)
Kev3

Ke(ω) = Ke0 + (E2(ω)− E2(0))Kev2 + (E3(ω)− E3(0))Kev3

with Ei(ω) the frequency dependent Young’s modulus of the viscoelastic material of layer i.
[ke1] =

∫ 1

−1 J
−1[N ′β2 ]

t[N ′β2 ]dξ,

[ke2] =
∫ 1

−1 J
−1 ([N ′β2 ]t[N ′β3 ] + [N ′β3 ]

t[N ′β2 ]
)
dξ,

[ke3] =
∫ 1

−1 J
−2 ([N ′β2 ]t[N ′′w] +t [N ′′w][N ′β2 ]

)
dξ,

[ke4] =
∫ 1

−1 J
−1[N ′β3 ]

t[N ′β3 ]dξ.
[ke5] =

∫ 1

−1 J
−2 ([N ′β3 ]t[N ′′w] + [N ′′w]t[N ′β3 ]

)
dξ,

[ke6] =
∫ 1

−1 J
−3([N ′′w]t[N ′′w])dξ,

[ke7] =
∫ 1

−1 ([Nβ2 ]
t[N ′w] + J [Nβ2 ]

t[Nβ2 ] + J−1[N ′w]t[N ′w] + [N ′w]t[Nβ2 ]) dξ,

[ke8] =
∫ 1

−1 ([Nβ3 ]
t[N ′w] + J [Nβ3 ]

t[Nβ3 ] + J−1[N ′w]t[N ′w] + [N ′w]t[Nβ3 ]) dξ,

where J = Le/2.

Appendix .2. Axial force and flexural moment

The expression of the axial forces and the flexural moment is deduced from the constitutive
behaviour of the five layered sandwich beam (based on the generalised Hooke’s stress-strain
law). 

Ni(x, t) =
∫∫
si

σids = Ef Sf (u
′
i + 1

2
w′2) i = 1, 5,

Ni(x, t) =
∫∫
si

σids = Sci Yi(t) ∗ ∂
∂t

(u′i + 1
2
w′2) i = 2, 3, 4,

(.1)
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where Sf and Sci denote the surface area of the elastic layer and the viscoelastic layer i,
respectively. The bending moment is written as follows:Mi = Ef Sf ẅ i = 1, 5,

Mi = Ici Yi ∗ βi′ i = 2, 3, 4,
(.2)

where Ef , Ici and Yi are respectively the Young’s modulus, the quadratic moment of the
layers’ cross section and the relaxation function. The shear force Ti in the viscoelastic layers
i = (2, 3, 4) can be written as :

Ti =

∫∫
si

τids =
Sci

2(1 + νci)
Yi(t) ∗

∂

∂t
(
∂w

∂x
+ βi). (.3)

with τi =
Yi(t)

2(1 + νci)
∗ ∂ξi
∂t

is the shear stress, νci the Poisson ratio of viscoelastic layer i.
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