Mohsen Alambardar
email: m.alambardar@sci.ui.ac.ir

Amir Kafshdar Goharshady
email: goharshady@cse.ust.hk

Mohammad Reza Hooshmandasl
email: hooshmandasl@uma.ac.ir

Ali Shakiba
email: ali.shakiba@vru.ac.ir

Optimal Mining Maximizing Bitcoin Miners' Revenues

Keywords: Blockchain, Mining, Parameterization, Bitcoin

Following the Bitcoin model, many modern blockchains reward their miners in two ways: (i) a base reward for each block that is mined, and (ii) the transaction fees of those transactions that are included in the mined block. The base reward is fixed by the respective blockchain's protocol and is not under the miner's control. Hence, for a miner who wishes to maximize earnings, the fundamental problem is to form a valid block with maximal total transaction fees and then try to mine it. Moreover, in many protocols, including Bitcoin itself, the base reward halves at predetermined intervals, hence increasing the importance of maximizing transaction fees and mining an optimal block. This problem is further complicated by the fact that transactions can be prerequisites of each other or have conflicts (in case of double-spending). In this work, we consider the problem of forming an optimal block, i.e. a valid block with maximal total transaction fees, given a set of unmined transactions.

On the theoretical side, we first formally model our problem as an extension of Knapsack and then show that, unlike classical Knapsack, our problem is strongly NP-hard. We also show a hardness-of-approximation result. As such, there is no hope in solving it efficiently for general instances. However, we observe that its real-world instances are quite sparse, i.e. the transactions have very few dependencies and conflicts. Using this fact, and exploiting two well-known graph sparsity parameters, namely treewidth and pathwidth, we present exact linear-time parameterized algorithms that are applicable to the real-world instances and obtain optimal results.

We also provide an experimental evaluation demonstrating that our approach vastly outperforms the current Bitcoin miners in practice, obtaining a significant per-block average increase of 13.4% in transaction fee revenues.

Introduction

Mining. In blockchain ecosystems, mining is the process of adding new blocks of transactions to the public ledger (the blockchain). This terminology is usually applied to proof-of-work blockchains such as Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF] and is sometimes even used to refer solely to the process of solving a hashcash puzzle. Blockchains that are not based on proof-of-work sometimes prefer other terms such as farming [START_REF] Cohen | The Chia network blockchain[END_REF] or validating [START_REF]Stake your ETH to become an Ethereum validator[END_REF]. For the purposes of this paper, we consider the widest definition of mining that is not restricted to a specific consensus protocol such as proof-of-work, and distinguish between the two natural phases of mining:

1. In the first phase, the miner has to gather new transactions and form a valid block.

2. In the second phase, the miner should perform actions that allow her to add the new block to the chain. For example, in Bitcoin she has to solve a hashcash puzzle [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF], while in typical proof-of-stake protocols she has to win a specific type of lottery [START_REF] Kiayias | Ouroboros: A provably secure proof-of-stake blockchain protocol[END_REF][START_REF] King | Ppcoin: Peer-to-peer crypto-currency with proof-of-stake[END_REF][START_REF] Gilad | Algorand: Scaling byzantine agreements for cryptocurrencies[END_REF].

A significant amount of research and development has been devoted to optimizing the second phase. For Bitcoin alone, there are already several generations of mining hardware [START_REF] Dev | Bitcoin mining acceleration and performance quantification[END_REF][START_REF] Taylor | The evolution of Bitcoin hardware[END_REF][START_REF] Bhaskar | Bitcoin mining technology[END_REF], from GPU mining, to FPGA, to dedicated ASICs and trusted hardware frameworks [START_REF] Zhang | REM: resource-efficient mining for blockchains[END_REF]. Moreover, miners often collaborate in what is known as a mining pool, which has also been widely studied in the literature [START_REF] Lewenberg | Bitcoin mining pools: A cooperative game theoretic analysis[END_REF][START_REF] Chatterjee | Ergodic meanpayoff games for the analysis of attacks in crypto-currencies[END_REF][START_REF] Laszka | When Bitcoin mining pools run dry[END_REF][START_REF] Velner | Smart contracts make Bitcoin mining pools vulnerable[END_REF][START_REF] Wang | Measurement and analysis of the Bitcoin networks: A view from mining pools[END_REF][START_REF] Zur | Efficient MDP analysis for selfish-mining in blockchains[END_REF][START_REF] Eyal | Majority is not enough: Bitcoin mining is vulnerable[END_REF][START_REF] Mccorry | Smart contracts for bribing miners[END_REF]. In contrast, we focus on the orthogonal task of performing the first phase efficiently and optimally.

Mining Rewards. In order to incentivize miners to take part in mining, especially performing the often costly proof-of-work in the second phase, blockchain protocols reward them in two ways:

• Base reward: The miner is rewarded a predetermined amount for each block that she successfully adds to the blockchain. This reward is not under the miner's control and is instead fixed by the underlying protocol. In Bitcoin, it is currently 6.25 BTC and halves at predetermined intervals [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. This is also how new units of currency are created. Some cryptocurrencies, such as Ethereum, have a more complex method in which miners who solve the second phase puzzle but whose block does not eventually get added to the chain are also rewarded [START_REF] Antonopoulos | Mastering ethereum: building smart contracts and dapps[END_REF].

• Transaction fees: Each transaction has a specific fee that is paid to the miner who includes this transaction in her block and adds it to the chain [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]. The transaction fees are set by the user who creates the transaction. A miner can decide which transactions to include in her block based on their fees. Indeed, it is well-known that transactions with small fees are often added to the chain with considerable delay or not at all.

Focus and Motivation. In this work, we consider a miner's point-of-view, and focus on the problem of creating a block of transactions in the first phase of mining such that the total amount of gathered transaction fees are maximized. Note that the base reward is not under the miner's control and hence her only tool for maximizing her profits is to create an optimal block with maximal transaction fees. Moreover, as base rewards halve in cryptocurrencies such as Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF], transaction fees form an ever-increasing percentage of miner revenue. By the year 2140, the base reward in Bitcoin becomes 0 and transaction fees will be the only source of compensation for miners [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF].

The task of forming an optimal block is complicated by several factors, which we now shortly review: Block Size Limit. Every transaction has a known size. On the other hand, blockchain protocols enforce an upper-bound on the size of mined blocks. In Bitcoin, the bound is 1,000,000 bytes [START_REF] Lombrozo | Segregated witness (consensus layer), Bitcoin Core Develop[END_REF] 3 . The maximum block size has a direct impact on the scalability of a cryptocurrency, and has been at the heart of the debate that led to forks such as Bitcoin Cash, which increased the block size limit to 8MB and then to 32MB [START_REF] Javarone | From Bitcoin to Bitcoin cash: a network analysis[END_REF][START_REF] Kwon | Bitcoin vs. Bitcoin cash: Coexistence or downfall of Bitcoin cash?[END_REF]. There are also cryptocurrencies that advocate for larger blocks, and even a total abandonment of block size limits, such as Bitcoin SV [START_REF] Bazán-Palomino | How are Bitcoin forks related to Bitcoin?[END_REF]. Block size limits complicate the task of forming an optimal block by forcing the miner to choose which transactions to include and which to ignore.

Dependencies. Transactions have dependencies among themselves. For example, in Bitcoin, if a transaction Tx 2 uses an output of a transaction Tx 1 as one of its inputs, i.e. if Tx 2 spends funds that were obtained in Tx 1 , then Tx 1 must appear in the chain before Tx 2 . This can be achieved either by putting Tx 1 in an earlier block, or in the same block as Tx 2 but in an earlier position. Such a dependency will not create any additional constraints for the miner if Tx 1 is already on the chain. Figure 1: Tx 2 uses the first output of Tx 1 as its third input. Hence, Tx 2 depends on Tx 1 and must appear after it in the chain. In practice, Tx 2 has a pointer to Tx 1 but for demonstration purposes, we found it more convenient to show this as an arrow that models the flow of value from Tx 1 's output to Tx 2 's input.). This is considered double-spending and is not allowed. Hence, Tx 2 and Tx 3 are in conflict and a miner cannot include both of them in her block.

However, if both Tx 1 and Tx 2 are new transactions that are not already put on the chain, then the miner cannot include Tx 2 in her block while leaving Tx 1 out.

Conflicts.

It is possible for a pair of otherwise-valid transactions to be in conflict with each other. For example, in Bitcoin, one can create two transactions that double-spend the same output coin, leading to a situation where only one of them can be added to the consensus chain. In such cases, if one of the transactions is already on the blockchain, then the other transaction would be ignored. If none of the transactions are already mined, then the miner has to choose which transaction to put in her block, but she cannot choose both.

Inefficiency of Heuristics.

It is easy to see that in the presence of the requirements above, many of the common heuristics used by miners can become infinitely bad on adversarial instances. For example, a miner that ignores all transactions that are involved in a double-spending risks not only losing their transaction fees but also the fees of transactions depending on them. Similarly, a miner that ignores lowfee transactions risks losing potentially high-fee transactions that depend on them. Moreover, it is noteworthy that the default Bitcoin implementation does not address the problem of forming an optimal block, and chooses transactions based on a "priority" formula that is meant to ensure that every transaction is eventually put into a block, instead of aiming at maximizing the miner's revenue [START_REF] Miner Fees | Bitcoin Wiki[END_REF]. As such, this approach has been largely abandoned by the miners [START_REF] Miner Fees | Bitcoin Wiki[END_REF].

Our Contribution. In this work, we consider the problem of forming an optimal block, i.e. one that maximizes the total transaction fees while respecting the requirements above. Our contributions are as follows:

• We first formally model the problem as what we call a Dependency-Conflict Knapsack (DCK) instance.

• We show that, unlike classical Knapsack, DCK is strongly NP-hard, hence ruling out the existence of pseudo-polynomial algorithms, i.e. algorithms depending polynomially on the block size limit, unless P=NP.

• We provide a hardness-of-approximation result, showing that there exists a constant > 0 such that it is NP-hard to approximate the reward of the optimal block within a factor of 1 -. We also show that > 0.12.

• Based on the observation that real-world instances of the problem are quite sparse, i.e. they have few conflicts and dependencies, we consider two graph sparsity parameters, namely treewidth and pathwidth, and show that for instances in which the dependency-conflict graph has constant treewidth, DCK

is solvable in O(n • k 2), whereas in constant-pathwidth instances it is solvable in O(n • k).
Here, n is the number of new transactions (also known as mempool size) and k is the block size limit. These pseudo-polynomial algorithms form optimal blocks.

• We provide real-world experimental results over Bitcoin, showing that the constant pathwidth assumption holds in practice and that our approach leads to significantly more profitable blocks and beats real-world miners by 13.4%.

Related Works. Surprisingly, the problem of forming an optimal block to mine is quite understudied. It is well-known that the problem is NP-hard. To the best of our knowledge, the earliest mention of this fact is in a blog post by Joseph Bonneau back in 2014 [START_REF] Bonneau | Bitcoin mining is NP-hard[END_REF]. However, we show that it is also strongly NP-hard, and hard-to-approximate. Moreover, we provide the first positive theoretical results, i.e. pseudo-polynomial algorithms parameterized by treewidth and pathwidth that obtain an optimal block. We also provide significant practical improvements (See our experiments in Section 6). To the best of our knowledge, parameterized algorithms have not been previously studied in the context of blockchain, except for [START_REF] Chatterjee | The treewidth of smart contracts[END_REF] which considers treewidth as a parameter for static analysis of smart contracts.

Preliminaries

In this section, we provide a short overview of the notions of treewidth and pathwidth, which we will later exploit in order to obtain efficient algorithms for optimal mining. Treewidth [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF] is a widely-used graph parameter. Intuitively, it models the degree to which a graph resembles a tree. Only trees and forests have a treewidth of 1. Similarly, pathwidth [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF] is a measure of path-likeness of a graph. Many problems that are NP-hard on general graphs admit efficient solutions when restricted to instances with small treewidth or pathwidth [START_REF] Cygan | Parameterized algorithms[END_REF][START_REF] Goharshady | An efficient algorithm for computing network reliability in small treewidth[END_REF][START_REF] Goharshady | Parameterized and algebro-geometric advances in static program analysis[END_REF][START_REF] Chatterjee | Efficient parameterized algorithms for data packing[END_REF]. Even problems that are not NP-hard can often be solved more efficiently when parameterized by the treewidth/pathwidth [START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF][START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF][START_REF] Chatterjee | Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth[END_REF][START_REF] Chatterjee | Algorithms for algebraic path properties in concurrent systems of constant treewidth components[END_REF][START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF]. We now provide more formal definitions:

Tree Decompositions and Path Decompositions [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF][START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF][START_REF] Cygan | Parameterized algorithms[END_REF]. Let G = (V, E) be a graph with vertex set V and edge set E. A tree decomposition of G is a tree (T, E T) such that:

• Each node b ∈ T of the tree decomposition has an associated set V b ⊆ V of vertices of G. To avoid confusion, we reserve the word "vertex" for vertices of G and use the word "bag" to refer to the nodes of T . Moreover, we define E b as the set of edges whose both endpoints are in V b .

• Each vertex v ∈ V appears in at least one bag. More formally, b∈T V b = V.

• Each edge e ∈ E appears in at least one bag. In other words, b∈T E b = E.

• Each vertex v ∈ V appears in a connected subtree of T . In other words, for all

b 1 , b 2 , b 3 ∈ T , if b 3 is on the unique path from b 1 to b 2 , then V b 1 ∩ V b 2 ⊆ V b 3 .
A tree decomposition is called a path decomposition if (T, E T) is a path.

Treewidth and Pathwidth [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF][START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF][START_REF] Cygan | Parameterized algorithms[END_REF]. The width of a tree decomposition is defined as the size of its largest bag minus 1. The treewidth (resp. pathwidth) of a graph G is the smallest width among all of its tree decompositions (resp. path decompositions).

Example 1. Figure 3 shows an example graph, together with a tree decomposition and a path decomposition. Nice Decompositions. Consider a tree decomposition (T, E T) of a graph G, in which a bag r ∈ T is chosen as root. The tree decomposition (T, E T) is called nice if it satisfies the following conditions:

• If a bag l ∈ T is a leaf, then V l = ∅.
• If a bag b ∈ T is not a leaf, then b is in one of the following forms:

-Introduce Bag: The bag b has a single child b and there is a vertex v ∈ V b such that V b = V b \ {v}. In this case, we say that b introduces v.

-Forget Bag: The bag b has a single child b and there is a vertex

v ∈ V b such that V b = V b ∪ {v }.
In this case, we say that b forgets v .

-Join Bag: The bag b has exactly two children, b 1 and b 2 , and we have

V b = V b 1 = V b 2 .
A nice path decomposition is defined similarly, except that there can be no join bags in a path decomposition. It is easy to see that any tree decomposition or path decomposition can be turned nice in linear time. See [START_REF] Cygan | Parameterized algorithms[END_REF] for details. Nice decompositions are useful because they allow one to perform dynamic programming on arbitrary trees in essentially the same manner as on trees or paths. This is exactly what our algorithm in Section 5 does. See [START_REF] Bodlaender | Dynamic programming on graphs with bounded treewidth[END_REF] for more examples of this type of dynamic programming.

Sparsity. Treewidth and pathwidth are graph sparsity parameters, in the sense that a graph with n vertices and treewidth t can have at most O(n • t) edges. Moreover, many well-studied families of graphs, such as cacti, series-parallel graphs, outerplanar graphs, and control-flow graphs of programs, have constant treewidth [START_REF] Bodlaender | A partial k-arboretum of graphs with bounded treewidth[END_REF][START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF].

Fixed-parameter Tractability [START_REF] Cygan | Parameterized algorithms[END_REF]. Given an instance with n vertices and a graph parameter r as input, we say that a graph decision problem is Fixed-Parameter Tractable (FPT) with respect to r, if there exists an algorithm that solves it in

O(n c • f (r))
, where c is a fixed constant not depending on either n or r, and f is an arbitrary computable function. This definition, which is standard in parameterized complexity, captures the requirement that the problem can be solved in polynomial time when the parameter r is small. Moreover, the degree of the polynomial is independent of r. In the sequel, we will obtain FPT algorithms with respect to treewidth and pathwidth.

Computing Treewidth and Pathwidth. In general, computing the treewidth or pathwidth of an arbitrary input graph are NP-hard problems [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF][START_REF] Ohtsuki | One-dimensional logic gate assignment and interval graphs[END_REF]. However, the problems are FPT when parameterized by the treewidth (resp. pathwidth) itself. Indeed, [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF][START_REF] Bodlaender | Efficient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF] provide linear-time FPT algorithms for computing treewidth and pathwidth. Moreover, there are efficient tools and libraries, such as [START_REF]The Sage Developers, SageMath, the Sage Mathematics Software System[END_REF][START_REF] Van Dijk | Computing treewidth with LibTW[END_REF] that compute treewidth/pathwidth. As such, in our decomposition-based algorithms, we assume without loss of generality that a nice tree decomposition (resp. path decomposition) with O(n • t) bags is given as part of the input.

Dependency-Conflict Knapsack

In this section, we formalize our optimal mining task as a variant of the Knapsack problem, called Dependency-Conflict Knapsack (DCK).

Instances. A DCK instance is a tuple I = (n, k, Σ, V, W, C, D), in which:

• n and k are positive integers. Intuitively, n is the number of items and k is the capacity of our knapsack.

• Σ = {σ 1 , . . . , σ n } is a set of n items.
• V, W : Σ → N ∪ {0} are functions that assign a value and a weight to every item. For brevity, we denote V (σ i) by v i and W (σ i) by w i .

• C, D ⊆ Σ × Σ, respectively called the conflict and dependency relations, are relations on Σ such that:

(i) C is symmetric.

(ii) The transitive closure of D is anti-symmetric.

Informally, σ i Cσ j signifies that the two elements σ i and σ j are in conflict, i.e. we cannot put both of them into the knapsack. It is clear that the conflict relation should be symmetric. Similarly, σ i Dσ means that σ is a prerequisite of σ i , i.e. if we put σ i in the knapsack, we have to put σ , too. In (ii), we are assuming that there are no cyclic dependencies. We now formalize the problem:

The DCK Problem. Given an instance I = (n, k, Σ, V, W, C, D) as above and a positive integer α, the DCK(I, α) problem asks whether there exists a subset Σ * ⊆ Σ of items, such that:

(a) σ * ∈Σ * W (σ *) ≤ k, i.e. the items in Σ * must fit in a knapsack of size k. (b) For every σ * i , σ * j ∈ Σ * , we have (σ * i , σ * j) ∈ C.
(c) For every σ i , σ j ∈ Σ, if σ i Dσ j and σ i ∈ Σ * , then we also have

σ j ∈ Σ * . (d) σ * ∈Σ * V (σ *) ≥ α, i.e. the total value of items in Σ * is at least α.
The maximization variant of the DCK problem, MaxDCK, asks for a Σ * that maximizes the sum σ * ∈Σ * V (σ *).

It is easy to see the correspondence between the DCK problem and the problem of forming a block. The knapsack size k serves as the block size limit, while each of the n items represents a valid new transaction. By this, we mean a transaction that is not already included in the chain, and passes other validity checks (such as providing the right signatures). If a transaction σ double-spends a coin that was spent in another transaction σ and σ is already on the chain, then σ is considered to be invalid. However, if σ is also a new transaction, then they are both considered valid, but in conflict. The weight w i represents the size of transaction σ i and the value v i represents its transaction fee, which will be paid to the miner if she includes it in her block (knapsack). The relation C models conflicts between transactions, i.e. if σ i and σ j are transactions that are double-spending the same output, then we have σ i Cσ j . Similarly, D models dependencies. Condition (ii) makes sure that we do not have cyclic dependencies. In the real-world, if a set of transactions have cyclic dependencies, they are all invalid, and can be removed by a simple preprocessing. Using this correspondence, the DCK problem formalizes the question of whether one can form a valid block with a total transaction fee of at least α, whereas MaxDCK asks for the maximum possible amount of transaction fees among all valid blocks. Independence of C and D. In the real-world scenario of forming a block, two transactions have a conflict if and only if they both use the same output. In other words, any pair of conflicting transactions should have a common dependency. However, note that this common dependency might already be added to the blockchain. In our modeling as a DCK instance, each item corresponds to a new transaction that is not yet added to the chain. As such, we do not need to posit extra requirements on the relation between C and D. Indeed, for any given DCK instance, it is easy to come up with a block formation problem that exactly corresponds to it.

DCG. Given a DCK instance I = (n, k, Σ, V, W, C, D), its Dependency-Conflict Graph (DCG) is a graph G = (Σ, E)
, in which each item serves as a vertex, and there are two types of edges in E:

• Undirected Conflict Edges: There is an undirected edge {σ i , σ j } for each σ i Cσ j .

• Directed Dependency Edges: There is a directed edge (σ i , σ j) for each σ i Dσ j .

Hardness Results

In this section, we provide a simple reduction showing that DCK is strongly NP-hard. This is in contrast to classical Knapsack, which has a simple pseudopolynomial dynamic programming algorithm and is only weakly NP-hard. Moreover, we show that MaxDCK is hard-to-approximate within a constant factor unless P=NP, and hence does not admit a PTAS. This is again in contrast to classical Knapsack, which admits an FPTAS. Additionally, our reduction rules out efficient parameterized algorithms based on several common graph parameters, such as degree and diameter, on the DCG.

The Reduction. Our reduction is from 3-SAT. Given a 3-SAT formula ϕ with m clauses over n boolean variables, we construct the following DCK instance I ϕ = (n, k, Σ, V, W, C, D) :

• n = 3 • m + 2 • n • k = m + n
• For each variable x appearing in ϕ, we add two items σ x and σ ¬x to Σ. We set

W (σ x) = W (σ ¬x) = 1 and V (σ x) = V (σ ¬x) = 0. Moreover, (σ x , σ ¬x), (σ ¬x , σ x) ∈ C, i.e
. the two items are in conflict.

• For each clause c = (1 ∨ 2 ∨ 3) of ϕ in which each literal i is either a boolean variable or its negation, we add three items σ c,1 , σ c,2 , and σ c,3 to Σ. We set W (σ c,i) = V (σ c,i) = 1. Moreover, we have (σ c,i , σ c,j) ∈ C for every i = j, i.e. every pair of the three elements are in conflict. Additionally, we set σ c,i D σ i , i.e. the i-th element of c depends on the element corresponding to i .

Example 2. Figure 4 illustrates our reduction.

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z) σ x σ ¬x σ y σ ¬y σ z σ ¬z σ 1,1 σ 1,2 σ 1,3 σ 2,1 σ 2,2 σ 2,3
Figure 4: A 3-SAT formula (top), and its reduction to a DCK instance. Red edges denote conflict and blue directed edges denote dependency. For example, σ 1,1 depends on σ x . In the DCK instance, we have k = 5. Moreover, every element has unit weight. The variable elements and their negations have value zero, whereas σ i,j 's have unit value. The items put into the knapsack in one optimal solution are shown in green. Note that this yields a total value of 2, which proves satisfiability. This is achieved by letting x = 1 and y = z = 0, which corresponds to satisfying the second literal of the first clause (σ 1,2), and the third literal of the second clause (σ 2,3).

It is easy to verify that I has all the requirements for a DCK instance as defined in Section 3. Note that every solution to I can pick at most one of σ x and σ ¬x for every variable x. Similarly, for each clause c, it can take at most one of the items corresponding to c, and can take σ c,i only if it also takes the item corresponding to the i-th disjunct of c. Also, note that every item has unit weight, and only the items corresponding to clauses have a unit value, while all other items are worthless. Given this discussion, it is easy to see that ϕ is satisfiable iff DCK(I ϕ , m) = 1. Moreover, MaxDCK(I ϕ) = Max3-SAT(ϕ). Hence, we have the following theorems:

Theorem 1 (Strong NP-hardness). DCK is strongly NP-hard. In other words, it is NP-hard even if the input instance size is defined to be n + k.

Proof. As shown above, for every 3-SAT formula ϕ, we have 3-SAT(ϕ) ⇔ DCK(I ϕ , m). It is well-known that 3-SAT is NP-hard. Moreover, the reduction above keeps n and k polynomial in terms of |ϕ|. Hence, DCK is strongly NP-hard.

Theorem 2 (Inapproximability). There exists > 0, such that it is NP-hard to approximate MaxDCK within a factor of 1 -.

Proof. A well-known corollary of the PCP theorem [START_REF] Arora | Proof verification and the hardness of approximation problems[END_REF] is that such an exists for the Max3-SAT problem. The theorem follows from the fact that we have MaxDCK(I ϕ) = Max3-SAT(ϕ) in our reduction. Indeed, it is hard to approximate Max3-SAT within a ratio of 7 8 + for any > 0 [START_REF] Håstad | Some optimal inapproximability results[END_REF]. Using our reduction, this result also applies to MaxDCK.

Efficient Decomposition-based Algorithms

In this section, we provide efficient FPT algorithms for the DCK problem with respect to the treewidth and pathwidth of its DCG. For a DCG with treewidth t, our approach leads to an O(n • k 2 • 2 t • t 3)-time algorithm. Moreover, for a DCG with pathwidth p, it obtains a runtime of O(n • k • 2 p • p 3). Note that the latter is faster by a factor of k, so if k is large and both t and p are small, the pathwidth-based algorithm would be much faster in practice.

Setup and Notation. Let I = (n, k, Σ, V, W, C, D) be a DCK instance given as input together with a nice tree decomposition (T, E T) of its DCG G = (Σ, E). Moreover, as justified in Section 2, we assume that the tree decomposition has width t and O(n • t) bags. Recall that for a bag b ∈ T, we denote its associated set of items by Σ b ⊆ Σ, and define E b ⊆ E as the set of edges whose both endpoints are in Σ b . Additionally, as our tree decomposition is nice, we have a distinguished root bag r, and every bag is either a leaf, an introduce bag, a forget bag, or a join bag. For a bag b ∈ T, we denote by T ↓ b the subtree of T consisting of b and its descendants. Similarly, we define G ↓ b as the part of G that corresponds to

T ↓ b , i.e. G ↓ b = b ∈T ↓ b Σ b , b ∈T ↓ b E b .
Example 3. Figure 5 shows a DCG G (left) and a nice tree decomposition of G (right). We will use this figure as our running example. Suppose that every vertex i has a value of i and unit weight. Moreover, let k = 3. In this example, we have Main Idea. Our algorithm is a bottom-up dynamic programming on the tree decomposition. At every bag b ∈ T, for every subset M ⊆ Σ b , and every nonnegative integer κ ≤ k, we define a variable dp[b, M, κ] and initialize it to -∞. The goal is to compute values for each such variable such that the following invariant is satisfied: dp[b, M, κ] is the maximum total value of items that can be placed in a knapsack of size κ, such that:

Σ b 2 = {1, 2, 3} and E b 2 = {(1, 2
• Every item comes from G ↓ b ,
• All dependency and conflict relations in G ↓ b are respected, and • The set of items chosen from Σ b is exactly M.

Having this in mind, we now show how one can compute the values for dp variables. Our algorithm processes the bags of the tree decomposition in a bottom-up order and performs the following calculations:

Computing Values at Leaves. Given that our tree decomposition is nice, for every leaf bag l ∈ T, we have Σ l = ∅. Hence, the algorithm sets dp[l, ∅, κ] = 0 for every κ.

dp[b, M, κ] = dp[b , M \ {σ}, κ -W (σ)] + V (σ) σ ∈ M dp[b , M, κ] σ ∈ M .
It is straightforward to see why this works.

= Σ b 1 = Σ b 2 and G ↓ b = G ↓ b 1 ∪ G ↓ b 2 .
Note that because T is a tree decomposition, every vertex appears in a connected subtree. Hence, all common vertices of G ↓

dp[b, M, κ] = κ max i=W (M) (dp[b 1 , M, i] + dp[b 2 , M, κ + W (M) -i] -V (M)) .
We now explain why this is correct. Suppose that we want to fill a knapsack of size κ with items from

G ↓ b = G ↓ b 1 ∪ G ↓ b 2 .
We first decide how much of the capacity in the knapsack should be assigned to items from G ↓ b 1 and denote it by i. This cannot be less than W (M) as we know that we have to put M in the knapsack. After putting M and the other items from G ↓ b 1 , we have κ -i remaining capacity for other elements from G ↓ b 2 . However, given that M also appears in G ↓ b 2 , this is equivalent to filling a knapsack of size κ + W (M) -i using items in G ↓ b 2 in which we are forced to take M . The final -V (M) in the formula is to avoid double-counting the value of items in M , which were counted in both dp variables.

Example 7. In the instance of Example 3 (Figure 5), the only join bag is the root r = b 0 . The algorithm computes

dp[r, {2}, 2] = max{dp[b 1 , {2}, 1] + dp[b 6 , {2}, 2], dp[b 1 , {2}, 2] + dp[b 6 , {2}, 1]} -V (2) = max{2 + 6, 6 + 2} -2 = 6.
Intuitively, we want to fill a knapsack of size 2 and we know that vertex 2 must be present in the knapsack and 1 must be absent. We consider two cases: either we allocate capacity 1 to the subgraph G ↓ b 1 and capacity 2 to G ↓ b 2 (The vertex 2 itself has a weight of 1 is counted in both capacities), or vice versa. We can read the maximum values from dp variables computed in b 1 and b 6 . However, as vertex 2 was included in both sides, we have to deduct its value at the end. Recall that r is the root bag, and hence G ↓ r = G. So every solution of dp[r, M, k] respects all dependency and conflict relations in G. Also, note that obtaining the actual contents of our knapsack is a matter of following dp values that lead to the optimal solution in each formula above, just as in the classical 0-1 Knapsack.

Example 8. In our running example, the final solution is:

max{dp[r, ∅, 3], dp[r, {1}, 3], dp[r, {2}, 3], dp[r, {1, 2}, 3]} = max{7, -∞, 6, -∞} = 7,
which can be achieved by taking items 3 and 4.

Given the algorithm and discussion above, we have the following theorems: Theorem 3. Given a DCK instance I = (n, k, Σ, V, W, C, D), and a nice tree decomposition of its DCG with width t and O(n • t) bags, our algorithm above solves

MaxDCK in time O(n • k 2 • 2 t • t 3).
Proof. We define O(2 t • k) dp variables at each bag. Given that there are O(n • t) bags, the total number of dp variables is O(n • k • t • 2 t). Computing each dp variable takes O(t 2), i.e. for checking the satisfaction of local constraints in the current bag, except when we are handling join bags, where it takes O(t 2 + k) due to taking the maximum of k elements. This leads to the desired bound of O(n • k 2 • 2 t • t 3) for the whole runtime. Proof. This is exactly similar to Theorem 3, except that a nice path decomposition has no join nodes, and hence the algorithm is faster by a significant factor of k.

Note that if the treewidth or pathwidth are fixed (small) constants, the theorems above lead to pseudo-polynomial algorithms with runtimes O(n • k 2) and O(n • k), respectively. Especially, the latter bound matches the runtime of the classical dynamic programming algorithm for 0-1 Knapsack. As we will see in the next section, this is exactly what happens in practice.

Parallelization. The dp[b, ., .] computations performed by our algorithm in every bag are independent of each other and parallelizable. Specifically, when solving instances with a knapsack of capacity k, if we have θ threads and θ < k • 2 t , then the algorithm can be perfectly parallelized. In real-world use-cases, we often have k ≥ 10 6 . So, for all practical purposes, our algorithms' parallel runtimes are O n•k 2 θ and O n•k θ for instances with bounded treewidth and pathwidth, respectively.

Implementation and Experimental Results

Implementation. We implemented our algorithm in C++ and used OpenMP [START_REF] Dagum | OpenMP: An industry-standard API for shared-memory programming[END_REF] for parallelization. We relied on the codebase of the Esplora Block Explorer [START_REF]Esplora block explorer[END_REF] to collect information about the Bitcoin blockchain. This includes details of the transactions in each block and the mempool (transactions that are published but not yet mined). We computed tree and path decompositions using SageMath [START_REF]The Sage Developers, SageMath, the Sage Mathematics Software System[END_REF].

Machine. All results were obtained on a machine with 4 Intel Xeon E7-4850 v3 processors (2.20GHz, 14 cores, 28 threads, 35 MB Cache), running Ubuntu 20.04 LTS with 160GB of RAM and a total of 112 threads. Note that this is an extremely modest configuration in comparison with the computation power that the miners routinely use for proof-of-work. Moreover, as mentioned above, our algorithm can be perfectly parallelized and will therefore use much less time when run by the real-world miners.

Central Hypothesis. We consider DCK instances that model the problem of obtaining optimal blocks (wrt transaction fees) in the Bitcoin blockchain. Our central hypothesis is that the DCGs (Dependency-Conflict Graphs) of these instances have bounded treewidth/pathwidth. In other words, we are creating a graph in which we put a vertex for every transaction and put edges between two transactions if either they are in conflict or one is a dependency of the other. We hypothesize that such a graph would be sparse and have a tree-like/path-like structure. As such, we expect these graphs to have small treewidth/pathwidth. This is intuitively justified by the fact that double-spending is relatively rare and creates very few conflict edges.

On the other hand, the dependence between transactions is often in the form of a directed acyclic graph and has a tree-like structure.

Benchmarks. We ran a real-time experiment on live Bitcoin data, in which we considered blocks number 681734 to 681935 in the Bitcoin blockchain. These blocks correspond to more than a day (almost 27 hours) of activity. More specifically, they were mined between 3rd May 2021 -15:51 UTC and 4th May 2021 -19:10 UTC. We updated our mempool every 5 minutes using live Bitcoin data as provided by [START_REF]Esplora block explorer[END_REF]. There is a simple reason behind this choice: the mempool is continuously evolving as new transactions are broadcast. As such, a miner who is intent on mining the optimal block should constantly run our algorithm on new mempools. As we will see, each run of our algorithm takes roughly 3 minutes on our machine. To ensure that we are not obtaining any unfair advantage, we set the interval to 5 minutes. We used this live mempool as the set Σ of all possible items. We then ran our algorithm to obtain an optimal block.

Baseline. We compared the total transaction fees obtained by our solution with transaction fees earned by the miner of the actual block i on the Blockchain. Note that real-world miners might have a different view of the network and hence form a block using a different set of transactions. Hence, a direct comparison of the final transaction fees puts us in a relative disadvantage (see the discussion below).

Results. Our experimental results are shown in Figures 67. The raw experimental data is available in Tables A.1-A.3 in the Appendix. We now discuss them in more detail:

• Widths. In 138 instances, the DCGs had a pathwidth of 2 and in 64 instances the width was 3. Tables A.1-A.3 report the pathwidth of every instance. This demonstrates that our central hypothesis holds in the real world and the widths are small. Moreover, given that the pathwidth is at most 3 and the capacity is k = 10 6 in Bitcoin, our pathwidth-based algorithm is much more promising than the treewidth-based variant, i.e. O(n

• k) vs O(n • k 2).
• Transaction Fee Revenues. Figure 6 and Tables A.1-A.3 also show the amount of transaction fees obtained by our algorithm vs the amount earned by the miners on chain. Figure 7 provides a histogram of the improvement percentages obtained by our algorithm. Based on these, our approach obtains a maximum per-block improvement of 259 percent in transaction fee revenues, which is huge. Moreover, the average per-block improvement is a whopping 13.4 percent. In absolute terms, our algorithm obtains between -0.029 and 0.776 BTC more fees than the miners in each block. If we sum this over all blocks, we get total improvements of 5.539 BTC, which was equal to roughly 325,800 USD at the time4 .

• Runtimes. Our runtimes range from 114s to 277s, and the average runtime is 175s. Tables A.1-A.3 also report the individual runtimes for each block. Note that in Bitcoin, a new block is mined roughly every 10 minutes. So, even with our modest computational resources, we are able to find the optimal block in time. Given that the miners have access to much more computational power (that they use for proof-of-work), obtaining the optimal block using our algorithm will have a negligible effect on computation costs, while significantly increasing revenue.

Discussion. We now discuss several aspects of our results, as well as their limits of applicability to other blockchains and threats to their validity in the future.

• Close Results. Despite the considerable overall improvement in transaction fee revenues, there are a sizable number of blocks (69 out of 202) for which the transaction fees obtained by our algorithm are very close to those of the miners and show less than 1% improvement. We believe this is evidence that the miners are already using various relatively successful heuristics for maximizing their revenue. However, as the overall results demonstrate, such heuristics are not always effective and lead to a much lower-than-optimal return in the long run. In contrast, our algorithm is able to form an optimal block and obtain the highest possible revenue.

• Lower Results vs Optimality. In some cases, our algorithm's reported transaction fee revenue is slightly lower than what was obtained by the miners on the blockchain. This seems to contradict the optimality of our algorithm, which was proven in Section 5, but is actually caused by an entirely orthogonal reason: In these instances, the miners had access to transactions which were not in our mempool. Given the distributed nature of the Bitcoin blockchain, its low connectivity [START_REF] Naumenko | Erlay: Efficient transaction relay for Bitcoin[END_REF], and our limited networking resources (a single node), it was inevitable that we miss some transactions. Moreover, we ran our algorithm in 5-minute intervals. Hence, when forming block i, we missed transactions that were announced shortly before this block was mined. In contrast, it is wellknown that miners typically deploy several nodes in different continents, ensuring that they have a much more reliable connection. Additionally, they have considerably larger computational power and can run the algorithm in shorter intervals. In spite of our limited resources, as Figures 67and Tables A.1-A.3 demonstrate, we were able to obtain significantly higher transaction fee revenues overall.

• Extension to other (non-Bitcoin) Blockchains. Our algorithms are directly applicable to any blockchain with static transaction fees, i.e. blockchains in which the exact fee is known at the time the transaction is broadcast. Extending these methods to blockchains with dynamic transaction fees, such as Ethereum, is a challenging and interesting direction of future work. It is also noteworthy that our algorithms do not depend on the consensus mechanism and can be applied to blockchains that do not use proof-of-work.

• Threats to Validity. The main threat to the validity of our approach is if our central hypothesis (low width) does not hold. This hypothesis can be violated by the users, who are the originators of transactions and whose actions ultimately define the conflicts and dependencies. For example, if the network suddenly receives a huge number of double-spending attacks, then the DCG will no longer be sparse/low-width. As shown in Section 4, the problem is strongly NP-hard and hard-to-approximate without this assumption. However, as demonstrated by our experimental results, our assumption currently holds in Bitcoin. Another threat is posed if the blocks are added to the chain in extremely small timeframes. In Bitcoin, a new block is mined roughly every 10 minutes. As shown by our experimental results, this is enough time for us to run our algorithms and obtain optimal blocks. Given that our algorithms are perfectly parallelizable, shorter times between mined blocks would only translate to a need for more computation power. However, our algorithms also rely on tree/path decompositions which are obtained from external non-parallel tools. If the rate of addition of new blocks is extremely fast (e.g. one block per second), we might not be able to compute the decompositions in time. Figure 6: Comparison of fees obtained by our approach (green) and the real-world Bitcoin miners (red). The x axis is the block number and the y axis is the transaction fee revenue in BTC. To increase readability, points corresponding to the same block are connected by a line.

Conclusion

In this work, we considered the problem of forming an optimal block, i.e. a block that yields maximal transaction fee revenue, from the viewpoint of a miner. We formalized it as an extension of the Knapsack problem with dependencies and conflicts. We then showed that it is strongly NP-hard and hard-to-approximate within a factor of 7 8 + unless P=NP. Then, we exploited the fact that real-world instances of the problem have sparse underlying dependency-conflict graphs and obtained efficient algorithms parameterized by the treewidth and pathwidth of this graph. Finally, we provided experimental results demonstrating that our approach significantly outperforms real-world miners, obtaining improvements of up to 259 percent per block (average improvement: 13.4 percent). In the 27-hour window of our experiment, this led to an improvement of 5.539 BTC / 325,800 USD in absolute terms. Given that our approach is efficient and parallelizable, it provides the miners with a cost-effective and simple solution to dramatically increase their transaction fee revenues.

Appendix

Figure 2 :

 2 Figure2: Tx 2 and Tx 3 both use the same funds (the second output of Tx 1). This is considered double-spending and is not allowed. Hence, Tx 2 and Tx 3 are in conflict and a miner cannot include both of them in her block.

Figure 3 :

 3 Figure3: A graph G (left), a tree decomposition of G with width 2 (middle), and a path decomposition of G with width 3 (right). In each case, the connected subtree containing the vertex 6 is shown in blue.

), {2, 3}}. Moreover, T ↓ b 1 is the part of the tree that contains b 1 , b 2 , b 3 , b 4 , and b 5 , and the graph G ↓ b 1 contains vertices 1, 2, 3 and edges (1, 2) and {2, 3}.

Figure 5 :

 5 Figure 5: A DCG G (left) and a nice tree decomposition of G (right). Leaf bags are shown in blue, introduce bags in green, and forget bags in red. The only join bag is the root.

Example 4 .

 4 In the instance of Example 3 (Figure 5), the algorithm computes dp[b 5 , ∅, κ] = dp[b 10 , ∅, κ] = 0 for all 0 ≤ κ ≤ 3. Computing Values at Introduce Bags. Let b ∈ T be an introduce bag. Also, let b be its child and σ be the item/vertex that is introduced in b. When computing dp[b, M, κ], the algorithm first checks whether M violates any dependency/conflict relations within E b . If so, it sets dp[b, M, κ] = -∞. Similarly, if the sum of weights of items in M exceeds κ, it sets dp[b, M, κ] = -∞. Otherwise, it sets:

Example 5 .Example 6 .

 56 The argument is similar to classical 0-1 Knapsack. If σ ∈ M, then we should put σ in the knapsack, leading to a value of V (σ), and leaving us with k -W (σ) more room to fill with items from G ↓ b . If σ ∈ M, there is no gain in value and no loss in space, and the knapsack should be filled usingG ↓ b .In both cases, we of course have to respect all the conflicts and dependencies in G ↓ b , too. This is modeled by dp[b , •, •]. In the instance of Example 3 (Figure5), the algorithm sets dp[b 2 , {1, 3}, κ] = -∞ for every κ. This is because 1 depends on 2, which is not included, hence the requirement of the dependency edge (1, 2) is violated. Similarly, we have dp[b 7 , {1, 2, 4}, 2] = ∅, because there is not enough capacity in a knapsack of size 2 for 3 unit-size elements. Now consider bag b 2 , which introduces vertex 1. The algorithm computes dp[b 2 , {2, 3}, 3] = dp[b 3 , {2, 3}, 3] = 3 and dp[b 2 , {1, 2}, 2] = dp[b 3 , {2}, 1] + V (1) = 3. Computing Values at Forget Bags. If b ∈ T is a forget bag with a single child b , then by definition, we have G ↓ b = G ↓ b . Suppose that b forgets σ. Then, the algorithm computes dp values at b as follows: dp[b, M, κ] = max{dp[b , M, κ], dp[b , M ∪ {σ}, κ]}. This is because G ↓ b and G ↓ b enforce the same dependency and conflict requirements. Moreover, if the set of items put in the knapsack has intersection M with Σ b , then its intersection with Σ b = Σ b ∪ {σ} is either M or M ∪ {σ}. In the instance of Example 3 (Figure 5), bag b 6 forgets vertex 4. The algorithm computes dp[b 6 , {2}, 3] = max{dp[b 7 , {2}, 3], dp[b 7 , {2, 4}, 3]} = max{2, 6} = 6. Similarly, we have:dp[b 1 , {1, 2}, 2] = max{dp[b 2 , {1, 2}, 2], dp[b 2 , {1, 2, 3}, 2]} = max{3, 3} = 3.Now consider the case of computing dp[b 6 , {1, 2}, 3]. In a valid solution, it is impossible to take both 1 and 2, because 2 depends on 4 and 4 is in conflict with 1. Nevertheless, this does not violate any local restrictions at b 6 . Note that E b 6 = {(1, 2)} and choosing the set {1, 2} satisfies the requirement. Hence, the algorithm computes dp[b 6 , {1, 2}, 3] = max{dp[b 7 , {1, 2}, 3], dp[b 7 , {1, 2, 4}, 3]}. However, these values are both -∞. dp[b 7 , {1, 2}, 3] = -∞ because the local dependency requirement (2, 4) is not met at b 7 . Similarly, dp[b 7 , {1, 2, 4}, 3] = -∞ because the local conflict requirement between 1 and 4 at b 7 is not met. Hence, we will get dp[b 6 , {1, 2}, 3] = -∞. Computing Values at Join Bags. Let b ∈ T be a join bag with children b 1 and b 2 . By definition, we have Σ b

b 1 and G ↓ b 2

 2 are in Σ b . To compute dp[b, M, κ], the algorithm first checks whether any dependency or conflict requirements in E b are violated by M. If so, it sets dp[b, M, κ] = -∞. Otherwise, it computes V (M) = m∈M V (m), i.e. the total value of items in M , and W (M) = m∈M W (m), i.e. the total weight of items in M . If W (M) > κ, it sets dp[b, M, κ] = -∞. Otherwise, it computes:

 Note that in the steps above, the values of dp variables are computed correctly. Specifically, at each bag b, we first check that the local dependency/conflict requirements at b are satisfied. If they are not, we set the dp[b, •, •] to -∞. Hence, a bottom-up inductive argument shows that all dp[b, •, •] values respect the dependency and conflict requirements of the edges of G ↓ b . Computing the Final Answer. Finally, the algorithm computes the answer to the MaxDCK problem as follows: max M ⊆Σr dp[r, M, k].

Theorem 4 .

 4 Given a DCK instance I = (n, k, Σ, V, W, C, D), and a nice path decomposition of its DCG with width p and O(n • p) bags, our algorithm above solves MaxDCK in time O(n • k • 2 p • p 3).

Figure 7 :

 7 Figure 7: A histogram of the improvements obtained by our algorithm in comparison with realworld Bitcoin miners. The axis is the amount of improvement and the axis is the number of blocks.

1 2 3 4 5 6 7 8 9 {2, 3, 6} {3, 4, 6} {1, 2, 3} {2, 5, 6} {5, 6, 8} {4, 6, 7} {7, 9} {1, 2, 3} {2, 3, 5} {2, 3, 4, 5} {2, 4, 5, 6} {4, 5, 6, 7} {5, 6, 7, 8} {7, 9}

 A. Raw Experimental Data

	Block	|Σ|	|E|	PW	T	Our Fee	Miner's Fee	∆
	681734 32852 4322	2	202 1.64384456	1.64942663	-0.34%
	681735 31337 3928	2	193 1.36386228	1.36925564	-0.39%
	681736 34303 4962	3	220 1.49203669	1.45670239	+2.43%
	681737 36821 5653	3	177 1.42085126	1.40673804	+1.00%
	681738 34493 5183	2	183 0.95526813	0.94908231	+0.65%
	681739 33639 4812	2	194 0.73592618	0.72156298	+1.99%
	681740 33850 4738	2	190 0.87610756	0.86174104	+1.67%
	681741 33789 4965	3	123 1.24114721	1.21886940	+1.83%
	681742 37416 5875	3	125 1.52396150	1.48609066	+2.55%
	681743 39858 7250	3	176 1.65437604	1.61597732	+2.38%
	681744 41973 7967	3	128 1.51750749	1.49366215	+1.60%
	681745 43291 8687	3	195 1.43887144	1.41367160	+1.78%
	681746 40951 7994	3	159 1.20973668	1.18488390	+2.10%
	681747 39466 7515	3	141 1.10934511	1.09153173	+1.63%
	681748 39123 7392	3	188 1.15656696	1.13553911	+1.85%
	681749 38113 7214	3	118 1.09677982	1.06994853	+2.51%
	681750 36515 6788	3	169 0.86701302	0.84502231	+2.60%
	681751 36550 6794	3	132 0.50364127	0.49441269	+1.87%
	681752 36661 6550	2	182 1.48995020	1.45118859	+2.67%
	681753 36113 6555	3	152 1.08737204	1.06602783	+2.00%
	681754 34164 6344	3	122 0.54606148	0.53454122	+2.16%
	681755 33792 6209	3	149 0.99764178	0.99079588	+0.69%
	681756 32005 5925	2	163 0.68265387	0.67000081	+1.89%
	681757 30593 5587	2	121 0.64262189	0.62817897	+2.30%
	681758 29659 5153	3	151 1.40618720	1.39134636	+1.07%
	681759 30025 5230	3	139 0.92160374	0.90653020	+1.66%
	681760 30507 5301	3	146 0.79691323	0.77947123	+2.24%
	681761 30308 5195	3	158 0.84170137	0.82064635	+2.57%
	681762 30626 5089	3	117 1.03641038	1.01285348	+2.33%
	681763 35409 6306	3	174 1.62126813	1.58237716	+2.46%
	681764 35769 6472	3	160 1.41243719	1.37652773	+2.61%
	681765 33535 6039	3	121 0.84725060	0.82926047	+2.17%
	681766 31299 5567	3	120 0.43660905	0.43107542	+1.28%
	681767 31319 5402	3	166 1.02576384	1.00472613	+2.09%
	681768 29472 5193	3	175 0.40257931	0.39617466	+1.62%
	681769 28193 4620	3	162 0.38398402	0.38524465	-0.33%
	681770 26461 3727	2	170 0.24132183	0.22053945	+9.42%
	681771 25532 3139	2	153 0.39829964	0.31831705	+25.13%
	681772 26248 3247	2	159 1.44575882	1.46178535	-1.10%
	681773 26864 3398	2	162 1.47124550	0.69572765	+111.47%
	681774 24733 3008	2	141 0.42943216	0.43013572	-0.16%
	681775 24796 3011	2	140 0.45939623	0.12792332	+259.12%
	681776 23142 2746	2	126 0.37246376	0.36564703	+1.86%
	681777 22973 2786	2	128 0.79666808	0.73404594	+8.53%
	681778 21402 2591	2	120 0.18574904	0.16262119	+14.22%
	681779 21443 2593	2	120 0.25666972	0.13265033	+93.49%
	681780 22127 2757	3	169 0.34191520	0.34546023	-1.03%
	681781 23238 2816	2	131 0.77277192	0.76596395	+0.89%
	681782 21336 2558	2	120 0.35848927	0.35196518	+1.85%
	681783 20978 2537	2	119 0.25916462	0.23825538	+8.78%
	681784 20584 2512	2	116 0.12759041	0.11706145	+8.99%
	681785 22647 2778	2	127 0.77748036	0.77849247	-0.13%
	681786 20548 2524	2	117 0.16653468	0.15830595	+5.20%
	681787 21647 2687	2	123 0.82741649	0.82965631	-0.27%
	681788 21385 2631	2	121 0.45095308	0.44175300	+2.08%
	681789 20433 2504	2	118 0.26225203	0.25475921	+2.94%
	681790 20169 2483	2	115 0.07722830	0.05665851	+36.30%
	681791 20418 2463	2	117 0.23601696	0.22984366	+2.69%
	681792 21053 2570	2	120 0.55817715	0.55249285	+1.03%
	681793 20152 2459	2	114 0.14900975	0.11448200	+30.16%
	681794 20136 2473	2	114 0.14462324	0.06667075	+116.92%
	681795 20206 2307	2	115 0.37178710	0.35032445	+6.13%
	681796 19806 2217	2	140 0.33822887	0.33057839	+2.31%
	681797 20913 2413	2	124 1.44319780	1.46291810	-1.35%
	681798 25021 3255	2	159 1.53952924	1.55797209	-1.18%
	681799 23955 3080	2	156 1.16094207	1.16811242	-0.61%
	681800 22997 2848	2	221 0.68890355	0.67315840	+2.34%
	681801 21354 2517	2	204 0.32007874	0.31977864	+0.09%
	681802 19488 2208	2	186 0.12761411	0.11148755	+14.46%
	681803 18646 2033	2	178 0.35288418	0.34142871	+3.36%

Table A .

 A 1: Experimental Results for Blocks 681734-681803. |Σ| is the mempool size, |E| is the number of DCG edges, PW is its pathwidth, and T is our runtime in seconds. The next two columns show the amounts of transaction fees (in BTC) obtained by our algorithm and the miners. The final column is the improvement percentage obtained by our method.

	Block	|Σ|	|E|	PW	T	Our Fee	Miner's Fee	∆
	681804 18293 1934	2	172 0.39405665	0.38687641	+1.86%
	681805 17542 1770	2	164 0.38287323	0.35712051	+7.21%
	681806 17658 1760	2	165 0.52766519	0.40536363	+30.17%
	681807 16282 1565	2	152 0.16574898	0.16245736	+2.03%
	681808 16651 1600	2	157 0.45902543	0.41990118	+9.32%
	681809 15962 1511	2	149 0.13608404	0.12461587	+9.20%
	681810 18656 2038	2	177 0.92889911	0.91855954	+1.13%
	681811 17120 1713	2	161 0.49517938	0.44597426	+11.03%
	681812 15705 1497	2	146 0.12318392	0.07099044	+73.52%
	681813 15995 1517	2	149 0.18683390	0.17602645	+6.14%
	681814 15751 1500	2	147 0.19884083	0.18818186	+5.66%
	681815 15832 1497	2	148 0.24194869	0.23771793	+1.78%
	681816 16790 1637	2	157 1.26000000	1.25404659	+0.47%
	681817 19561 1719	2	181 0.56026644	0.54588518	+2.63%
	681818 18466 1552	2	170 0.19322899	0.05612528	+244.28%
	681819 20927 2131	2	199 0.90247352	0.84845188	+6.37%
	681820 18989 1725	2	176 0.16513421	0.16101704	+2.56%
	681821 18582 1670	2	174 0.21646552	0.12519847	+72.90%
	681822 19211 1753	2	180 0.37537688	0.37470292	+0.18%
	681823 19201 1782	2	180 0.38947393	0.38651571	+0.77%
	681824 18522 1657	2	173 0.17853084	0.15605582	+14.40%
	681825 20277 2002	2	191 0.74520579	0.74584658	-0.09%
	681826 20799 2094	2	197 0.74404969	0.74859451	-0.61%
	681827 20144 2074	2	192 0.73620192	0.74241424	-0.84%
	681828 22845 2727	2	221 1.15000000	1.17860979	-2.43%
	681829 20948 2185	2	198 0.31153417	0.27106087	+14.93%
	681830 20027 2016	2	189 0.10106824	0.08286468	+21.97%
	681831 19954 2107	2	190 0.44243858	0.33474846	+32.17%
	681832 19204 1881	2	181 0.26669875	0.26349802	+1.21%
	681833 19333 1900	2	183 0.25954326	0.24630460	+5.37%
	681834 22830 2394	3	216 1.18829963	1.21020196	-1.81%
	681835 22958 2490	2	218 0.86038850	0.81974529	+4.96%
	681836 22699 2471	2	215 0.69359493	0.70238558	-1.25%
	681837 22314 2381	2	212 0.49068996	0.44416284	+10.48%
	681838 21669 2238	2	205 0.32939677	0.32881838	+0.18%
	681839 20902 2000	2	194 0.26930933	0.14015146	+92.16%
	681840 20361 1920	2	192 1.25090867	1.07201308	+16.69%
	681841 19742 1860	2	187 0.43602749	0.12506248	+248.65%
	681842 19043 1702	2	178 0.35298249	0.34703486	+1.71%
	681843 21536 1964	2	137 0.87763633	0.88259990	-0.56%
	681844 24095 2709	2	230 1.04839823	1.05621396	-0.74%
	681845 23533 2498	2	223 0.74771946	0.76224080	-1.91%
	681846 24072 2501	2	225 0.67374226	0.68237093	-1.26%
	681847 24712 2475	2	149 0.70987242	0.72193862	-1.67%
	681848 23719 2259	2	222 0.35468574	0.35398619	+0.20%
	681849 22188 2067	2	209 0.17834744	0.17492102	+1.96%
	681850 21461 1960	2	201 0.39228623	0.35952578	+9.11%
	681851 20082 1776	2	187 0.19677900	0.18721051	+5.11%
	681852 20129 1784	2	186 0.20849708	0.05817860	+258.37%
	681853 23312 2277	2	219 0.83331331	0.83738092	-0.49%
	681854 20939 1945	2	197 0.11826813	0.11135318	+6.21%
	681855 21778 1936	2	202 1.03044596	1.03805504	-0.73%
	681856 22408 2061	2	211 0.67896948	0.69319732	-2.05%
	681857 23435 2313	2	222 0.64131870	0.64982502	-1.31%
	681858 23291 2154	2	221 0.46260132	0.39995396	+15.66%
	681859 21169 1787	2	198 0.27755617	0.27668157	+0.32%
	681860 20028 1736	2	187 0.06587330	0.06067005	+8.58%
	681861 21063 1842	2	196 0.36890605	0.36699631	+0.52%
	681862 21169 1861	2	197 0.40658124	0.40471842	+0.46%
	681863 20694 1786	2	194 0.29448050	0.29225122	+0.76%
	681864 20913 1813	2	195 0.34960082	0.34919726	+0.12%
	681865 19869 1756	2	187 0.09183317	0.08745974	+5.00%
	681866 23410 2317	2	223 0.86738169	0.80467475	+7.79%
	681867 21386 1957	2	203 0.19065790	0.18611535	+2.44%
	681868 20022 1756	2	190 0.14503619	0.11038115	+31.40%
	681869 20809 1847	2	195 0.28632517	0.28383601	+0.88%
	681870 20894 1864	2	200 0.35434630	0.17464953	+102.89%
	681871 23737 2326	2	229 1.07131655	1.03957922	+3.05%
	681872 22233 2017	2	212 0.94969343	0.94285913	+0.72%
	681873 22492 2107	2	215 0.38716294	0.34265797	+12.99%

Table A

 A

.2: Experimental Results for Blocks 681804-681873.

SegWit[START_REF] Lombrozo | Segregated witness (consensus layer), Bitcoin Core Develop[END_REF] affects neither our problem, nor the algorithms we propose. To apply our algorithms to Bitcoin transactions utilizing SegWit, one should simply discard the witness part when computing the size of a transaction. As such, we use vbytes and bytes interchangeably.

Note that this is the sum of savings over each individual block. However, it is not necessarily the exact amount of increase in the miners' revenue if they use our algorithm. Changing the mined block will also change the current mempool. Moreover, many users form their transactions based on the current state of the blockchain. As such, computing the exact total change in revenue is impossible.